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René Iser2, Rudolph Triebel6, Ingmar Posner6, Paul Newman6, Lars Wolf3, Marc Pollefeys5, Stefan Brosig2,

Jan Effertz2, Cédric Pradalier1, and Roland Siegwart1

Abstract— Future requirements for drastic reduction of CO2

production and energy consumption will lead to significant
changes in the way we see mobility in the years to come.
However, the automotive industry has identified significant
barriers to the adoption of electric vehicles, including reduced
driving range and greatly increased refueling times.

Automated cars have the potential to reduce the environ-
mental impact of driving, and increase the safety of motor
vehicle travel. The current state-of-the-art in vehicle automation
requires a suite of expensive sensors. While the cost of these
sensors is decreasing, integrating them into electric cars will
increase the price and represent another barrier to adoption.

The V-Charge Project, funded by the European Commission,
seeks to address these problems simultaneously by developing
an electric automated car, outfitted with close-to-market sen-
sors, which is able to automate valet parking and recharging for
integration into a future transportation system. The final goal
is the demonstration of a fully operational system including
automated navigation and parking. This paper presents an
overview of the V-Charge system, from the platform setup to
the mapping, perception, and planning sub-systems.

I. INTRODUCTION

As part of their “Europe 2020” program, the European
Commission has outlined a number of ambitious targets
for Europe to meet by the year 2020 [1]. These targets
address a wide range of social, environmental, and economic
issues. Part of the strategy is to address the problem of
climate change, to reduce greenhouse gas emissions, to move
toward renewable sources of energy, and to increase energy
efficiency.

One aspect of this challenge will be the reduction in
reliance on fossil fuels and the move to electric motor vehicle
transport. However, the automotive industry has identified
significant barriers to the electrification of vehicles, including
reduced driving range and increased refueling times [2].

Automated cars have the potential to reduce the environ-
mental impact of driving, reduce traffic jams, and increase
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Fig. 1. The initial experimental platforms for the V-Charge project—each
VW Golf has been modified to support fully automated driving using only
close-to-market sensors. A similar plug-in hybrid is being developed.

the safety of motor vehicle travel [3]. The current state-
of-the-art in automated vehicle technology requires precise,
expensive sensors such as differential global positioning
systems, highly accurate inertial navigation systems and
scanning laser rangefinders [3]. While the cost of these
sensors is going down as robots become more ubiquitous,
integrating them into electric cars will increase the price and
represent yet another barrier to adoption.

The European V-Charge Project seeks to address these
problems simultaneously by developing an electric auto-
mated car, outfitted with close-to-market sensors, which is
able to automate valet parking and recharging for integration
into a future transportation system. To provide a balance
between individual and public transportation, such a system
could be used to support coordinated parking, charging, and
pickup of vehicles for park-and-ride public transit.

This implies three major fields of research: (i) vehicle
functionality, onboard localization detection of static and dy-
namic obstacles, and on-board planning using only close-to-
market sensors, (ii) logistics, optimal scheduling of charging
stations and assignment of parking spots, and (iii) infrastruc-
ture, development of a secure and reliable communication
framework to store and share a database of information about
the parking area.

After a short section concerning the state of the art, this
paper will present an overview of the V-Charge project and
its goals, starting with a description of the platform and in-
frastructure setup, followed by a section about the mapping,
perception and planning software components. Results from
year one of the project are presented within each section.



A. State of the art
The DARPA Grand Challenge (2004, 2005) and Urban

Challenge (2007) [4] competitions were instrumental in
pushing research on automated driving out of the lab and
into near real-world conditions. As such, they remain the de
facto baseline for automated driving systems. In both cases,
the vehicle had to drive fully autonomously in either an off-
road environment or an urban environment. Among other
competencies, these tasks required local obstacle perception
and tracking, local path planning to avoid collisions as well
as accurate global localization to enable progress toward
high-level mission goals. All of the successful teams in these
competitions utilized a highly sophisticated suite of expen-
sive sensors, such as sweeping laser range finders, RADAR
systems, and color cameras, most of them pointing ahead
to detect the road parameters and potential obstacles (e.g.
[5], [6], [7]). Most vehicles also used one GPS antenna in
combination with a 6 degree of freedom inertial measurement
unit (IMU) for localization as well as two additional GPS
antennae to discern absolute heading. In addition, in the
Urban Challenge, the cars had to select their own routes,
perceive and interact with other traffic, execute lane changes,
U-turns and parking maneuvers.

However, the sensor setup in the previously mentioned
projects is much too costly to consider inclusion into se-
ries automobiles. The research initiative PReVENT [8] is
one step closer to market-ready automated vehicles. In this
project low-cost sensors such as cameras or radio-based car
to car communication were used. Similarly, [9] describes
a full architecture for decision making under uncertainty
during autonomous city driving and provides experiments
showing the effectiveness of their approach in simulations
of many real traffic situations. However, in both cases, long
distance fully automated driving was not demonstrated.

The Park Assist system by Volkswagen1 is an example
of an automatic driving application already on the market.
This system assists the driver with maneuvering the vehicle
in parallel or head in parking spots. The automatic parking
mode is enabled in collaboration with the driver but using
stock sensors only.

Consequently, fully automated driving in dynamic urban
environments using only close-to-market sensors and on-
board computation remains an open research challenge.

II. PLATFORM OVERVIEW

This section gives an overview of the hardware and
software platforms used in the V-Charge project.

A. Hardware
Currently, a modified conventional combustion engine VW

Golf VI is used as the test platform of the project. The
modifications include integration of a sensor array used as
data source for environment perception and ego-localization,
installation of a computer cluster responsible for the control

1
http://www.volkswagenag.com/content/vwcorp/

content/en/innovation/driver_assistance/parking_

steering_assistance.html

of the vehicle, adaptation of vehicle ECU network enabling
the drive-by-wire operation, and installation of additional
safety elements. We are working on analogous modifications
of a plug-in hybrid vehicle that will serve as the final test
platform for the project.

Fig. 2. The sensor setup of the V-Charge test vehicles including a schematic
representation of the field of view of the individual sensors (green is used
for sonar sensors, red for stereo-camera system, and blue for mono fish-eye
cameras).

Fig. 2 gives an overview of the sensor system installed on
the V-Charge test vehicles. Currently it consists of 12 sonar
sensors responsible for obstacle detection in short range, a
45� field of view (FOV) front stereo camera used for obstacle
perception, and a set of 4 fish-eye cameras providing a 360�

imagery of the vehicle surroundings. A rear-facing stereo
sensor will be integrated in the future. The vehicle is also
equipped with a standard GPS receiver and the onboard
sensor cluster including stock odometers, accelerometers,
and gyroscopes.

Each of the mono-cameras has a nominal FOV of 185�

and 1.3Mpx resolution. They are synchronously triggered at
a 12.5Hz. The stereo sensor is described in Sec. V-B.1. Each
sonar sensor has an aperture angle of 60� horizontally and
30� vertically and range of about 3–4.5m. The sonar system
provides the first and second direct and indirect reflections
for each sensor at about 10Hz.

The computer cluster consists primarily of 6 PCs installed
in the trunk of the vehicle. It can be powered directly from
the alternator or—if the engine is off—from the standard
12V DC battery.

The automated driverless operation of the V-Charge test
vehicles is achieved by using stock actuators only. Even
though the steering, throttle, brakes, and gearbox of a regular
VW Golf VI are generally controllable from within the CAN
network, some significant modifications to the vehicle were
necessary. These included (i) modification of the network
topology to enable two-way communication with the com-
puter cluster, (ii) adaptation of the engine ECU to enable the
availability of the Automatic Cruise Control (ACC) interface
at low-speeds, and (iii) installation of an electronic parking
brake.

In order to assure safe operation of the vehicle during
the test phases and demonstrations a number of additional
safety elements have been installed in the vehicle. The most
important elements and principles include (i) a remote kill
switch that will disconnect the V-Charge system from the
ECU network and initiate an emergency stop, (ii) an onboard
kill switch that will disconnect the V-Charge system from



the ECU network to enable safe manual driving, (iii) control
inputs may be overridden by the driver at any time, and (iv)
the control inputs are monitored for integrity and filtered by
the CAN gateway.

In order to assure the highest possible safety level of
the system, a Failure Mode and Effects Analysis will be
performed with an independent organization.

B. Software

Road Graph
Server R

P

Grid Server G

Server

Global Task
Planning

Object Motion
Prediction O

Localization

Localization L

Object Tracker
Navigation Framework

R M

Mission 
Executive

Task 
Processor 1

P

Trajectory
Follower

Collision
Watchdog

Parking Lot
Management M

High-Level Management

On Vehicle

On Server

Task List

Trajectory

Command
Pose on Traj.

P P G

VehicleParameter
Server

Ca
pa

b.
 R

es
p.

Fig. 3. The V-Charge navigation architecture including adjacent modules
to highlight the relevant interfaces. Modules colored in light blue operate
on the central server side, those colored in dark blue on each automated
car.

Fig. 3 displays the conceptual layout of the overall V-
Charge navigation framework. It shares key aspects with the
architectures employed by the top DARPA Urban Challenge
finishers discussed in Sec. I-A, including a behavioral layer
that handles priority between a set of specialized planning
instances (called task processors).

We distinguish modules operating on the central server
side (light blue) from those on each of the automated vehicles
(dark blue). The parking manager processes requests of
incoming and outgoing vehicles. It will assign free parking
spots and charging areas by considering charging needs and
expected parking time. The global task planner operates on a
regularly updated road graph (obtained from the road graph
server). It is responsible for topological route planning and
task assignment. The mission executive located on vehicle
side is responsible for task assignments to the individual task
processors, management of task processor exceptions and the
overall correct execution of events.

III. INFRASTRUCTURE, COMMUNICATION AND
MANAGEMENT

Since the number of charging stations at large parking
areas, due to cost reasons, will be limited, the search for
an available (and charging-capable) parking spot will be
typically even more complicated and time-consuming for
electric vehicle (EV) drivers than for drivers of internal
combustion engine (ICE) cars. V-Charge therefore provides
an automated parking and charging system, based on a
central back-end server [10] which is in charge of an efficient
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Fig. 4. Mission control architecture. A disruption tolerant network will be
used for vehicle to infrastructure communication and the DDS middleware
will be used for communication within individual components.

parking resource management. It also provides each vehicle
with relevant mission information allowing it to navigate to
its assigned target destination.

To enable this system functionality, two main contributions
to the management and infrastructure part of the project
are made. First, the above-mentioned concepts for efficient
parking management are developed. Based on driver re-
quirements, e.g., prospective parking time, current battery
charging level and required travel distance, the Java EE-
based V-Charge server assigns (schedules) available parking
resources, such as regular parking spots and, in particular,
scarce charging stations to connected vehicles. The resulting
scheduling algorithms are being evaluated in a simulation
environment with real-world parking statistics to learn their
suitability for different usage scenarios (e.g., downtown vs.
airport parking). Requirements for charging station schedul-
ing as well as a short overview of first evaluation results are
given in [11]. Second, a sophisticated Disruption Tolerant
Networking (DTN) framework for vehicle-to-infrastructure
(V2I) and vehicle-to-vehicle (V2V) (both terms are often
subsumed as vehicle-to-x, or V2X) communications is de-
veloped. This framework enables the distribution of mission
information to connected vehicles. Of course, state-of-the-art
security and trust concepts are factored in. Driver interaction
(status check, drop-off, pick-up) is realized via mobile user
devices (smartphones). An overview is given in Fig. 4.

IV. MAPPING

In order to build a system suitable for both outdoor
and indoor parking places, we have designed a layered
topological/metric map to support both localization and
planning. The sparse map (Sec. IV-A) is built from a state of
the art Simultaneous Localization and Mapping pipeline. It
defines the coordinate frames in which all other map data is
expressed and provides the geometric and appearance data
needed for vehicle localization. The dense map (Sec. IV-
B) encodes a ground plane and height map representing the
static structure of the scene. Finally, the road graph (Sec. IV-
C) represents the abstract graph of connected lanes, parking
spots, and other semantic annotations (Sec. IV-D).

A. Sparse map
The sparse map represents the world as a trajectory of

vehicle poses and a set of sparse 3D map points. The 3D
map points correspond to landmarks in the world, which
are observed as keypoints in the camera images taken from
its respective car poses. We generate the sparse map offline



Fig. 5. The layered map concept used in the project. Top: Sparse
Map—a graph of vehicle poses with three-dimensional landmarks encode
the appearance and geometric information. The sparse map defines the
coordinate system for all further mapping data and contains all of the
geometric and appearance information needed for localization. Middle:
Dense Map—a single layer height map encoding the static structure of the
scene. Bottom: Road Network—an abstract graph of lanes used for mission
planning and semantic annotations.

from a sequence of images collected from the four fisheye
cameras during a drive through the environment. It is used
as a topometric map for online localization (Sec. V-A) and
as the input for creating a dense map (Sec. IV-B). We use
the OpenCV GPU implementation of SURF [12] to extract
keypoints and descriptors from every image. The keypoints
from each camera are tracked through the sequence of
images by matching the descriptors over consecutive frames
using K-nearest-neighbors matching to keep processing time
low. Mismatched keypoints from two consecutive frames
are rejected based on the essential matrices [13] computed
from the wheel odometry readings and extrinsic values of
the cameras. Remaining consistent keypoint correspondences
over two consecutive frames are triangulated to infer the
corresponding 3D map point’s coordinates. Finally, the es-
timations of the sparse 3D map points and the trajectory
of car poses are improved with a full Bundle Adjustment
[13] where the total reprojection errors are minimized. Fig. 5
shows an example of the 3D map points (white points) and
the trajectory of car poses (RGB color for the x, y and z
axis of each frame) from the sparse map after full bundle
adjustment.

B. Dense map
For path planning tasks such as the generation of the

road graph or parking spot detection, the sparse map does
not represent the world densely enough. Therefore our map
also contains a dense height map layer. In this way the
height profile in the areas where the car is moving can
be described accurately, while avoiding the computationally
expensive computation of a full dense 3D model.

As we do not have much overlap between the four fisheye
cameras, we perform motion stereo on three consecutive

Fig. 6. Depth map computation–perspective images (middle) are rendered
from the fisheye images (left) and plane sweep stereo matching is used
between three temporally consecutive images to produce a depth map (right)
for each camera at each time.

images for each of the four cameras, using the middle one
as reference (Fig 6). For now, we first extract perspective
images out of the fisheye images and subsequently run plane
sweep stereo matching [14] to get depth maps. As an output
we get four depth maps per vehicle pose which are used as
input to a fusion procedure.

For the fusion of these local noisy depth maps, we closely
follow the approach of [15], but instead of the two-layer
height map useful for indoor scenarios, so far we compute a
single layer height map of the environment.

The method consists of the following three steps. First,
depth maps are computed and entered into a volumetric grid.
Each voxel of the grid stores information about its occupancy
likelihood. As a next step a raw height map together with
information about the certainty of a given height are extracted
out of the grid. The extraction of the heights from the
grid happens point-wise, without looking at the neighboring
heights. As a last step, a global convex optimization is run
on the 2D height map to introduce spatial smoothness.

In [15] the total variation (TV) is used to penalize the
height differences between neighboring places in the height
map. To reduce the staircasing artifacts in the final height
map we replace the TV with the Huber-TV. In Fig. 5 the
final output of the fusion is depicted.

C. Road Network
The traffic infrastructure considered for local and global

path planning is represented by an efficient data structure
named RoadGraph [16], [17]. The RoadGraph is a directed
graph comprising nodes connecting adjacent edges. Conse-
quently, efficient graph search algorithms may be applied to
find topological paths from the current vehicle pose to any
final pose in the world.

Roads are represented by a set of edges subdivided accord-
ing to the driving direction. Edges in the graph are placed
at lane centers by assigning interpolation points consisting
of sparse map coordinates to each edge. It is important to
emphasize that a node in the RoadGraph is only a means to
connect consecutive edges logically. Thus, a node does not
constitute any place in the world. Intersections are modeled
as sets of edges as well. Here the edges constitute either
approaching lanes, lanes leaving the intersection, or lanes
located on the intersection.

An example is illustrated in Fig. 5. It shows a RoadGraph
of our test site at ETH Zürich. The yellow lines represent
the edges (lanes) while the gray lines constitute the road
borders. Parking spots are marked by the black rectangles.
Note that the edges of the RoadGraph are very sparse, i.e.



Fig. 7. Left: Overhead image obtained from single images of an onboard
camera. Center: Parking spot detection results using template matching.
Right: Parking spot detection results applied to an overhead image from
Google Maps.

only very few interpolation points were used to model the
lanes. Consequently, the edges are not driveable for non-
holonomic vehicles and a global path planning operation
smoothing the edges is required (cf. Sec. VI-A).

D. Semantic layer

As an essential requirement for the navigation and path
planning process, a robust automated semantic annotation
module is developed, which operates both on raw sensor
input and on the dense map. The major aim of semantic
annotation is to provide information about parking spaces,
driveable areas, and obstacles such as curbs. To do this, we
first obtain an overhead image of the environment, where
the vehicle is deployed. This can be a satellite image from
the area, or a compound image consisting of image frames
taken previously from on-board cameras and projected onto
the ground plane obtained from the dense map. Then, we
apply template matching to find parking spots in the overhead
images. Fig. 7 shows example results of this detection.
We can see that the detection is in general very robust,
with some slight exceptions where the template matcher did
not find enough evidence for a parking spot. We plan to
address these issues using an approach based on probabilistic
graphical modals, which uses context information to improve
the detection, in a similar way as was done by Spinello
et al. [18]. Also, a classification method is currently under
investigation, which provides uncertainty estimates (see, e.g.
[19]). These can then be used to improve the classification
and to obtain more detailed information for navigation and
planning.

V. PERCEPTION

This section describes the V-Charge perception system,
which provides both localization within the sparse map
(Sec. V-A), and situational awareness (Sec. V-B) using only
close-to-market sensors.

A. Localization

The localization module provides the pose of the vehicle
within the coordinate frame defined by the sparse map
(Sec. IV-A). Fig. 8 shows the localization pipeline.

For robust data association between 2D points from the
images and 3D points from the map, SURF keypoints and
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Fig. 8. The pipeline used for online data-association with the sparse map
and localization.
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Fig. 9. The perception framework used to generate a detailed reconstruction
and consistent view of the scene

descriptors are extracted from each currently observed image.
Then, a pose predicted based on wheel odometry is used
to select keypoints from close-by topological nodes in the
sparse map. The chosen keypoints are projected into the
image plane, resulting in a second set of sparse image-
points. The two sets of points—from the current observation,
and from the projected map—are matched based on their
distance in image- and descriptor-space, providing a set of
correspondences between the image and the map. The pose
is estimated by minimizing the total reprojection error in all
images. A robust cost function is used to deal with outliers.

To initialize the system, we allow for more extensive data
associations between the sparse map and the observed frame
by using NP3P-fitting (the Non-Perspective 3-Point Problem)
combined with RANSAC [20], followed by a linear NPnP
step for refinement. Both problems are solved using the
gP3P/gPnP method presented by Kneip et al. [21].

B. Situational Awareness

For automated driving in rapidly changing and dynamic
environments, a robust and accurate scene reconstruction
and situation analysis is mandatory. Therefore a complete
360 degree sensor coverage is required and realized with the
sensor system shown in Fig. 2. Fig. 9 sketches the workflow
of the perception framework. In detail, each module provides
the following functionality:

Fig. 10. The Bosch stereo video camera detects objects’ height and distance
as well as capturing standard video images.



1) Dense Stereo : With a 12-centimeter baseline distance,
the Bosch stereo camera may well be the smallest system
of its kind currently available in the field of automotive
solutions. Each of the two CMOS image sensors has a
resolution of 1.2 megapixels. Thanks to its high-quality lens
system, the camera is able to capture an angle of view of 25
degrees vertically and 45 degrees horizontally, and offers a
3D measurement range in excess of 50 meters. The highly
light-sensitive image sensors are capable of processing very
high contrasts and cover the full spectrum of light visible to
the human eye.

For V-Charge, internal distance data from the Bosch stereo
camera system is made available to the map fusion module.
The data is represented in a fashion similar to a laser scanner:
for each direction horizontally, distances to obstacles—if
any—are provided. Beyond the ability of a laser scanner, the
stereo camera is robust against changes in the vehicle’s pitch
angle or a rising road surface. In addition to their distance,
obstacles are associated with attributes like motion, height,
and visual appearance. Based on this information, static
obstacles can be aggregated in a map, dynamic obstacles
clustered and tracked, and their visual appearance used for
classification.

2) Temporal Stereo Matching : To extend the FOV of
the front and rear facing stereo camera we run temporal
stereo matching on the side-facing fisheye cameras. The
stereo matching is done the same way as in the offline
mapping phase (Sec. IV-B), using our GPU plane sweep
implementation. Camera poses are provided by the online
localization pipeline. We can currently compute depth maps
with a 129.8� FOV horizontally and 106.3� vertically with a
640⇥ 400 resolution. For the final online system we plan to
preprocess the data to provide the extracted data in a similar
way as the stereo camera does.

3) Object Detection and Tracking : The obstacle de-
tection and tracking phase is focused on pedestrian and
vehicle recognition, through the application of vision based
algorithms. An AdaBoost classifier is applied on specific
region of the input images to determine the presence of
a vehicle or pedestrian: the areas on which to apply the
classifiers are determined according to typical objects sizes
and calibration parameters. Thus, for each input image, the
area that a specific obstacle at a specific distance occupied in
the image is determined. Obstacle tracking between images
is performed to determine static and dynamic elements.

Different AdaBoost classifiers has been trained and tested,
using samples directly obtained from the acquired images.
Thousands of samples of front and rear vehicle faces have
been collected and used to train the classifier. The obstacle
detector is based on the trained classifier and is able to
detect vehicles from frontal and rear faces. Some preliminary
results relative to rear and front vehicles detection are shown
in Fig. 11. The work has been performed using the Parma
GOLD framework using perspective images rendered from
the fisheye images.

The use of rendered perspective images introduces noise
and imprecision in vehicles detection (Fig. 11, right). Further

Fig. 11. Front and rear vehicles detection on the acquired images. In the
right example, the image distortion affects the recognition of a vehicle.

Fig. 12. Occupancy grid for a typical parking lot scene after vehicle has
passed several occupied spaces and positioned itself in front of an empty
one.

training sessions and tracking procedure are needed to im-
prove the reliability of the results and cope with the presence
of inaccurate detections.

4) Map Fusion and Dynamic Objects : In order to
reconstruct a consistent model of the environment, the pre-
processed sensor measurements are aggregated over time in
an ego-referenced occupancy grid. Such approaches go back
to the early works of e.g. [22]. In the current implementation,
each sensor output is first processed in an individual layer
to keep sensor specific details. For a computational efficient
fusion, cell and grid size of each layer are defined by a
factor of an abstract base layer. In addition, the Bayesian
logic is used with a logit representation with saturation
allowing faster processing of updates. Currently, the sonar
sensors and stereo camera are fused and binarized to provide
a single representation. Fig. 12 shows a visualization of a
reconstructed map of a parking scene using color intensities
for obstacle and free space probabilities. For dynamic objects
the perception framework includes a separate tracking and
object fusion module. For objects in the scene classified
as dynamic, obstacles in a sensor measurement associated
to these objects are not processed by the grid map update
logic which results in a consistent map of static obstacles
and list of dynamic objects. Finally both scene views—grid
map and object list—are provided to the mission control and
path planning modules.

VI. PATH PLANNING AND MOTION CONTROL

Path and motion planning is split in a hierarchical ap-
proach. A mission planner (Sec. VI-A) produces a sequence
of tasks through a graph-search on the topological Road-
Graph. It assigns these tasks to specific task processors. The
current implementation consists of specific processors for on-
lane driving (Sec. VI-B) and parking maneuvers (Section VI-
C). Trajectories from the task processors are sent to a motion
control module (Sec. VI-D).

A. Global Path Planning
A fundamental requirement for vehicle navigation is a

global driveable path on the parking lot from the drop-off



Fig. 13. Set of trajectories produced by the reactive planner. Collision-free
trajectories in dark green are rated by their lateral offset to the reference path.
The closest collision-free trajectory in yellow is forwarded to the motion
controller.

zone to the target pose. The global path planning routine
does not exploit any dynamic obstacles but relies only on the
static information stored in the RoadGraph. The algorithm
employed for global planning exhibits three stages.

The first stage is a traditional A* search along the edges
of the RoadGraph. The result is a sequence of edges the
vehicle is supposed to pass during navigation. The edges
of the RoadGraph are not necessarily driveable. Instead the
graph may be only a very rough and sparse approximation
of the traffic infrastructure.

The second stage performs an edge smoothing operation
using a fourth-degree polar-polynomial function with con-
tinuous curvature as proposed by Nelson [23]. The path is
checked for its curvature maximum and if a threshold is ex-
ceeded a second smoothing step is triggered. This secondary
smoothing involves a conjugate gradient descent where the
error function is closely related to the one presented by
Dolgov et al. [24]. We combine both smoothing stages in
order to stabilize the final path output but in many standard
scenarios the application of either the first stage or the second
stage is sufficient to compute driveable paths.

B. Local on-lane Planning in Dynamic Environments
The local reactive planning stage has to safely navigate

the car on the path obtained by the topological planning on
the RoadGraph. The reactive planning layer has to generate
feasible trajectories for the underlying trajectory controller.
These trajectories have to maneuver around newly sensed
obstacles and have to be compliant with the kinodynamic
constraints of the platform.

We follow the idea presented in [25] and prefer trajectories
that are aligned with the reference path. This criterion
reduces situation in which we are unable to return to the
reference path because of infeasible heading offsets. It also
helps the visual localization system to detect the same
features seen in the offline mapping process. The reactive
planner is implemented in a receding horizon manner. Unlike
in [25], we directly include nonholonomic constraints of our
platform—which have a major influence at low speeds—
in the design process of our motions. A dense set of
trajectories is created by applying discrete Euler-integration
of the unicycle motion equations in conjunction with the
nonlinear feedback controller presented in [26]. The shape
of the trajectories is varied by applying a set of longitudinal
velocity profiles and lateral offsets as shown in Fig. 13.

To test a trajectory for collision, we apply a fast distance
transform on the binary occupancy grid. The rectangular

shape of our vehicle is approximated by a set of circles which
can be tested efficiently for collision by a single look-up
per circle on the distance map. Collision-free trajectories are
rated by their lateral offset to the reference path at their end
points. The offset is calculated with a fast distance transform
of the reference path.

Predictions of dynamic objects will be included in this
reactive planning approach in a later stage of the project.

C. Automated Parking
The automated parking module is activated by the mission

executive when the vehicle approaches the target parking
spot or the target charging station. It provides a collision-free
trajectory to reach the intended position. The trajectories are
evaluated if they cause collision with newly detected objects
and renewed if necessary until the vehicle reaches the target
pose.

Fig. 14. An example of forward (red) and backward (green) trajectories
while parking backwards

The path planning algorithm is a State Lattice Planner [27]
which executes the A⇤ path search on the discretized state
space. In order to reduce the processing time, the motion
primitives, the driving swath (grid point list passed over
by the vehicle), and a heuristic look-up table [28] are pre-
calculated. An example of the trajectories provided by the
automated parking module is shown in Fig. 14.

As the vehicle needs to park in a charging station with
high accuracy and also needs to react to the newly detected
objects or any dynamic objects, higher accuracy at the target
pose and shorter processing time are required. The possible
countermeasures are the multi fidelity state space [29] or a
geometric path planning algorithm focusing on the parking
maneuver. These possibilities will be analyzed as the next
step.

D. Motion Control
The control parameters for trajectory execution are steer-

ing angle and acceleration. To this end, the electric power
steering (EPS) interface as well as the ACC interface are
employed. The input of the controller is a local reference
trajectory. Lateral offset control is performed as follows:
given a certain point on the reference trajectory, electric
field lines of an electric dipole are simulated guiding the
vehicle back to the reference trajectory. The active steering
angle results from computing the difference of the vehicle
orientation and the direction of the current field line. An
example is depicted in Fig. 15.

The active desired velocity is given by considering the
the maximal velocity on the parking lot and some physical



Fig. 15. The red lines indicate the simulated electric field lines. � reflects
the difference angle between the vehicle heading and the slope of the field
line. �path is the current distance to the reference trajectory.

restrictions. A traditional P-controller is applied to control
the vehicle velocity via the ACC interface.

VII. CONCLUSIONS

After one year of development, the V-Charge consortium
is confident that all the bricks required for the successful
implementation of an automated valet-charging solution have
been laid out. Relying on a reliable and capable hardware
platform, the project partners have shown that vision-only
localization, mapping, navigation, and control of an auto-
mated car is possible.

Obviously, the project is just at its beginning and an
intense research effort is currently underway regarding per-
ception, situational awareness, localization, environment rep-
resentation, and planning among dynamic obstacles.

Additionally to these research objectives, the project will
keep a strong focus on deploying its system and evaluating
it in realistic environments and scenarios with the final goal
of fully automated driving in urban environments using only
close-to-market sensors.
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