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Abstract— We propose an automatic, targetless, data-driven,
extrinsic calibration method to calibrate push-broom 2D li-
dars with a multi-camera system. The calibration problem
is decoupled into alternating optimisers over two hierarchical
levels, where both levels are linked with a penalty term. The
lower-level optimises the six degrees-of-freedom (DoF) rigid-
body transforms between the lidar and each camera of the
multi-camera unit by minimising the Normalised Information
Distance between intensity measurements obtained from both
sensor modalities. The upper-level minimises a nonlinear least
squares error between the lower-level solutions. We describe
the theory, implement the method, and provide a detailed
performance analysis with experiments on real-world data.

I. INTRODUCTION

Light Detection and Ranging sensors (Lidars) are abundant
in mobile robotics applications such as surveying environ-
ments to build maps, autonomous navigation, and a wide
range of other perception and motion planning tasks. Cam-
eras are often used with lidars for associating photo-realistic
information with lidar range and reflectance measurements.
Optimal calibration enables us to accurately register data
from these sensor modalities to a common coordinate ref-
erence frame. This is helpful for creating a visually rich
interpretation of the environment within which the robot
traverses (see Fig. 1).

Using cameras with lidars has facilitated, and gradually
improved, autonomous navigation capabilities [1]–[3]. Ob-
taining calibration parameters by manually measuring the
position and orientation of sensors is prone to considerable
errors, since the true position of the sensing element is
often occluded by the sensor’s protective casing. Within au-
tonomous navigation systems, calibration of sensors mounted
on a robot platform is fundamental for robust and efficient
autonomy. Several state-of-the-art methods for lidar-camera
calibration exist.

A. Literature Review

A majority of the extrinsic calibration techniques use
known calibration targets [4]–[6]. These comprise of fiducial
markers or checkerboards. An early implementation of this
technique is described in [4], where the authors calibrate a
2D lidar by minimising a reprojection error computed from
co-observing a checkerboard from a camera and the lidar.

Also using a target, Naroditsky et al. [5] calibrate a 2D
lidar to a camera by first computing the relative transform
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Fig. 1: Push-broom 2D Lidar: An autonomous vehicle with a push-broom
2D lidar traversing through an environment represented by a coloured 3D
point cloud. Using vehicle motion, a lidar swathe is generated (shown as
yellow points) to simulate a 3D point cloud. The lidar swathe helps us
simulate sensor fields-of-view overlap as a function of vehicle motion.

using six measurements of a checkerboard, and then per-
forming a RANSAC-based least-squares refinement.

The authors of [6] calibrate a multi-planar 2D lidar system
to a camera by solving for the geometric constraints of a
planar checkerboard viewed by both sensors. This is followed
by a maximum likelihood-based refinement step.

Pandey et al. [7] extend the method in [4] for application to
3D lidars. The plane of the checkerboard is extracted in both
the laser and camera data, and with multiple scans, the plane
normals can be aligned and thus the relative position of each
sensor can be determined. The authors in [8] provide a 3D
lidar-camera calibration toolbox which iteratively minimises
a geometric planar constraint-based nonlinear least-squares
cost function. Reducing the data processing burden, [9] et
al. provide a method that uses multiple checkerboards to
calibrate a multi-beam lidar to multiple cameras, using only
a single camera image. An alternative method to calibrate
3D lidars is implemented in [10]. Therein, the authors
decouple the problem of intrinsic and extrinsic calibration
into sub-problems, and iteratively increase the accuracy of
the initial estimates for each sub-problem by minimising a
batch nonlinear least-squares cost function.

The methods listed above are only applicable in the pres-
ence of known calibration targets and require these targets
to be observed by all sensors simultaneously.

Recently, a few methods that perform calibration in the
absence of fiducial targets have been proposed. Scaramuzza
et al. [11] propose a targetless calibration technique, whereby
the parameters are calculated by applying the perspective-
from-n-points (PnP) algorithm [12] on manually selected
point correspondences between camera pixels and lidar
points. The method of [13] alleviates the need for user input
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Fig. 2: Alternating Calibration: A setup with three local sensor frames of
reference; the lidar frame {L} (red), and the camera frames {Ca} (green)
and {Cb} (blue), associated with each camera of a stereo camera unit. The
solid curved arrows denote the 6-DoF transforms between the individual
frames, where the black arrows denote the transforms to be optimised and
the orange arrow denotes a known fixed transform.

by discovering edges in an omnidirectional camera image
and correlating these to discontinuities in the 3D lidar range
measurements.

In [14], the authors maximise the Mutual Information
computed by registering camera pixel intensities to re-
flectance values obtained from a Velodyne 64-beam lidar.
This approach to data association is most similar to ours as
we attempt to find the parameters that describe the maximum
similarity between the image intensity and laser reflectance.

B. Motivation and Contribution

For the methods above, overlapping fields-of-view (FoV)
between both sensor modalities is prerequisite. This leads
to design restrictions. In addition, 2D lidars are smaller and
cheaper than 3D lidars, thus making them favourable for
commercial robotics applications.

For mobile robotics applications, calibration can change
due to some system characteristics. For example, vibration
due to motion could lead to a requirement for periodic sensor
recalibration. Target-based calibration approaches limit the
ability to perform seamless recalibration. Thus, we pro-
pose an automatic, targetless, extrinsic calibration approach,
where calibration is performed from the data collected in the
robot’s workspace.

There are a number of assumptions we make that allow us
to solve this calibration problem. Principally, to deal with the
non-overlapping fields of view, we need an accurate estimate
of motion. The method used for generating a 3D map with
a 2D lidar is described in the next section.

We assume that all sensors have known intrinsic pa-
rameters. To leverage the constraints afforded to us by a
stereo- or multi-camera setup, we presume that the extrinsic
calibration is provided by the manufacturer or otherwise
easily obtainable.

For the method herein, we decouple a global optimisation
problem into multiple sub-problems spread over two levels.
This hierarchical, alternating optimisation enables the solvers
to be implemented in parallel, over multiple CPU nodes. We
expect such parallelisation to scale better with an increase in
the number of sensors to be calibrated.

II. PROBLEM AND SOLUTION OVERVIEW

We design the problem as a data-dependent, closed-loop,
hierarchical relationship between alternating optimisers. The
global problem is decoupled into sub-problems distributed
over a lower-level and an upper-level. The lower-level solves
NCNL problems, with NC being the number of cameras and
NL being the number of lidars. The upper-level implements a
nonlinear least-squares refinement step to minimise the error
between the solutions computed by the NCNL lower-level
optimisers. The upper and lower-level optimisers are linked
with a quadratic penalty term [15]. Optimisation stops when
a user-defined threshold is satisfied, or when time allotted
for optimisation elapses.

A. Notation

A 6-DoF rigid-body transform that registers entities de-
fined in source frame {A} to destination frame {B} is
described by matrix GBA ∈ SE(3). Matrix GBA is
parameterised by a tuple gBA ∈ <6, where gBA =
(tx, ty, tz, θ, ρ, ψ), with tx, ty , and tz being the relative
translation components in metres, and θ, ρ, and ψ being the
relative rotational components in radians, i.e., roll, pitch, and
yaw angles, respectively.

Fig. 2 illustrates an example where NC = 2 and NL = 1.
The tuples gCaL and gCbL define transforms that register
an entity defined in lidar frame {L}, to a frame associated
with each camera of the stereo camera unit. The tuple
ḡCaCb

defines a fixed and known rigid-body transform which
registers entities defined in {Cb} to {Ca}. The transforms
gCaL and gCbL are denoted by solid black curved arrows,
while the known transform ḡCaCb

is denoted by a solid
orange curved arrow.

B. Lidar Swathe Generation

Our approach is related to the calibration technique pro-
posed in [16]. The authors in [16] calibrate a push-broom 2D
lidar to a camera by minimising an edge-based, weighted
sum of squares distance (SSD) cost function. Therein, the
SSD cost is a function of the alignment of edges found
in both camera images and dense lidar reflectance images
obtained by interpolating lidar points projected into the
camera image plane. Similar to [16], we exploit vehicle
motion to generate a swathe of lidar points for simulating
a 3D point cloud [17].

As described in [17], and as illustrated in Fig. 3, given an
estimate of sensor motion, a 3D point cloud can be simulated
by generating a recurring and metrically correct swathe of
lidar points from a push-broom 2D lidar. Assuming that
vehicle motion causes eventual overlap between the FoV of
both sensor modalities, we can then project this generated
swathe into the relevant camera’s image plane and compute a
measure of similarity between observations from the sensors.

Vehicle motion is prerequisite for swathe generation. Fig.
3 shows an example scenario, where a point p = [x, y, z]>,
is observed in the lidar frame

{
Lj
}

at time j, and in the
camera frame

{
Ck
}

at time k, to provide observations Lj

p



Vehicle Base 
Trajectory

Camera Unit 
Trajectory

Lidar 
Trajectory

{R}
gV kCk

gV jLj

Ck

p

Lj

p
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Fig. 3: Lidar Swathe and Sensor Calibration: The vehicle base trajectory
is denoted as {V i}. The lidar and camera trajectories {Lj} and {Ck},
respectively, are defined relative to the appropriate pose of the vehicle
trajectory. The projection of a point p ∈ <3 (solid blue dot) into the lidar
and camera frames is indicated by black solid curved arrows. The transforms
to be optimised are denoted by gV jLj and gV kCk (solid purple arrows).
The transform ḡCaCb

between the frames {Ca} and {Cb} of the multi-
camera unit is fixed and known (solid orange line). The reference frame
{R} is shown as a pose on the base trajectory.

and Ck

p, respectively.1 The observations Lj

p and Ck

p can
be registered to a common frame of reference {R} by using
the rigid-body transforms gV jLj and gV kCk as follows:

Rp = gRV j ⊕ gV jLj ⊕ Lj

p, (1)
Rp = gRV k ⊕ gV kCk ⊕ Ck

p, (2)

where ⊕ is a composition operator. In Eqns. (1) and (2), the
time indices k and j on the camera and laser observations
indicate that they may observe the same object at different
times. The time index i on the vehicle frame indicates that
vehicle motion provides a vehicle base trajectory

{
V i
}

. The
intermediate transforms gV jLj and gV kCk are fixed rigid-
body transforms, where the time indices j and k merely
indicate the pose along the vehicle base trajectory to which
the observations are referenced to. Frame {R} may be some
global reference frame or the vehicle pose at a previous time.

The vehicle base trajectory
{
V i
}

can be obtained from
several approaches, e.g. inertial navigation systems (INS),
visual odometry (VO), etc. For the work presented herein, we
use a stereo camera unit to obtain the vehicle base trajectory
via VO. We assign a base frame {C} to the stereo unit,
where {C} is aligned with frame {V }. Thus, in Eqn. (2),
gV C = 0> ⇐⇒ GV C = I.

Hence, for the case where the vehicle base trajectory is
obtained using VO, we can rewrite Eqns. (1) and (2) as

Rp = gRCj ⊕ gCjLj ⊕ Lj

p, (3)
Rp = gRCk ⊕ Ck

p. (4)

Eqns. (3) and (4) show that any p ∈ <3 observed in both
sensor modalities at different times, can be projected to a
common frame if accurate estimates for camera pose at times
j and k exist (obtained from VO), and if an optimised rigid-
body transform gCjLj is available. Thus, swathe generation

1A scan at time j observes a set of points P j . We approximate that all
points in P j are observed at the same time, while in practice, each scan
takes a specified amount of time.

is a function of the extrinsic calibration parameters to be
optimised. This paper focuses on optimising gCjLj .2

III. CALIBRATION METHODOLOGY

The method described here can be applied to any multi-
camera system with accurate inter-camera transforms.

In this section we first design a lidar-camera calibration
cost function and discuss its desirable properties. Subse-
quently, we formulate the calibration optimisation problem
and then describe how it is decoupled into sub-problems that
are distributed over hierarchical optimisation levels.

A. Normalised Information Distance (NID)

Let us begin by considering the objective function pro-
posed in [14]. Mutual Information MI(X,Y ) is a measure of
the strength of the statistical correlation between two discrete
random variables X and Y . Intuitively, it indicates a measure
of similarity between two distributions, and is defined as

MI(X;Y ) = H(X) +H(Y )−H(X,Y ), (5)

with, H(X) = −
∑

x∈X
px log(px), (6)

H(X,Y ) = −
∑

x∈X
y∈Y

pxy log(pxy). (7)

In Eqns. (6) and (7), px is the marginal pdf of X , pxy is the
joint pdf of {X,Y }, and H(X) and H(X,Y ) denote the
entropy of X , and the joint entropy of {X,Y }, respectively.
The symbols X and Y are the alphabets of X and Y , where
X is the reflectance value for a point p ∈ <3 observed by
lidar L, and Y is the image intensity value of the pixel to
which p is projected to, in camera C. For X and Y , the
Normalised Information Distance (NID) is

NID(X,Y ) =
H(X,Y )−MI(X;Y )

H(X,Y )
. (8)

Like MI, NID is a measure of the similarity between
X and Y , but unlike MI, NID is a true metric [18], [19].
Thus, NID is symmetric, non-negative, and bounded, i.e.
0 ≤ NID(X,Y ) ≤ 1. NID satisfies the triangle inequal-
ity, i.e. NID(X,Y ) + NID(Y,Z) ≥ NID(X,Z), and
NID(X,Y ) = 0 ⇐⇒ X = Y . Note that larger values of
NID indicate greater dissimilarity between the distributions.

B. Calibration Problem Formulation

Given a scene observed by camera Cp and lidar L, we
seek to minimise the dissimilarity between the pixel intensity
values associated with the observed scene in camera Cp,
and the reflectance values associated with the lidar points
measured by the lidar L, projected in Cp’s image plane. Let
{Ca} and {Cb} be the frames associated with each camera
of a stereo camera unit (see Fig. 2). Thus, the constrained

2For brevity, we will drop the time-index from the notation wherever
possible in subsequent sections.



optimisation problem to calibrate a lidar to a multi-camera
unit is defined as

min.
gCaL,
gCbL

fa
(
gCaL

)
+ fb

(
gCbL

)

s.t. gCaL 	 gCbL = ḡCaCb

where, fa ≡
1

Sa

Sa∑

sa=1

NID
(
Xa, Ya;gCaL

)

fb ≡
1

Sb

Sb∑

sb=1

NID
(
Xb, Yb;gCbL

)
.

(9)

The symbol 	 is a composition operator. The terms Xa,
Xb, Ya and Yb denote measurements of the discrete random
variables X and Y made by, or projected to, the camera
indicated by the subscripts a and b. The scalars Sa and Sb
are the number of arbitrarily selected images used to widen
the basin of convergence of the cost function [14], [16]. Each
camera may be provided a different set of scenes. The known
transform ḡCaCb

is assumed to be fixed and accurate, and
gCaL and gCbL are the transforms to be optimised.

By using a quadratic penalty term to terminate the equality
constraint in (9), we derive the following unconstrained
optimisation problem:

min.
gCaL,
gCbL

fa
(
gCaL

)
+ fb

(
gCbL

)
+
∥∥eab

∥∥2
Pab

with, eab = (gCaL 	 gCbL)	 ḡCaCb
,

(10)

where, the scalar ‖eab‖2Pab
= e>ab[Pab]

−1eab, is the squared
Mahalanobis distance parameterised by a normal distribution
N (0,Pab). If the covariance Pab = 0, then the problem in
(10) satisfies the strict equality constraint from (9).

Note that fa and fb are mutually independent. We use
this property to facilitate efficient and fast optimisation by
decoupling the problem from (10) into sub-problems that
can be solved on different CPU nodes, via a hierarchical
alternating optimisation process.

We introduce additional optimisation variables and con-
straints to decouple the problem in (10) into different hier-
archical levels, and define the following problem:

min.
gCaL,gCbL

,
ĝCaL,ĝCbL

fa
(
ĝCaL

)
+ fb

(
ĝCbL

)
+
∥∥eab

∥∥2
Pab

s.t. ĝCaL = gCaL, ĝCbL = gCbL.

(11)

Terminating the equality constraints in (11) by using
quadratic penalty terms, we derive the following uncon-
strained optimisation problem:

min.
gCaL,gCbL

,
ĝCaL,ĝCbL

∥∥eab
(
gCaL,gCbL : ḡCaCb

)∥∥2
Pab

+ fa
(
ĝCaL

)
+
∥∥ ĝCaL 	 gCaL︸ ︷︷ ︸

eaL

∥∥2
Pi

aL

+ fb
(
ĝCbL

)
+
∥∥ ĝCbL 	 gCbL︸ ︷︷ ︸

ebL

∥∥2
Pi

bL

(12)

In (12), the error terms eaL and ebL are parameterised by
N (0,PiaL) and N (0,PibL), respectively. The superscript i
on PiaL and PibL is an optimisation iteration index which
indicates that PiaL,P

i
bL → 0 as i → ∞. This formulation

emphasises solutions within the feasible region. The severity
of the penalty levied on infeasible solutions is determined by
PiaL and PibL [20]. As PiaL and PibL decrease, the uncon-
strained problem in (12) accurately replicates the constrained
problem in (11).

C. Calibration via Alternating Optimisation

We solve the problem in (12) using an alternating opti-
misation algorithm [21]. Note that, for each camera Cp, the
penalty term ‖epL‖2Pi

pL
is a function of gCpL and ĝCpL.

Thus, to solve the problem defined in (12), we utilise the
quadratic penalty terms ‖eaL‖2Pi

aL
and ‖ebL‖2Pi

bL
to link the

two alternating optimisation levels.
1) Lower-level Optimisers: For each p = 1 . . . NC , in-

dependent optimisers first optimise ĝCpL by solving the
following problem:

min.
ĝCpL

fp
(
ĝCpL

)
+
∥∥epL

(
ĝCpL : gCpL

)∥∥2
Pi

pL

(13)

Note that Eqn. (13) is a sub-problem decoupled from Eqn.
(12), i.e. the second or the third row of (12), depending
on the camera index. We call Eqn. (13) as a lower-level
optimiser. There are NCNL lower-level optimisers for each
lidar camera pair. While solving (13), gCpL is held constant.

2) Upper-level Optimiser: For the problem defined in
Eqn. (12), the lower-level optimiser provides optimised so-
lutions of ĝCaL and ĝCbL. Using ĝCaL and ĝCbL as known
constants, we define the upper-level optimiser as

min.
gCaL,
gCbL

∥∥eab
(
gCaL,gCbL : ḡCaCb

)∥∥2
Pab

+
∥∥eaL

(
gCaL : ĝCaL

)∥∥2
Pi

aL

+
∥∥ebL

(
gCbL : ĝCbL

)∥∥2
Pi

bL

(14)

Note that the problem in (14) is a sub-problem decoupled
from Eqn. (12). We utilise the alternating optimisation for-
mulation to solve the problem in (12) as a set of hierarchical,
closed-loop, and sequential optimisation problem. Herein, the
solutions of the lower-level optimisers drive the upper-level
optimiser, and vice versa.

Remark 1: Since the lower-level optimisers are mutually
independent, they can be solved in a distributed setting on
multiple CPU nodes. We expect the parallelisation of the
lower-level optimisers to aid an online implementation of
the proposed method in the near future. �

Remark 2: By defining a camera base frame {C} aligned
with frame {Ca} of the multi-camera unit, we get gCaL =
gCL ⇐⇒ GCCa = I. Thus, the problem in Eqn. (12) can
be rewritten in terms of gCL, which makes the problem
consistent with the formulation in Eqns. (3) and (4). �
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(a) Left camera - Laser calibration gCaL

0 10 20
0

0.05

0.1

Iterations

X
 E

rr
or

 [m
]

 

 

0 10 20
0

0.05

0.1

Iterations

Y
 E

rr
or

 [m
]

 

 

0 10 20
0

0.05

0.1

Iterations

Z
 E

rr
or

 [m
]

 

 

0 10 20
0

1

2

3

Iterations

R
ol

l E
rr

or
 [d

eg
]

 

 

0 10 20
0

1

2

3

Iterations

P
itc

h 
E

rr
or

 [d
eg

]

 

 

0 10 20
0

1

2

3

Iterations

Y
aw

 E
rr

or
 [d

eg
]

 

 

Lower
Upper

Lower
Upper

Lower
Upper

Lower
Upper

Lower
Upper

Lower
Upper

(b) Right camera - Laser calibration gCbL

Fig. 4: Absolute Error w.r.t Ground Truth: Fig. shows the solution achieved by the proposed alternating method at each global iteration. The red and blue
lines with colour coordinated circular markers show the lower- and upper-level solutions per iteration. Note that in the limit, both optimiser levels tend to
converge to the same optimum. This is the effect of the quadratic penalty term coupling the two levels.

Fig. 5: Setup: Fig. shows the sensors to be calibrated mounted on the
platform such that they do not have overlapping FoV. We use the stereo
camera mounted at the front of the vehicle to estimate vehicle pose using
VO. The data used for calibration was collected in Milton Keynes, UK.

IV. EXPERIMENTS AND RESULTS

The platform used for collecting the data on which the
proposed algorithm was implemented can be seen in Fig.
5, wherein, the positions of the sensors to be calibrated are
highlighted. Fig. 5 shows that the two sensors have non-
overlapping fields-of-view.

A. Setup

The vehicle used has the stereo camera mounted in front,
facing forward, and tilted downward by approximately 18◦.
The lidar is positioned such that it is tilted back by ap-
proximately 9◦. The lidar scans are generated in a plane
that is offset by approximately 9◦ with respect to the plane,
orthogonal to the direction of horizontal planar motion. We
refer to this as a ‘push-broom’ configuration. The point cloud
generated using such a configuration is illustrated in Fig. 1.

We use a Point Grey Research (PGR) Bumblebee XB3
multi-baseline stereo camera to perform our experiments.
PGR provide sub-millimetre accuracy for the inter-camera
transform between the individual cameras of the stereo unit
[22]. As explained in Section III, we can exploit an accurate
inter-camera transform provided by the manufacturer, as a
known parameter to perform lidar-camera calibration.
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Fig. 6: NID Cost: Fig. shows the cost function minimised in the lower-level
optimiser over each iteration of the alternating method. Light to dark graphs
indicate the evolution of the optimisation. The cost function is sampled
around the current solution of the lower-level optimiser.

Following the procedure in II-B, we generate point clouds
for 30 different scenes, each 10m long. We test our procedure
over these data.

B. Performance Evaluation

To evaluate the proposed algorithm, we employ the proven
method of calibration between the lidar and camera using
a checkerboard, as documented in [7], to obtain reference
values. Since the lidar and camera do not have overlapping
FoVs in our case, we use an accurate (less than 0.5mm
translation error) motion tracking system [23] to locate the
plane of the checkerboard while being observed by each
sensor. Thus, the lidar and each camera of a multi-camera
unit can both be calibrated very accurately with respect to the
frame of the motion tracker. For the purposes of this paper,
this calibration has been established as ‘ground truth’.

Fig. 4 shows the results from an optimisation run over
30 frames, with a fixed number iterations for the lower and
upper-level optimisers. The lower-level optimiser runs for
200 iterations, and the upper-level for 20 iterations. Note
that we run the lower-level for each camera in the stereo
rig. Each graph illustrates how the solution for alternating



Fig. 7: Error Analysis: Box plots showing the RSE in translation (left) and
rotation (right) when using different cost functions. Moreover, we compare
them in the context of different optimisation schemes: using once-off NID
and MI registration, once-off registration using a cost function that sums
the NID and MI over both cameras (NID and MI Joint) and our proposed
alternating optimisation (NID ALT).

Fig. 8: The box plot indicates the distribution of absolute errors using the
proposed method (ALT), compared to the MI based implementation of [14].
The tops and bottoms of each boxplot are the 25th and 75th percentiles of
the samples, respectively. The line in the middle of each box is the error
median.

optimisation per each degree-of-freedom evolves over the
number of iterations. As described in section III-B, the upper
and lower-level optimisers are coupled by quadratic penalty
terms. Therefore, the solutions obtained at both levels tend
to converge asymptotically. Fig. 4 illustrates this behaviour.

The initial values for the covariance P0
aL,P

0
bL are set up

with standard deviations of σt = 5m and σφ = 5 radians for
the translation and the rotation parameters, respectively. This
allows the calibration parameters to move freely during the
first few iterations. At each i-th iteration, we follow the rule
suggested in [20], where the covariance matrix is updated as
Pi+1
aL = ω PiaL, with ω ∈ [0 1].
Fig. 6 plots the evolution of the lower-level NID cost

function. The effect of the quadratic penalty in Eqn. (12)
becomes apparent as the parameter is shifted away from the
minimum; large step sizes in the parameters are penalised.

As an extension of our evaluation, we compare our
method with the method proposed in [14]. Analogous to
our NID-based approach, the method therein maximises the
Mutual Information (MI) between the two sensor modalities.
However, the original method imposes co-visibility of the
observations gathered by the different sensors, restricting
the application to 360◦ lidars. To deal with this restriction,
we generate 3D point clouds using the 2D lidar mounted at

Fig. 9: Solution Quality: Fig. shows the projection of a 3D point cloud
on a reference image. The red dots show the non-optimal initial-seed,
and the blue dots show the optimised solution for gCaL. The displayed
solution is obtained after 10 iterations of the alternating method, and shows
considerable improvement on visual inspection.

the rear of the vehicle (see Fig. 5), by moving through the
world. This procedure is described in section II-B. For this
experiment, we use the source code provided by the authors.3

Fig. 8 shows the error distribution for a set of final
solutions obtained for 5 different initial parameter values.
Our assessment shows that the proposed alternating method
generates similar median errors to the MI-based method
from [14]. In fact, the variance is significantly reduced in
all the degrees of freedom. It is worth mentioning that
the solutions obtained are affected by the different factors.
For instance, the optimisation in [14] trusts on a gradient
descend algorithm while our approach is formulated as a
unconstrained nonlinear optimisation and uses a simplex
search method. For a fair comparison, we added to our
calibration pipeline the possibility to use an MI-based cost
function at the lower level step of the optimisation. Fig. 7
shows the distributions of the Root Square Errors (RSE) in
translation and rotation for the different cost functions under
three optimisation schemes: with no upper level optimisation
(i.e NID and MI), alternating optimisation (NID ALT). The
‘Joint’ tag indicates image-laser registration where the cost
function is the sum of the NID or MI from both cameras. This
is achieved by presuming a known, certain and fixed left-to-
right camera transform. The alternating methods differs in
that it relaxes the requirement for the transform to be known
with certainty.

The error plots indicate that our alternating approach
produces more accurate or comparable estimates with a lower
error variance.

Fig. 9 provides a qualitative illustration of the solution
computed by the alternating method. The point cloud gener-
ated using the initial parameter values is superimposed on a
reference image as red dots. The point cloud generated using
the optimised parameter values is superimposed on the same
reference image as blue dots. A visual inspection of Fig. 9

3http://robots.engin.umich.edu/SoftwareData/ExtrinsicCalib



indicates a marked improvement in lidar camera calibration.

V. CONCLUSION AND FUTURE WORK

We propose a target-less, automatic, data-driven method
for calibrating a 2D push-broom lidar to a multi-camera
unit, using a hierarchical, closed-loop, alternating optimisa-
tion algorithm, distributed over different optimisation levels.
The lower-level minimises multiple Normalised Information
Distance-based (NID) cost functions, while the upper-level
implements a nonlinear least-squares based refinement step.
The two levels are linked together using quadratic penalty
terms that determine the penalty associated with comput-
ing infeasible solutions. The two optimisation levels work
hierarchically, in cohesion, to converge to a solution. This
approach is applicable, but not restricted to, stereo camera
units or other multi-camera configurations, e.g. Point Grey
Research’s Bumblebee and Ladybug cameras. The method
can be applied to systems as long as an overlapping FoV
exists or is simulated, and if an accurate rigid-body transform
between each sensor of the multi-sensor unit is available.

We provide implementation results along with a detailed
performance analysis on real-world data. Performance of the
proposed method is evaluated against calibration parameters
obtained from a highly-accurate commercial calibration sys-
tem. The results show that the proposed approach performs
at least as well as prior art, without requiring sensor co-
visibility of the scenes used for calibration.

As for most real-world applications, the function to be
minimised for the proposed method is only locally convex,
and is data-dependent. Each image used for calibration may
provide a different amount of information. This can affect
the basin of convergence for the selected cost function.
Thus, learning a calibration cost function from the data, and
utilising information-based image selection and weighting
schemes are interesting problems for future research.

In [16], calibration is performed by creating a synthetic
lidar image through interpolation of lidar reflectance values.
This lidar reflectance interpolation step is computationally
expensive, and we believe, is unsuitable for extension to on-
line calibration approaches. Extending the proposed method
to an online implementation is worth investigating and within
future scope.
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