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Abstract This paper explores the suitability of commonly employed classification
methods to action-selection tasks in robotics, and argues that a classifier’s introspec-
tive capacity is a vital but as yet largely under-appreciated attribute. As illustration
we propose an active learning framework for semantic mapping in mobile robotics
and demonstrate it in the context of autonomous driving. In this framework, data
are selected for label disambiguation by a human supervisor using uncertainty sam-
pling. Intuitively, an introspective classification framework – i.e. one which mod-
erates its predictions by an estimate of how well it is placed to make a call in a
particular situation – is particularly well suited to this task. To achieve an efficient
implementation we extend the notion of introspection to a particular sparse Gaussian
Process Classifier, the Informative Vector Machine (IVM). Furthermore, we lever-
age the information-theoretic nature of the IVM to formulate a principled mecha-
nism for forgetting stale data, thereby bounding memory use and resulting in a truly
life-long learning system. Our evaluation on a publicly available dataset shows that
an introspective active learner asks more informative questions compared to a more
traditional non-introspective approach like a Support Vector Machine (SVM) and in
so doing, outperforms the SVM in terms of learning rate while retaining efficiency
for practical use.

1 Introduction

In answering the question ‘where am I?’ roboticists have gone to great lengths to
model, manage and, indeed, exploit uncertainty. This, however, is not as yet the
case when it comes to asking ‘what is this?’. As we aspire to robust, long-term
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autonomous operation our systems have to contend with vast amounts of continu-
ally evolving, non-i.i.d. data from which information needs to be assimilated. This
presents a challenge and an opportunity particularly to the robotics community as
here the real cost of failure can be significant. We believe that realistic estimates of
uncertainty are pivotal to achieving robust and efficient decision making in robotics.
In particular, classification as a precursor to action-selection seems to be largely
disregarded by the community.

We frame our argument in the context of offline semantic mapping. Significant
progress in autonomous driving in recent years has inspired a view that success-
ful autonomous operation in complex, dynamic environments critically depends on
a-priori available semantic maps representing ostensibly permanent aspects of the
environment such as lane markings, traffic light positions and road sign informa-
tion (see, for example, [3, 22]). Owing to their safety-critical nature, these maps are
typically created manually for particular routes [5]. This is, of course, an expen-
sive process which scales badly with the number of routes for which autonomous
operation is to be provided. Much, therefore, can be gained by reducing human in-
volvement in this process and thus providing a robust and scalable solution.

A prominent approach to tackling such a challenge is that of active learning,
where classification results are iteratively refined by asking a human supervisor for
ground-truth labels in ambiguous cases and incorporating the added information
into classifier training. To the best of our knowledge this paper is the first in robotics
to present an efficient and scalable active learning framework for the task of offline
semantic mapping. Crucially, however, our work is also set apart from the vast ma-
jority of the related works in active learning by the unusual stance we take with
regards to uncertainty estimates in the system. Commonly, active learning relies on
selecting data for human labelling using a variant of uncertainty sampling, by which
data are selected according to how confident a classifier is in individual predictions
(see, for example, [17]).

However, Grimmett et al. [7] show that several of the classification frameworks
commonly used in robotics are unrealistically overconfident in their assessment of
class membership. To characterise this attribute, the authors introduce the notion
of the introspective capacity of a classification framework: the ability to estimate
a classification confidence which realistically reflects how qualified the classifier is
to make a particular class decision in each individual test instance. In this paper we
show that introspective classification harbours significant benefits for active learning
as compared to more traditional, non-introspective approaches. In particular, our
contributions are

• the application of an active learning framework to semantic mapping in robotics,
• the application of the notion of introspection to the Informative Vector Machine

(IVM) [10] as an efficient extension to [7],
• the application of the IVM specifically to achieve introspective active learning,

which is demonstrated to lead to more effective information extraction over more
traditional approaches, and

• the introduction of a principled mechanism for the IVM to forget less important
data to provide for scalable, life-long active learning on a mobile robot.
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Fig. 1: Active learning in a semantic mapping context. This figure shows semantic maps indicating
the positions of traffic lights along a street in Paris. Circles denote the locations of ground-truth
traffic lights. The shading encodes the correctness of the classification output as provided by a
probabilistic classifier: red denotes a recall of 0 (no detections), and green denotes a recall of 1 for
that particular traffic light (all views of that object correctly detected). False positives are shown
as grey squares. From left to right, we first see a typical passive detector, followed by our active-
learning framework at epochs 0, 2, and 9 respectively. Note that in the active learning setting
the shading of the circles progresses from red to green as a greater proportion of traffic lights
are correctly detected with increasing confidence. Similarly the number of false positives reduces
dramatically. By epoch 2 the active learning framework already outperforms the passive detector.
In this paper we show that our formulation of an introspective active learning approach provides for
more efficient information extraction – and thus a higher learning rate – over conventional active
learning approaches. (This figure is best viewed in colour.)

The work presented here first appeared as a workshop paper by the same authors
[21]. However, here we offer a more detailed treatment as well as the following
significant extensions:

• the introspective capacity of the IVM is established, including the effects of vary-
ing the sparsity factor,

• qualitative results are included of when the IVM is confident (correctly and in-
correctly) in its classifications, and

• timing information is provided regarding the training of an IVM.

We apply our framework to the detection of traffic lights in a real, third-party vi-
sion dataset and demonstrate iteratively improved semantic mapping, which makes
efficient use of available label information. A typical qualitative example of our
system output is shown in Fig. 1.

2 Related Works

Active learning is an established and vibrant field of research spanning a significant
number of application domains. Consequently, a variety of methods have been pro-
posed for selecting informative measurements for labelling and/or for incrementally
training a learning algorithm. For example, Freund et al. [6] propose disagreement
among a committee of classifiers as a criterion for active data selection. McCul-
lum and Nigam [12] apply this to text classification using high label inconsistency
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as a query criterion coupled with expectation maximisation (EM) for online learn-
ing. More recently, Joshi et al. [8] address multi-class image classification using
SVMs and propose criteria based on entropy and best-versus-second-best (BvSB)
measures based on the hyperplane-margin for determining uncertain points. Tong
and Koller [19] pick unlabelled data for query based on minimising the version
space within a margin-based SVM formulation. Kapoor et al. [9] propose an active
learning system for object categorization using a GP classifier where data points
possessing large uncertainty (using posterior mean and variance) are queried for
labels and used to improve classification.

Within the robotics community, active learning and directed information acqui-
sition has received attention in recognition, planning and mapping tasks. For exam-
ple, Dima et al. [4] present unlabelled data filtering for outdoor terrain classification
tasks with the aim of reducing the amount of training data to be human-labelled. The
approach relies on kernel density estimation over unlabelled data and estimating a
“surprise” score for image patches, hence only querying the least likely samples
given the density estimate for human labelling. In [14] the authors present a learning
approach for continually improving place recognition perfomance by actively learn-
ing an appearance model of a robot’s operating environment. The method uses prob-
abilistic topic models and a measure of perplexity to identify least explained images
which further drives retrieval of thematically linked samples leading to an improved
workspace representation. Recent work by Tellex et al. [18] explores active infor-
mation gathering for human-robot dialog. The authors formulate an information-
theoretic strategy for asking clarifying questions to disambiguate the robot’s belief
over the mapping between phrases and aspects of the workspace.

While, to the best of our knowledge, this is the first work in robotics apply-
ing active learning to a semantic mapping task, our work is also set apart signif-
icantly from prior art in active learning in that we introduce and demonstrate the
benefits of efficient introspective active learning. In this respect, the work most
closely related to ours is that of [9] above, in which an inherently introspec-
tive classifier is used but its use is not motivated by its introspective qualities.

3 Introspective Classification

The introspective capacity of a classifier characterises its ability to realistically es-
timate the uncertainty in its predictions. Grimmett et al. [7] define the introspective
capacity as a classifier’s ability to moderate its output by an appropriate measure as
to how ‘qualified’ it is to make a call given its own prior experience, usually in the
form of training data. The intuition is that test data, which are in some form ‘simi-
lar’ to that seen in training, are classified with higher certainty than data which are
more dissimilar. This points towards non-parametric approaches potentially being
more introspective than parametric ones, as all the training data are available for
inference in the former, whereas inference in the latter is based on parametric mod-
els learned from the data. Grimmett et al. [7] investigated several commonly used
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classification frameworks providing probabilistic output and found that a Gaussian
Process classifier (GPC) [16] indeed is significantly more introspective than, for ex-
ample, the more commonly used Support Vector Machine (see, for example, [1])
with a probabilistic calibration (such as, for example, provided by Platt et al. [15]).

In [7], this quality is attributed to a GPC’s Bayesian treatment of predictive vari-
ance. Consider a set of training data {X,y}, where X = {x1, . . . ,x|X|} denotes the set
of feature vectors and y denotes the set of corresponding class labels. Probabilistic
predictions for a test point, x∗, are obtained in two steps. First, the distribution over
the latent variable corresponding to the test input is obtained by

p( f∗ | X,y,x∗) =

∫
p( f∗ | X,x∗, f )p( f | X,y)d f , (1)

where p( f | X,y) is the posterior distribution over latent variables. This is followed
by applying a sigmoid function σ(·), which in our implementation is the cumulative
Gaussian, and marginalising over the latent f∗ to yield the class likelihood p(y∗ |
X,y,x∗) as

p(y∗ | X,y,x∗) =

∫
σ( f∗)p( f∗ | X,y,x∗)d f∗. (2)

It is this marginalisation over all models induced by the training set, as opposed to
relying on a single minimisation-based estimate, which accounts for a more accurate
estimate of the inherent uncertainty in class distribution, and therefore endows GP
classification with a high introspective capacity.

3.1 Efficiency by Sparsification

A key drawback of a GPC is its significant computational demand in terms of mem-
ory and run time. This is due to the fact that the GPC maintains a mean µ, as well
as a covariance matrix Σ, which is computed from a kernel function and has size
|y|2. A number of sparsification methods have been proposed in order to mitigate
this computational burden. For efficiency, in this work we adopt one such sparsifi-
cation method: the Informative Vector Machine (IVM) [10]. The main idea of this
algorithm is to only use a subset of the training points denoted the active set, I,
from which an approximation q( f | X,y) = N( f | µ,Σ) of the posterior distribution
p( f | X,y) is computed. The IVM algorithm computes µ and Σ incrementally, and
at every iteration j selects the training point (xk,yk) which maximizes the entropy
difference ∆H jk between q j−1 and q j for inclusion into the active set. Because q is
Gaussian, ∆H jk can be computed by

∆H jk = −
1
2

log|Σ jk |+
1
2

log|Σ j−1|. (3)

The details of the implementation can be found in Lawrence et al. [11]. The algo-
rithm stops when the active set has reached a desired size. In our implementation,
we choose this size to be a fixed fraction γ of the training set q.
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To find the kernel hyper-parameters θ of an IVM, two steps are iterated a given
number of times: the estimation of I given θ, and minimising the marginal like-
lihood q(y | X) given I. Although there are no convergence guarantees, in prac-
tice already a small number of iterations are sufficient to find good kernel hyper-
parameters.

Importantly for our work, since inference with the IVM is similar to that with a
GPC, the IVM retains the model averaging described in Eq. (2). We argue therefore,
that the IVM provides a significant and well-established improvement in processing
speed over a GPC while maintaining its introspective properties (see Sec. 5 and 5.4
for details).

4 Scalable Active Learning: Drive, Ask, Improve

The power of an active learning framework lies in its ability to select a suitable train-
ing set in an application-oriented way. It thus inherently allows the system to adapt
naturally to the non-stationarity of the data often encountered in long-term robotics
applications. The active learning framework considered here is a supervised learning
process by which a human operator provides class labels for machine-selected test
data, which are then fed back into classifier training to improve the classification re-
sult of the next round. We examine performance over successive epochs, which each
consist of (re-)training, classification, and user-feedback. The implementation of a
scalable active learning framework requires two problems to be addressed: firstly, a
subset of test data has to be selected for re-training such that classification perfor-
mance increases in the next epoch. Secondly, measures have to be taken that guaran-
tee that the training set is bounded in size, since otherwise the algorithm will sooner
or later exhaust the resources of a finite-memory, real robotic system. We compare
this active learning approach with a more conventional “passive” alternative, that is,
training a classifier once without any subsequent human-feedback improvement.

We now outline the specific active learning algorithm employed in this work,
before providing details of both our data selection strategy and our approach to
forgetting (bounding the training set size).

4.1 The Active Learning Algorithm

Algorithm 1 describes our active learning framework which, for reasons given in
Sec. 3, uses an IVM as the underlying classifier. It requires five different input pa-
rameters: the initial hyper-parameters θ0 used for training the IVM, the fraction γ
of training points that are used for sparsification, the batch size b, the normalised
entropy (NE) threshold ϑ that a test point needs to exceed to be considered for re-
training, and the maximum number of questions r that the algorithm may ask. The
last is intended to minimise nuisance to a human operator due to being asked too
many questions. The sub-routines in the algorithm are explained as follows.
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Algorithm 1: Active Learning with an IVM
Data: training dataD = (X,y), stream of test data X∗

Input: initial kernel parameters θ0, batch size b, active set size fraction γ, minimal retraining
score ϑ, maximum number of questions r

Output: stream of output labels y∗
i← 0
while X∗ , ∅ do

(θi+1,Ii+1)← TrainIVM(X,y,γ,θ0)
move next b test points from X∗ into X∗i
P← ∅

forall the x∗ ∈ X∗i do
z← IVMPrediction(Ii+1,θi+1,x∗)
s← ComputeRetrainingScore(z)
if s > ϑ then P←P∪{(x∗, s)}

sort P by decreasing values of s
D+← ∅

for j← 1 to MIN(r, |P|) do
(x+

j , s j)← element j of P
y+

j ←AskLabelFromUser (x+
j )

D+←D+ ∪ (x+
j ,y

+
j )

D←D∪D+, i← i + 1

TrainIVM uses the current training set, the active set fraction γ, and the initial
kernel parameters to find optimal kernel parameters θi+1 and an active set Ii+1 as
described in Sec. 3.1. Throughout this work we employ a squared exponential kernel
(which is the same as the Radial Basis Function kernel) with additive white noise:

k(xi,x j) = σ2
f e−

(xi−x j)
2

2l2 +σ2
nδi j, (4)

where δi j is the Kronecker delta, and θ= {σ2
f , l,σ

2
n} are the signal variance, the length

scale, and the noise variance.
IVMPrediction returns an estimate of the probability z that the next test datum

x∗ has a particular class label, as given in Eq. (2). Based on this probability, the
normalised entropy measure is then computed. The top ranked r test data exceeding
the retraining threshold ϑ are labelled by the user and added to the training set for
the next epoch.

4.2 Data Selection Strategy: What Questions to Ask?

The key element of an active learning algorithm is the strategy by which a new
test point x∗ is considered for re-training. In Algorithm 1, this is done in the sub-
routine ComputeRetrainingScore. An intuitive and well-explored indicator of
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which data might be suitable for inclusion is the classification uncertainty associated
with x∗. To characterise the uncertainty of the classification from the given class pre-
diction z = p(y∗ | X,y,x∗), we adopt the measure of normalised entropy H(z), such
that for the binary case,

H(z) = −z · log2(z)− (1− z) · log2(1− z), (5)

where H(z) ∈ [0,1], with high values representing high uncertainty.
This, indeed is central to our work. While, in principle, any classification frame-

work which provides a distribution over class labels as output can be used in our
active learning framework, intuitively we expect those with more realistic estimates
of these probabilities to be more effective for active learning. Thus, we expect more
introspective classifiers to perform better in the sense that they will ask more infor-
mative questions, leading to a higher learning rate. In Sec. 5, we will show that this
is indeed the case when comparing the proposed framework based on an IVM with
one based on a more commonly used, probabilistically calibrated SVM.

4.3 Forgetting Uninformative Data to Bound Memory Use

The main problem with the active learning framework as we presented it so far is
that in theory the training set can grow indefinitely, because there are no guaran-
tees that the algorithm will stop asking new questions. This makes the algorithm
less flexible, especially if the input data can not be guaranteed to be within certain
locality bounds, for example in a life-long learning application. Therefore, and for
run time efficiency, we bound the size of the training set by removing points from
it when it exceeds a given target size nt. To decide which points to remove, we
leverage the information-theoretic instruments that the IVM already provides. After
each training round, we keep the entropy differences given in Eq. (3) for all training
points and sort them in increasing order. Those training data which correspond to
the first ni − nt values, where ni is the current training set size, are then removed
before training in the next epoch. Intuitively, this method discards the data that were
least informative during the last training round. One caveat with this method is that
it assumes independence between the training data, which is not generally given. For
example, two data may both have small individual ∆H values, but when removing
both of them the entropy could change significantly. In this work we acknowledge
but do not explore this phenomenon. Instead, we note that in our experiments we
did not observe a deterioration in classification performance when we applied our
method for forgetting.
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5 Experimental Results

In this section we investigate the performance of our introspective active learning
approach in terms of learning rate, data selection strategy, classification performance
and tractability. We compare and contrast our approach with one based on the much
more commonly used SVM classifier (calibrated to provide probabilistic output).
The task we set both learners is to detect traffic lights in a third-party image dataset.
Specifically, we use the publicly available Traffic Lights Recognition (TLR) data
set [13], which comprises 11,179 colour images taken at 25 Hz from a car driven
through central Paris at speeds under 31 mph. It has ground-truth labels for traffic
light positions and subtype labels ‘green’, ‘orange’, ‘red’, ‘ambiguous’ (though here
we are only concerned with the detection of traffic lights, irrespective of their state).
As recommended by the authors of the dataset, we disregard labels of type ‘ambigu-
ous’ and exclude sections where the vehicle was stationary for long periods of time.
We use data from the first 5,800 frames for training and the remainder for testing.
We compute a template-based feature set inspired by Torralba et al. [20] which has
a successful track record in the detection of traffic lights [7]. Each training or test
window is represented by a feature vector of length 200.

When training the IVM we used an active set fraction γ of 0.2, which means that
informative points will be added to the active set until its size is 20% of the training
set size. We use a Squared Exponential (SE) with white noise kernel. Training such
a classifier takes approximately 1.5 seconds on a single 3.4GHz core.

The SVMs used here are trained using libsvm [2], and use the isotropic Radial
Basis Function (RBF) kernel, which is equivalent to the SE kernel used by the IVM.
They are trained using 10-fold cross-validation on top of a grid-search over the pa-
rameters C (the penalty parameter for the error term) and γ (the inverse of the length
scale for the isotropic RBF kernel), both in the space 2k where k = {−7,−6, . . . ,+4}.
Training takes approximately 10 minutes.

5.1 Does Introspection Improve Active Learning?

One of the central claims of this paper is that the use of an introspective classifier
will lead to more informative questions being asked of the human expert. In order
to test this claim we perform a cross-over experiment (see Fig. 2) which starts with
both an IVM and an SVM are initially trained on the same data, 200 traffic lights
(positive) and 200 background patches (negative). Then, 1,000 new data (with a
class fraction of 1:1, the same as during training) are shown to both classifiers for
testing. Each chooses up to 50 data points (providing their normalised entropies are
over a threshold empirically set to be ϑ = 0.97) to add to their own training set for
the next round, resulting in two new and different training sets: the ‘IVM set’ and
the ‘SVM set’. A new IVM and SVM are now trained on each of the two new sets
and evaluated on a further 1,000 new data points. This process thus gives rise to four
classifiers: two IVMs trained on data selected by an IVM and a SVM respectively,
and two equivalent SVMs. We compute precision and recall for all four classifiers.
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The results after 100 repetitions of this experiment are shown in Fig. 3. As expected,
both the IVM and the SVM perform better when trained on the dataset chosen by
the initial IVM, suggesting that the questions asked by the IVM tend to be more
informative. An unpaired t-test shows this result to be significant to a level of over
95%.

The overall effect of introspection in an active learning setting seems to be an
increased learning rate, a claim which we support with the following active learning
experiment, performed over 11 epochs. As described in Sec. 4, our active learning
algorithm is retrained after having seen a batch of test points, as opposed to running
the training algorithm after every new datum encountered. Every epoch consists of
a training phase, a classification phase, and a feedback phase. At the very start of
epoch 0, the classifiers are trained on 50 positive (traffic light) windows and 500
negative (background) windows extracted at random from the training frames. We
choose this class fraction disparity to reflect the fact that in real data sets, negative
examples are much more prevalent than positive examples. During each classifica-
tion phase, the classifiers are then tested on a batch of 1,000 windows extracted
from the test frames. The class fraction for these test windows is 1:10, the same as
for training. Next, the 50 points with the highest normalised entropy (providing they
are over ϑ = 0.97) are added to the training set, ready for retraining at the start of
the next epoch. Note that each classifier (IVM and SVM) makes its own choices
regarding which points to add for the next epoch.

The results are shown in Fig. 4, where the IVM learner starts off with a worse f1
measure at epoch 0 but has already exceeded the SVM by epoch 2, and is better (with
non-overlapping 95% confidence bounds) in the steady state from then onwards.
The gradient of the plot in Fig. 4 is shown in Fig. 5, and shows that the rate of
increase of f1 measure (the learning rate) for the IVM is better than that of the SVM
over the first few epochs, and then always at least as good subsequently.

Fig. 4 further serves to justify empirically our choice of normalised entropy as a
valid criterion for data selection, by comparing it to randomly selecting new training
data. Intuitively, both methods should improve classification by virtue of the fact
that they increase the training set size. However, the results indicate that for both
the IVM and the SVM, using normalised entropy leads to more rapidly improving
classification performance.

5.2 Does Forgetting Affect the Performance?

Our work aims to contribute an introspective active learning algorithm that is effi-
cient in terms of computational effort and scalable with respect to its memory re-
quirements. In this section we investigate the efficacy of the mechanism we have put
in place to provide this tractability: forgetting. In experiments thus far, new training
data were added in each epoch. The IVM active set size is a fixed proportion of the
training set size, which has the benefit of increasing classification performance, but
is detrimental to processing time. In the context of a life-long-learner, this is not a
scalable solution.
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Fig. 2: Here we show the procedure for the cross-over experiment, designed to test whether one
classifier chooses points which do not only benefit itself in the next round, but are consistently
more useful for the other type of classifier as well. We compare an IVM and an SVM, and choose
the test points with highest normalised entropy to be labelled to augment the original training set.
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Fig. 3: Data selected by the IVM lead to an improved learning rate in terms of precision and recall
for both an IVM and SVM over those selected by the SVM. Results are shown for 100 experimental
runs, and increases are significant to the 95% level. See text and Fig. 2 for more details.
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Fig. 4: Classification performance for both IVM and SVM variants as indicated by the f1-measure
after each epoch. Measurements are averaged over 100 runs. Error bars indicate the 95% confidence
region of the mean. The IVM using a normalised entropy-based data selection strategy (IVM-
active) consistently outperforms all other active learning variants in terms of learning rate and final
classification performance.
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Fig. 5: The gradient of the f1 measure of the active learners from Fig. 4

We therefore elect to cap the size of the training set at nt = 550 data, which makes
the computational effort constant. This ‘IVM with forgetting’ learner can add new
data, but only by simultaneously discarding enough data to reduce the training set
size to the target size nt. Fig. 6 (left) shows the training set size for the normal
IVM with unbounded training set,and an IVM with forgetting, capped at 550 data
(the initial training amount). Fig. 6 (right) shows the corresponding classification
performance as characterised by the f1 measure. It indicates that in this scenario,
the IVM with forgetting mechanism has the same performance as the unbounded
IVM. We note that this is likely to be dataset dependent.

5.3 What Does the Active Learner Ask?

In Fig. 7 we show the 27 most certain and 27 least certain test cases for an IVM
at epochs 0, 3, and 10, and whether they were correctly classified or not. Firstly, it
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Fig. 6: Forgetting results in commensurate classification performance while successfully bounding
the active set size of the classifier. Each datum represents the mean (and associated 95% con-
fidence interval) over 100 experimental runs. Left: The evolution of the training set size. The
IVM+forgetting learner has a target training set size nt = 550, the initial training set size. Right:
Classification performance with and without forgetting. For corresponding SVM results, see Fig. 5.

is reassuring to confirm that the certain classifications are always correct. At epoch
0 we see that the confident classifications are all of the background class, almost
entirely of fairly uniformly textured surfaces like tarmac, and that the unconfident
classifications are all regarding traffic lights. As the learners gather more data, the
traffic lights which at epoch 0 were uncertain, are now very confident at epoch 3.
At epoch 10, the uncertain group are more balanced in terms of traffic lights and
background, and we see that although there is a little more variation in terms of the
confident patches, they are very similar to the confidence classifications at epoch 3.
This is consistent with the learning algorithm having reached an equilibrium after
epoch 3 in Fig. 4.
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Fig. 7: The 27 most certain and 27 least uncertain test classifications of an IVM at epochs 0, 3, and
10 during the active learning experiment. A green border indicates a correct classification, and a
red border indicates an incorrect classification.
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5.4 The Effects of Sparsity

In [7] we showed that the GPC is more introspective than other more commonly
used classification frameworks. In this paper we have argued the necessity of using
a sparse formulation for the sake of computational complexity, however, it is neces-
sary to ensure that the IVM is introspective in its own right. The useful characteristic
of an introspective classifier is that it tends to be confident when it is making true
predictions, and uncertain when it may be making false predictions. In addition, we
would like to see whether the introspective quality changes with the active set size;
intuitively, a truly introspective classifier will be more confident if it is exposed to
more data, and vice versa.

Similarly to the approach in [7] we have plotted the cumulative true and false
classifications against uncertainty in Fig. 8 for a single round of training and test-
ing. In the legend, “IVM γ = 0.4” indicates an IVM with an active set fraction of 0.4,
such that the active set contains 40% of the training set. These particular IVMs have
been trained on 550 data and tested on 11000, with the ratio 1:10 positive:negative.
There are several things to notice from the graph. Firstly, we can see that by looking
at the curves for the IVMs with γ = {0.2,0.4,0.6,0.8,1.0}, indeed as we would hope,
having a larger active set results in a more confident classifier; however it is interest-
ing to see that there are diminishing returns: very little confidence is gained between
an active set fraction of 0.6 and 1.0. Secondly and most importantly, the IVM is in-
trospective: the incorrect classifications occur with high uncertainty, whereas the
majority of the correct classifications occur with low uncertainty. Thirdly, we would
expect that as the level of sparsity decreases, we approach the behaviour of the GPC,
which is indeed what happens; the full GPC is commensurate with the IVMs with
γ = {0.6,0.8,1.0}.

6 Conclusion

The contributions of this paper are three-fold: firstly, the notion of introspective
classification introduced earlier shows promise in the context of active learning,
where a reliable estimate of the classification uncertainty is required. We do this
by showing an improvement in both classification performance and learning rate
over a non-introspective classifier (Sec. 5.1). Secondly, an efficient version of the
Gaussian Process Classifier, namely the Informative Vector Machine is used, which
makes the approach particularly useful for robotics applications with large amounts
of data. We show visual examples of where it is confused and where it is confident
(Sec. 5.3), and use it to create the first offline semantic mapping algorithm via ac-
tive learning. Finally, we present an information-theoretic solution to the problem
of increasing memory requirements by forgetting the least informative data, which
maintains a high classification performance in our experiments, but more extensive
experimentation is required to confirm the success of this approach for the wider
scope of mobile robotics applications.
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Fig. 8: The introspective capacity of the IVM. We show the number of true (top) and false (bottom)
classifications (positive and negative classes together) which are made with a normalised entropy
lower than a chosen value. For instance, if we were to threshold at NE = 0.5, we would have 6000
correct classifications with the IVM γ = 0.2 and < 10 incorrect classifications.
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