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Continuous Vehicle Localisation Using Sparse 3D Sensing, Kernelised Rényi
Distance and Fast Gauss Transforms
Mark Sheehan, Alastair Harrison and Paul Newman

Abstract— This paper is about estimating a smooth,
continuous-time trajectory of a vehicle relative to a prior
3D laser map. We pose the estimation problem as that of
finding a sequence of Catmull-Rom splines which optimise the
Kernelised Rényi Distance (KRD) between the prior map and
live measurements from a 3D laser sensor. Our approach treats
the laser measurements as a continual stream of data from a
smoothly moving vehicle. We side-step entirely the segmentation
and feature matching problems incumbent in traditional point
cloud matching algorithms, relying instead on a smooth and
well behaved objective function. Importantly our approach
admits the exploitation of sensors with modest sampling rates
- sensors that take seconds to densely sample the workspace.
We show how by appropriate use of the Improved Fast Gauss
Transform we can reduce the order of the estimation problem
from quadratic (straight forward application of the KRD) to
linear. Although in this paper we use 3D laser, our approach
is also applicable to vehicles using 2D laser sensing or dense
stereo. We demonstrate and evaluate the performance of our
approach when estimating the full 6DOF continuous time pose
of a road vehicle undertaking over 2.7km of outdoor travel.

I. INTRODUCTION

This paper addresses the problem of continuous time vehi-
cle localisation against a 3D prior map. We envision a system
where a single expensive one-shot survey of the environment
can be created and subsequently leveraged and/or contributed
to by many low-cost vehicles.
While there exists a substantial body of work with regards
to the exploitation of a prior survey in the laser-based local-
isation literature, a common assumption is that of a “rigid
point set”: many laser measurements are agglomerated into
rigid chunks and treated as atomic entities which undergo
euclidean transformations relative to each other. An example
of this is treating a single rotation of the rapidly rotating
Velodyne laser scanner as an atomic unit. Localisation or
ego-motion estimation then becomes one of matching rigid
point clouds to each other - a well understood task. This is
not wildly problematic if vehicle motion is slow compared
to the measurement rate - so the sensor is to a first ap-
proximation able to capture the workspace “instantaneously”
- but things fall apart when this is not the case. When
the vehicle is itself undergoing rapid unknown motion it
is not possible to create a trustworthy and rigid workspace
scan. In reality measurements are taken one by one as the
vehicle undertakes an (unknown) continuous trajectory. Our
formulation represents the vehicle’s trajectory as a Catmull-
Rom spline with each and every laser measurement hung

The authors are with the Oxford University Mobile Robotics
Group, UK.
{mcs,arh,pnewman}@robots.ox.ac.uk

off this space curve. Accordingly if we smoothly perturb
the spline parameters, the back projected 3D location of all
laser measurements is also smoothly perturbed. One of the
contributions of this work is to suggest a continuous cost
function free from any data association or feature matching
complexities which can be used to optimise the trajectory
parameters. This results in a necessarily smooth trajectory.
We go on to show how the nature of this cost function can be
exploited by a variant of the Fast Gauss Transform to reduce
the complexity of the cost function from quadratic to linear.

Fig. 1. A typical survey point cloud, coloured by laser reflectance value,
with vehicle poses from the GPS/INS plotted as coloured axes. We wish to
deduce a continuous time representation of vehicle motion relative to this
map using a slow-sampling sensor.

II. RELATED WORK

There exists a vast and rich body of related work in laser-
based localisation. In particular, 2D scan matching against
prior maps has a long and successful record of accomplish-
ment in robotics. However, operation in complex, dynamic
environments often necessitates the use of an environment
representation far richer than a 2D scan. In [1] for example,
2D scan data is registered against a 3D survey map in
order to overcome scan artefacts due to vehicle roll and
pitch, ground strike and grazing effects. In [2], 3D laser and
camera data are combined and feature descriptors generated
and matched on a scan-by-scan basis. The authors employ
Mutual Information as a “metric” and show that it offers a
superior basin of convergence compared to ICP. In [3] a 3D
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Fig. 2. System overview - 3D point cloud maps are created of the environment, the points in these maps are denoted by blue stars. Our robotic platform
traverses the same environment again using only the 3D laser scanner, providing us only with range measurements (denoted by the green dashed lines)
drawn from the same underlying environment structure. There is only one continuous trajectory which causes our live laser points to align with our survey
point cloud data. This true trajectory is discovered by considering hypothesis trajectories (one of which is shown in red) which alters where the live laser
points are projected, we bend the trajectory according to our cost function until our live data maximally matches our survey. Our cost function captures the
alignment between our survey point cloud and the laser points projected by a hypothesis trajectory. Our cost function does not use explicit correspondences
between point sets, this is highlighted by the blue dashed line, each live laser point is compared (in an efficient manner) to every single survey point
allowing every laser and every survey point to contribute to the overall cost function.

nodding laser scanner is used, with gradient based features
extracted from 2D slices and matched between consecutive
scans, providing a localisation prior for a more complex
6D SLAM system. Bibby and Reid [4] represent vehicle
trajectories using cubic splines enabling the use of a SLAM
system for a dynamic nautical environment using radar data.
Of particular relevance is the thread of work beginning with
[5] where consecutive 3D scans are gathered and processed to
extract 3D shape features which are paired using smoothness
and match constraints provided by a linear system. This
work is extended in [6] where continuous trajectories are
created via a spring mounted laser with an IMU. Continuing
the 3D theme, an offline SLAM algorithm is employed on
data from a Velodyne laser scanner and a GPS/IMU to
build probabilistic maps in [7]. Localisation is subsequently
performed against this map using a particle filter. In [8]
an ICP based approach is taken to discrete vehicle pose
estimation. This problem is slightly different to our own, as
they are using a Velodyne HDL-64E, which gathers data at a
faster rate than our own sensor, making the motion between
point acquisitions less critical. In a recent work, Tong,
Furgale and Barfoot [9] have been looking at the continuous
time state estimation problem using suitably chosen basis
functions. This work is complementary to ours in that we
choose a very simple trajectory model and focus instead
on leveraging a continuous, association-free measurement
model.

III. METHODOLOGY

A. Survey generation

At the outset a static survey map is constructed using
GPS/INS data and measurements from a 3D laser scanner,
which is comprised of three SICK LMS151 scanners config-
ured to have a full 360° field of view1. The laser is mounted
on a vehicle and driven around a looping road. We take great
care in synchronising the GPS/INS and 3D laser data streams
using the TICSync algorithm [11]. We fit a Catmull-Rom
spline (the details of which will be discussed in Section
III-B) to the GPS/INS data. This provides a continuous
representation of the vehicle trajectory which is parametrised
by time. Every single laser measurement has its own time
stamp. This allows us to identify a unique 6DOF pose of
the vehicle for each measurement. From here it is a simple
matter to back project the laser measurement to produce a
3D point in the world frame. Doing this for all measurements
leads to the survey point cloud, Ω, containing N points. An
example survey point cloud is shown in Figure 1 with the
GPS/INS trajectory overlaid.

B. Trajectory modelling

We treat the vehicle motion as a continuous function
S(t), parametrised by time, allowing us to obtain a 6DOF
vehicle pose for a laser point at any given time, t. Our pose

1A more detailed account of the 3D laser scanner, including the calibra-
tion method used, can be found in [10].
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representation parametrises vehicle attitude using an Euler
angle representation, [r, p, q]T , corresponding to roll, pitch
and yaw respectively. A trajectory S(t) is thus composed of
six spline paths – one for each element of the pose vector –
such that S(t) = [Sx(t), Sy(t), Sz(t), Sr(t), Sp(t), Sq(t)]

T .
To represent the trajectory S(t), we choose a piecewise

cubic spline, the coefficients of which are generated using
the Catmull-Rom method [12]. Catmull-Rom splines have
a compact support region making them easy to compute,
as well as providing C1 continuity across control points. A
Catmull-Rom spline is a special case of a Cardinal spline,
which is formed using four Hermite interpolation basis
functions:

h1(s) = (2s3 − 3s2 + 1)

h2(s) = (s3 − 2s2 + s)

h3(s) = (−2s3 + 3s2)

h4(s) = (s3 − s2) (1)

Given a pair of control points pk−1, pk with corresponding
gradients mk−1,mk and an interpolation parameter s ∈
[0, 1], we write the spline equation as

x(s) = h1(s)pk−1 + h2(s)mk−1 + h3(s)pk + h4(s)mk (2)

A Cardinal spline is formed if we further specify that the
gradients should be computed as a function of neighbouring
control point positions,

mk = (1− c)pk+1 − pk−1
tk+1 − tk−1

(3)

where c ∈ [0, 1] is known as the tension parameter, with
c = 0 being the value for a Catmull-Rom spline. Since
the gradients now depend on neighbouring control points,
a Catmull-Rom spline segment therefore has a support of 4
control points.

We define a vehicle pose as a tuple Pi =
([x, y, z, r, p, q], [t]). We seek a continuous trajectory in the
form of a Catmull-Rom spline which is uniquely determined
by four vehicle poses which are themselves control points for
the spline. We shall invoke an iterative and recursive strategy.
At time step k we shall calculate an updated trajectory S(t)
by optimising over a new control point Pk in isolation. Given
S(t), a stream of laser points Li = {xi, yi, zi} where each
point i has a time stamp ti, we can obtain an estimate of
vehicle pose for every measured laser point. By application
of a kinematic chain this yields a back projected point cloud
L in the world frame. The following sections will set out
in detail how this optimisation proceeds. Before progressing
we should be explicit about why this paper is not about
ICP. Firstly we use a continuum based approach using a
slow sensor, significant motion occurs between individual
laser measurements. Secondly our approach is not limited
by point to point correspondences, we know in reality that
laser data is sampled from surfaces. Matching explicitly to
other measurements is not sensible.

C. The cost function

We wish to find the vehicle trajectory which maximally
aligns our live point stream with our survey map. Quantifying
the quality of this match allows us to form an optimisation
problem yielding the current vehicle trajectory. The method
used to quantify the overlap between the deformable L
and the rigid survey Ω is an entropy measure called the
Kernelised Rényi Distance (KRD) [13]. Entropy expresses
the amount of disorder in a system, therefore we expect our
system’s lowest entropy to correspond to a maximal overlap
between the survey map and the live laser stream, yielding
the transform of the current vehicle location relative to the
prior map.

We now outline the derivation of the Kernelised Rényi
Distance from an information theoretic quantity known as
Rényi Quadratic Entropy. At this point we draw on our
previous work [14] to recapitulate the provenance of this
quantity.

Let us begin with a model that all measurements - both at
survey and runtime

X̂ = {Ω,L} (4)

are samples of a latent distribution, p(x) which represents
the chance of a laser measurement originating from a 3D
location, x. We approximate p(x) with Parzen Window [15]
density estimation. With a Gaussian centred on each data
point, we can use a Gaussian Mixture Model (GMM) to
model this distribution

p(x) =
1

N

N∑
i=1

G(x− x̂i, σ
2I), (5)

where G(µ,Σ) is a Gaussian with mean µ and isotropic
covariance Σ = σ2I.

Rényi [16] proposed an entropy measure which has a
closed-form solution for Gaussian Mixture Models [17].
While we use this to quantify the compactness of a point
cloud, it has also found application in the field of point
cloud registration [18]). The Rényi entropy HR of a random
variable X with pdf p(x) is:

HR[X] =
1

1− α
log

ˆ
p(x)αdx α > 0, α 6= 1 (6)

where α determines the weighting of events: high values of
α approaching infinity consider only the highest probability
events, whereas lower values of α weight high and low
probability events more equally. For the case where α→ 1,
Equation 6 becomes the familiar Shannon Entropy measure
[19]. For α = 2 we obtain:

HRQE [X] = − log

ˆ
p(x)2dx, (7)

which is known as the Rényi Quadratic Entropy (RQE).
Substituting Equation 5 into Equation 7 yields:
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HRQE [X̂] =− log

ˆ (
1

N

N∑
i=1

G(x− x̂i, σ
2I)

)2

dx

= − log

 1

N2

N∑
i=1

N∑
j=1

ˆ
G(x− x̂i, σ

2I)

G(x− x̂j , σ
2I)dx

)
(8)

which can be simplified using,

ˆ
G(x− xi,Σ1)G(x− xj ,Σ2)dx = G(xi − xj ,Σ1 + Σ2),

(9)
leading to a closed-form expression for the Rényi Quadratic
Entropy of the mixture model,

HRQE [X̂] = − log

 1

N2

N∑
i=1

N∑
j=1

G(x̂i − x̂j , 2σ
2I)

 .

(10)
This is a measure of the compactness of the points in
X, dependent on only the parameter σ, and the pairwise
distances between points in X̂.

The Kernelised Rényi Distance [13], can be obtained
from Equation 10 if X̂ is treated as a partition of two R3

point sets, in our case this partition is defined in Equation
4. Considering only the cross components of the entropy
contribution we obtain our cost function as:

E(L,Ω) = − log

 1

NM

M∑
j

N∑
i

e
−(dT d)

4σ2

8π
3
2σ3

)

 , (11)

where d = Lj − Ωi, the vector between the ith and jth

points in Ω and L, and N and M denote the number of
points in Ω and L, respectively.

As we seek to optimise E(L,Ω) we drop the constant scal-
ing factors and log, as it is a monotonic operator simplifying
our cost function to:

E(L,Ω) = −
M∑
j

N∑
i

e
−(dT d)

4σ2 , (12)

which depends only on pairwise distances between the
survey and laser point stream.

Equation 11 will return the lowest entropy when L and
Ω are maximally aligned. Because we have constructed the
problem such that L is a function of the current vehicle pose,
Pk, we can express the problem as a minimisation:

P̂k = arg min
Pk

E(L,Ω) (13)

providing us with our best estimate of the current vehicle
pose P̂k and by construction the vehicle trajectory.

IV. EFFICIENCY VIA THE FAST GAUSS TRANSFORM

Naive calculation of Equation 11 can be achieved in
O(NM) time. However, this can be reduced to O(N +M)
time, using a method known as the Improved Fast Gauss
Transform (IFGT) [20], [21], [22]. We are working with two
sets of points in R3, Ω1, ...,ΩN ∈ Ω and L1, ..., LM ∈ L.
For consistency with the literature we refer to Ω as the source
points and L as the target points, where the source points
have associated weightings q1, ..., qN ∈ Q. For these the
IFGT efficiently evaluates equations of the form

g(Lj) =

N∑
i=1

qie
−
‖Ωi−Lj‖

2

h2 , (14)

where the system bandwidth is h. We note that our cost
function of Equation 12 may be written as a summation of
terms in this form, with h = 2σ and qi = 1, ∀i.

The IFGT is guaranteed to satisfy the error bound
‖ĝ(Lj)−g(Lj)‖∑N

i=1 qi
≤ ε for a specified ε. The decrease in compu-

tational complexity is achieved through the combination of
a truncated Taylor series factorisation and a space subdivi-
sion scheme, which allows insignificant contributions to be
ignored.

The exponential component of Equation 14 can be ex-
pressed as a factorisation around any arbitrary point in space,
c, as follows:

g(Lj) =

N∑
i=1

qie
−
‖Ωi−Lj‖

2

h2 ,

=

N∑
i=1

qie
−
‖(Ωi−c)−(Lj−c)‖

2

h2 ,

=

N∑
i=1

qie
−
‖Lj−c‖

2

h2 e−
‖Ωi−c‖

2

h2 e
2(Ωi−c).(Lj−c)

h2 (15)

This results in three exponential terms. The first and
second exponentials depend only on points in sets Ω and
L respectively. The separation of Ω and L in the third
exponential can be achieved through the use of a Taylor
series expansion:

e
2(Ωi−c).(Lj−c)

h2 =

p−1∑
n=0

2n

n!

[
(Ωi − c)

h

]n [
(Lj − c)

h

]n
+err(p)

(16)
Where p is the number of terms used in the Taylor

expansion. This allows us to rewrite Equation 15 in terms of
a set of coefficients which can be evaluated independently
of points in L by evaluating Ω around c:

Cα =

p−1∑
n=0

N∑
i=1

qi
2n

n!

[
‖Ωi − c‖2

h

]n
(17)

yielding the full equation:

g(Lj) =

p−1∑
n=0

Cαe
−‖Lj−c‖2

[
‖Lj − c‖2

h

]n
(18)
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This formulation allows points Ω in a region around c
to contribute to a single Taylor Series expansion, which can
later be evaluated for points L around the same cluster centre
c. This results in the approach having linear complexity with
respect to the number of points in L and Ω rather than
quadratic.

On a housekeeping note - at low bandwidths efficient
clusters cannot be formed without expanding the Taylor
series to a large number of terms. In this scenario, the
problem could be addressed simply by using a KD-Tree
[23] to search the space, with a radius proportional to a
combination of the bandwidth and ε. A detailed analysis of
the trade-off between these two methods is provided in [20].

In our work we use the IFGT and KD-Tree implemen-
tations provided by [24]. The toolbox automatically selects
the best method by efficiently estimating the approximate
number of floating point operations required based on the
data and the desired bandwidth.

A. Jacobian formulation

With knowledge that we can reduce our system from
quadratic to linear complexity, we demonstrate both how we
compute the Jacobian of Equation 13 and how we make
the calculation computationally tractable. Let T(t) be the
transformation mapping a laser measurement at time t, when
the vehicle is at pose Γ, to Lw in the world frame. We
seek the variation of Equation 12 with respect to the control
point / current vehicle pose Pk. This is readily accessed via
application of the chain rule.

dE

dPk
=

dE

dLw
dLw

dT

dT

dΓ

dΓ

dS

dS

dPk
(19)

The last four of these terms can be evaluated easily by
simple differentiation. The first term however, dE

dLW
, deserves

closer attention.
Remembering our cost function as:

E(L,Ω) = −
M∑
j

N∑
i

e
−(dT d)

4σ2 (20)

We differentiate with respect to the x, y, z components
separately. But only the differentiation for the x component
is discussed here as the processes for y and z are similar.
We use subscript notation Lxi and Ωxj to denote the x
component of laser points Li and Ωj respectively:

dE(L,Ω)

dLx
= −

M∑
j

N∑
i

(Lxi − Ωxj)e
−
(

dT d
4σ2

)
2σ2

(21)

We can split this result into two summations in the form

of Equation 14

dE(L,Ω)

dLx
=

1

2σ2

 M∑
j

N∑
i

Lxie
−
(

dT d
4σ2

)
−

M∑
j

N∑
i

Ωxje
−
(

dT d
4σ2

) (22)

and swapping the ordering of the summations for the first
part of the Equation:

dE(L,Ω)

dLx
=

1

2σ2

 N∑
i

Lxi

M∑
j

e
−
(

dT d
4σ2

)
−

M∑
j

Ωxj

N∑
i

e
−
(

dT d
4σ2

) (23)

each summation maps to the form of Equation 14 again
using h =

√
2σ and Q = 1 as:

dE(L,Ω)

dLx
=

1

2σ2

 N∑
i

Lxig(Ωi)−
M∑
j

Ωxjg(Lj)

 (24)

This is the most computationally expensive part of the
Jacobian, condensed to two IFGT calculations. Which have
been numerically verified.

V. RESULTS

Fig. 3. An overhead satellite image of the Begbroke site overlaid with
vehicle trajectories obtained from our localisation system for four loops of
the site. The results from our localisation system are shown in yellow, while
those from the GPS/INS data are shown in Red and are scaled according
to the uncertainty values provided by the GPS/INS system. GPS data is
particularly bad for the bottom left section of the image due to tree cover.
In this region we see that our systems trajectory remains consistent over
multiple runs. On the final traversal, where the survey vehicle was driven
on the opposite side of the road (where possible) our localisation system
remains in agreement with the GPS.
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Fig. 4. Raw elevation data in metres plotted for multiple passes of the
same region for both the GPS/INS (red) and for our system (blue). Indexed
by the distance the vehicle has travelled. We see that two systems generally
agree with the exception of the region from 200M to 450M around the loop,
which corresponds to the tree covered region of Figure 3, where the line of
sight to the GPS satellites is blocked, for this region our system provides
a consistent elevation estimate for multiple passes whereas the GPS/INS
system provides elevations different by up to 2 Metres for the same region.
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Fig. 5. Histograms showing the velocity disparities between the GPS/INS
and our system of Figure 6 for X,Y,Z and Yaw. All of the histograms have
a low variance around zero velocity disparity with the exception of the Z
histogram. Part of the reason the variance isn’t lower, is because the GPS
signal suffers for a region of our route, this is also likely the reason for the
slight offset in the Z velocity disparity see Figure 4 for further details.

This section provides a ground truth evaluation of our
continuum method over 2.7km of data.

To measure the performance of our system, we first
performed a laser survey of our test site, with vehicle poses
provided by a GPS/INS system with differential corrections
from a local base station. We then drove four more laps
of the site (amounting to just over 2.7km), using our laser
based localisation system to estimate the trajectory of the
vehicle. On the fourth lap, the car was deliberately driven
on the wrong side of the road, to ensure that the vehicle
trajectory was offset from the survey trajectory. During
these runs, we also recorded GPS/INS data to provide a
ground truth trajectory. The test route has one area which
is significantly covered by trees, which can cause problems
with lost signals and multipath returns both from the GPS

satellites and the differential base station. For that reason,
the GPS/INS trajectory unfortunately cannot be regarded as
‘ground truth’ at all times (and is thus one of the major
motivations behind the work in this paper). In the absence
of higher quality localisation information, we provide results
based on the disparity between the trajectory reported by
our own system and that reported by the GPS/INS. Figure 3
shows the trajectories driven, along with the GPS uncertainty
around the site. Figure 4 demonstrates the inconsistency of
the GPS/INS result in the problem area. Note that while
the GPS elevation trace shows considerable variance over
multiple runs, our laser-based localisation maintains low
variance throughout.

Figure 6 shows the x,y,z velocity disparity (in the vehicle
frame) between our system and the GPS/INS over the course
of the four loops. Apart from the four short segments when
the vehicle was in the poor signal area, the disparities
remain small, with a zero mean distribution, showing that
the recovered trajectory remains closely tied to the GPS
trajectory.

The difference between the localisation in X,Y,Z and Yaw
obtained by our system, and that obtained by the GPS/INS
system is shown in Figure 7 for a single loop, for which
the GPS/INS system reported the lowest uncertainty. These
results exclude the tree covered region where the GPS/INS
system reported high uncertainty in its measurements. We see
the disagreement between the two systems is in the order of
centimetres, a large amount of this disagreement is likely
due to inaccuracies in the GPS/INS measurements.

VI. CONCLUSIONS

This paper has addressed the problem of performing
vehicle localisation using a continuous trajectory with a
Kernelised Rényi Distance based cost function. The goal of
this work was to operate on a continuum (so scan matching
rigid chunks of laser data is out of the question) and to
estimate the pose of the vehicle not as a discrete set of poses
but as a continuous smooth function. Moreover we wished to
operate with laser sample densities far below that suitable for
the application of ICP-like matching and crucially, to do so
with out needing to make explicit point to point associations.

Our results indicate this is a good method to match laser
data streams as the estimated trajectory closely matches the
ground truth INS/GPS data with mean absolute velocity
disparities of less than 8 cm/s in x, 5.5 cm/s in y and 4.5 cm/s
in z over a 2743 metre dataset. The increased calculation
speed provided by the IFGT has allowed us to calculate
these results at a speed just behind real time. The use of
a continuous and smooth motion model is mandated by the
use of a sensor which cannot acquire snap-shots of the scene
and one for which vehicle motion while sensing must be
modelled. In the context of laser based navigation, it remains
interesting to understand what can be done in the absence of
a Velodyne. What we propose here is applicable to high and
low bandwidth sensing alike.
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Fig. 6. Plots showing the velocity disparity between our system and the GPS/INS system. We see that the velocity disparities are of a very small scale
with the exception of four parts, each of which corresponds to the region where the GPS signal is weakened by foliage cover. The histograms of these
results are shown in Figure 5 including all outliers.
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Fig. 7. Box plots, showing the difference between the trajectory obtained from our localisation system and pose values from the GPS/INS system for
X, Y, Z and Yaw in the vehicles reference frame. The top and the bottom of each box represents the 25th and 75th percentiles of the data, while the line
inside the box represents the median of the data, the tails of the box show the range of the data excluding outliers, which are displayed as red crosses. This
plot is generated for a single loop of the science park. Regions where the GPS/INS reported high uncertainty, corresponding to the tree covered region
have been excluded from these results.
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Appendix
Symbol Meaning

Ω The global point cloud survey
L Point data gathered from the laser scanner alone
N The number of survey point cloud measurements Ω
M The number of live laser measurements L
E Kernelised Rényi Distance based cost function
σ The size of the isotropic Gaussian window
P Vehicle poses
S Cubic spline coefficients
t Time
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