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Abstract— This paper proposes an appearance-based ap-
proach to estimating localisation performance in the context
of visual teach and repeat. Specifically, it aims to estimate the
likely corridor around a taught trajectory within which a vision-
based localisation system is still able to localise itself. In contrast
to prior art, our system is able to predict this localisation
envelope for trajectories in similar, yet geographically distant
locations where no repeat runs have yet been performed. Thus,
by characterising the localisation performance in one region,
we are able to predict performance in another. To achieve
this, we leverage a Gaussian Process regressor to estimate the
likely number of feature matches for any keyframe in the teach
run, based on a combination of trajectory properties such as
curvature and an appearance model of the keyframe. Using
data from real traversals, we demonstrate that our approach
performs as well as prior art when it comes to interpolating lo-
calisation performance based on a number of repeat runs, while
also performing well at generalising performance estimation to
freshly taught trajectories.

I. INTRODUCTION

Vision-based localisation is an active area of research

due to its reliance on ubiquitous and comparatively low-

cost sensors (see, for example, [1], [2], [3], [4], [5]). From

amongst several approaches, teach and repeat has distin-

guished itself as being an effective solution in a number

of domains such as space exploration [6] and autonomous

driving [7]. In this framework, a robot is driven along a

desired path in a teach phase, during which it builds a

topometric map [8], [9] of the world by estimating its relative

pose between consecutive keyframes. During a repeat run,

localisation is performed by matching features between the

live feed and those of the map, estimating the position of

the robot relative to the route previously traversed. In doing

so, it is commonly observed that some environments are

less lenient than others to even small lateral or rotational

deviations from the known trajectory, so that localisation can

be lost if the taught trajectory is not followed within some

tolerance dictated by appearance.

Despite this strong coupling between navigation, planning

and control of a vehicle, teach and repeat systems are often

developed in isolation from planning and control. A notable

exception here is [10] which aims to learn controllers which

reduce path-tracking errors over time. However, situations

commonly arise where environment conditions or vehicle

characteristics may not allow for an exact path repetition.

In addition, path deviations may be tolerated in order to

pursue alternative mission goals such as energy savings (e.g.

[11], [12]) or more accurate situational awareness (e.g. [13]).
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In these cases, a-priori knowledge of the degree to which

deviations from a taught trajectory can be tolerated as soon

as a route is acquired is pivotal for planning and control.

Yet this problem has thus far received little attention.

This paper, therefore, advocates an approach for mapping

directly from a teach trajectory to likely localisation perfor-

mance in the surrounding area – its localisation envelope.

Given the nature of visual teach and repeat, and as demon-

strated in [14], trajectory shape can be used to accurately

predict the performance of the localisation system once a

number of repeat passes have been performed. Here, we

extend this work by proposing an appearance-based approach

to predict localisation performance, in an environment where

only a single teach path has been recorded. In particular,

we leverage Gaussian Process regression [15] to predict the

number of features likely to be matched by the localisation

system against a particular map keyframe based on an

appearance model of the keyframe as well as on factors

such as intended path deviation and trajectory shape. The

regressor is trained using data from a prior experience and,

due to its appearance-based nature, thus allows the system to

generalise to predicting the localisation envelope of a novel

teach run in a different location. To the best of our knowledge

this is the first approach able to do so.

II. RELATED WORK

Furgale and Barfoot’s [6] vision based Teach and Repeat

system demonstrated autonomous retro-traverse over 32km

in an outdoor setting. As part of their experiments, they cal-

culated how robust the localisation was to lateral deviations.

The camera was manually placed at offsets from the original

teach path until the failure point was found. By testing at

several locations along the route, they computed a single,

constant lateral offset for the map.

Churchill et al. [14] extended this work by aiming to

capture the local variation of the localiser performance as

a function of position in the map. This was modelled using

a Gaussian Process, with one of the input variables being

position. In this context as elsewhere, Gaussian Processes

provide a framework amenable to incorporating new mea-

surements as they become available while providing uncer-

tainty estimates in a principled way. However, the limitation

of this approach lies in its use of position as an input variable,

which means that the model is specific to a particular route,

and cannot be generalised to other maps or places.

Krüsi et al. [16] compared the accuracy of a laser based

Teach and Repeat system to a vision based one. They find

the laser based system is more robust to path deviations and



Fig. 1. A Clearpath Husky A200 with a Bumblebee2 stereo camera.

ambient conditions. However they do not model or predict

localiser performance.

Our work is most closely related to Churchill et al.

By dropping the position term and replacing it with a

function of appearance, we are able to generalise to other,

similar environments. Consequently, we show our approach

to subsume the previous position-based work in that it is

commensurate in performance in a like for like comparison,

while additionally allowing us to generalise successfully.

III. VISUAL TEACH AND REPEAT

We begin with a brief description of our Visual Teach

and Repeat (VT&R) system [6], [7]. At its core, there is a

sparse-feature, stereo visual odometry (VO) pipeline. This

works as follows: given a stereo image pair, the algorithm

first extracts landmarks from each image and then computes

their 3D positions. This is followed by landmark matching

across sequential frames. The resulting information is then

used to compute a 6 Degree-of-Freedom (DoF) pose estimate

which best explains the relative movement of landmarks

in each frame. The process is repeated for every frame to

compute the egomotion of the camera. Our implementation

uses FAST [17] corners combined with BRIEF [18] descrip-

tors, RANSAC [19] for outlier rejection and nonlinear least-

squares optimisation.

VT&R is built upon saving keyframes containing 3D

landmarks at regular intervals along the robot’s route during

the teach pass. The same VO pipeline can then be used during

a repeat pass by matching landmarks to the keyframes and

computing 6 DoF pose estimates relative to the teach path.

We initialise localisation at repeat time with FAB-MAP

[20], a large-scale loop-closure framework that uses a visual

bag-of-words (BoW) [21] model for place recognition. In

this framework, a visual vocabulary is first constructed on

a training set by clustering features extracted from SURF

detectors and descriptors [20]. Every image can then be rep-

resented by a binary vector indicating which words from this

vocabulary are present, and in what proportion. Finally, loop

closures are performed by comparing BoW representations to

find the map keyframe that best matches the live image. This

BoW representation is also used to model the appearance of

the scene as described in Section V-A.

IV. APPEARANCE-BASED PERFORMANCE PREDICTION

A. Modelling

To characterise the localisation envelope, we first define a

feature vector, x, which is a function of both the visual map,

M, and a robot pose, p. These elements are encoded by the

bag-of-words vector, b, extracted from the map keyframe

closest to p, the signed cross-track error to the path, d, and

the local path curvature, c. The feature vector is stacked

together and constructed as

x =





b

d

c



 (1)

While our VO implementation is able to provide 6 DoF

pose estimates, we chose to model only the cross-track error

due to the fact that the localisation envelope in rotation is

relatively small. As a result, this model assumes that the

heading of the robot is always parallel to the path. This

is similar to the approach taken by [14], where we have

replaced the distance along the path component with BoW

appearance features.

These input vectors are then used to learn a mapping, y =
f(x), where y is a measure of localisation quality. In this

work, we define y to be the number of matched keyframe

landmarks, model the function f(·) as a Gaussian Process

(GP) and regress over the input-output training pairs.

B. Gaussian Process Regression

GPs are an attractive modelling option as they do not

require an explicit model of the localisation envelope and

naturally offer measures of uncertainty [15]. This is desirable

for operations downstream of localisation such as planning,

where a robot may decide to be conservative if the estimate

is highly uncertain, or may choose to explore to gather more

information.

A GP is described by a mean function, µ(x) and a

covariance function, k(x,x′). We set the mean function to

be zero, to capture the assumption that we cannot localise

in the absence of information. As a result, the behaviour of

the GP is defined entirely by the covariance function, which

encodes how two input feature vectors, x and x′, relate to

each other.

In this work, we use the Matérn covariance function [15]

with ν = 3

2
, which takes the form

k(x,x′) = σ2

f

(

1 +
√
3τ
)

exp
(

−
√
3τ
)

, (2)

where τ =
√

(x− x′)T M (x− x′) is the weighted

l2-norm between the two input vectors, and M =
diag{ℓ−2

b , ℓ−2

d , ℓ−2

c } is a diagonal matrix composed of the

length scales associated to each feature type, and we have

chosen to use the same length scale for all components of

the BoW vector. The collection of noise and length-scale

parameters which govern the behaviour of the GP function

are known as hyperparameters, typically denoted by the

symbol θ.

Given a training set of input vectors, X = {xi}ni=1
, and

corresponding localisation scores, y = {yi}ni=1
, the GP



regression task is to determine y∗, the localisation scores

at a set of query points, X∗. This is accomplished by

considering the joint distribution over all variables, which

can be expressed as

[

y

y∗

]

∼ N
(

[

µ(X)
µ(X∗)

]

,

[

K K∗

KT
∗

K∗∗

]

)

, (3)

where K∗ = K(X,X∗) is the n × n∗ matrix consisting

of covariance function evaluations between the sets X and

X∗. Similarly we use the abbreviations KT
∗

= K(X∗,X),
K = K(X,X), and K∗∗ = K(X∗,X∗) to define the other

covariance functions.

To account for measurement noise, we add σ2

nI to K and

K∗∗, where σ2

n is the variance, and I is the identity matrix.

Conditioning the predictions, y∗, on the training data

results in the distribution

p(y∗|y,X,X∗) ∼ N (ȳ∗,V[y∗]). (4)

The mean can be expressed as

ȳ∗ = K∗K
−1y, (5)

and the covariance as

V[y∗] = K∗∗ −K∗K
−1KT

∗
. (6)

The final component of GP regression is the training

procedure, which determines the value of the hyperparame-

ters suitable for the regression scenario. In our model, the

hyperparameters are θ = [ℓb ℓd ℓc σf σn]
T . These are

learned by maximising the log-likelihood of the training data

given the hyperparameters, which is given by

log p(y|X,θ) = −1

2
yTK−1y − 1

2
log |K| − n

2
log 2π. (7)

V. EXPERIMENTS

A. Data Collection

To validate our approach, we collected data from Univer-

sity Parks in Oxford, UK, using a Clearpath Husky A200

platform equipped with a Bumblebee2 stereo camera. This

platform is depicted in Figure 1.

Two routes in separate locations of the park were iden-

tified, and for each route, we conducted a single teach

pass followed by seven repeat passes with lateral offsets set

to {−1,−0.5,−0.25, 0,+0.25,+0.5,+1}m. These offsets

were achieved by adding fixed values to the path tracking

controller. We refer to the two routes in this section as Route

A and Route B, which were approximately 100m and 70m

in length, respectively.

While collected in similar environments, we observe a

range of localisation performance, as shown in Figure 2.

In both routes, some areas have as little as 5 matching

landmarks, whereas other places yield more than 80. To

provide intuition for why the performance can vary in such

a small workspace, we visualise the number and distribution

of keyframe landmarks for locations with high and low

localisation scores for each route.

In Figure 4, we see that poor localisation performance can

be attributed to the fact that many landmarks are detected

(a) Route A. (b) Route B.

Fig. 2. Localisation quality (number of matched keyframe landmarks)
constructed from all collected data for both routes. Red represents a high
number of landmark matches (>80), blue represents a low number of
matches (<20). It can be seen that the localisation quality varies drastically
over the course of the path.

(a) High localisation quality. (b) Low localisation quality.

Fig. 3. Landmark distribution for keyframes with high and low localisation
quality in Route A. As can be seen, poor localisation results when there is
an insufficient spread of landmarks throughout the image and poor contrast.

(a) High localisation quality. (b) Low localisation quality.

Fig. 4. Landmark distribution for keyframes with high and low localisation
quality in Route B. As can be seen, low contrast and unstable features
detected in the cloudy sky leads to poor localisation scores.

in the cloudy sky, whereas a good location has landmarks

spread throughout the image. Similarly, Figure 3 shows that

low contrast leads to low feature count, whereas clear texture

provides stable features for matching.

These images show us that localisation performance is

correlated with appearance, and support our intuition that

an appearance-based model may be appropriate for this task.

The appearance of the keyframes is described with the

BoW model presented in Section III where the visual dic-

tionary is constructed considering a third dataset collected

in a similar, yet different area to the two routes. The BoW

descriptor is a 1310-bit binary vector representing the relative

occurrence of the 1310 words making the visual dictionary,

where the vocabulary is built using SURF detectors and

descriptors. Possible alternative descriptors for keyframe

appearance are discussed in Section VI.



(a) Ground truth. (b) DAP. (c) BoW.

Fig. 5. Scenario I: Localisation quality predictions for a scenario where the Route A data was split into a number of repeat passes for training, and
the remainder for testing. Red represents a high number of landmark matches (>80), blue represents a low number of matches (<20). Both models
are commensurate in capturing the localisation envelope along the path, suggesting that BoW appearance features are a suitable replacement for the
distance-along-the-path parameterisation.

B. Comparison to Baseline Approach

To evaluate our model, we first looked at how the introduc-

tion of BoW appearance features compared to the baseline

performance of Churchill et al. [14], which parameterises

the feature vector with distance along the path (DAP). Since

the baseline model is unable to generalise to new routes,

we considered a scenario where we gathered some training

data during a few repeat passes, and wished to predict the

localisation performance for future repeat passes. This was

accomplished by splitting the data gathered from Route A

into training and testing sets. We refer to this test case as

Scenario I.

Both models’ hyperparameters were optimised by max-

imising the log-likelihood of the training data. The results

from both models along with the ground truth localisation

quality values are shown in Figure 5.

The performance of both models were commensurate,

supporting the use of BoW features as a surrogate for

the notion of a “place”. We quantified this similarity by

defining a threshold of 25 matched landmarks as a successful

localisation, which resulted in an F1 measure of F1,BoW =
0.949 for our BoW model, and an F1,DAP = 0.939 for DAP.

C. Generalising to New Routes

To investigate how well our model does at generalising

predictions to new paths, we considered two additional

scenarios, Scenario II and Scenario III, where we trained

our model on a selection of repeat passes for one route and

tested on a subset of repeat passes for the other. Scenario II

consisted of training on Route A and testing on Route B, and

vice versa for Scenario III. The results for both scenarios are

shown in Figures 6 and 7.

Both experiments show that we were able to capture

the general evolution of the localisation envelope along

the path. Quantitatively, using the same localisation success

threshold of 25 landmark matches, we obtain F1 measures

of F1,II = 0.915 and F1,III = 0.799 for Scenarios II and

III, respectively. The lower performance in Scenario III may

be attributed to two factors. On the one hand, the dataset of

Route B is smaller than that of Route A, making it more

challenging for the model to extrapolate than in Scenario II.

On the other hand, the weather was more changeable during

collection of the data in Route B than during that of Route

A, which affected localisation negatively and resulted in the

robot getting temporarily lost at several locations along the

path. We hypothesize that we may have learned a pessimistic

model when training on the data of Route B.

VI. DISCUSSION

While the overall results show promise, there were sec-

tions of Route B where our model was overconfident. In

contrast, the system was generally underconfident on Route

A. To form an intuition for this, we first consider a section

on Route B where localisation was very poor, yet our model

yielded an optimistic prediction. We indicate this section by

a white arrow in Figure 6a. The corresponding keyframe

obtained from the teach pass of Route B is depicted in Figure

8, along with a selection of repeat frames which matched

against it. Interestingly, there were 102 widely distributed

landmarks detected in the keyframe. However, the overall

appearance of the scene changed dramatically during the

repeat runs, introducing shadows and changing the colour

of the grass. As a result, the model was optimistic given

the feature-rich keyframe, but was unable to account for the

reduced performance due to the environmental effects.

Conversely, we consider a section of Route A where our

model under-predicted performance. We indicate this section

by a white arrow in Figure 7a. As before, we show the

corresponding keyframe from the teach pass of Route A

along with a selection of successful matches from the repeat

passes in Figure 9. The keyframe presents only 42 landmarks

with very low contrast. Our model therefore inferred from

this landmark-deprived keyframe that performance will be

poor at that location. However, we found that the scene

appearance remained consistent throughout the repeat runs

of the training set, which provided a higher than expected

localisation score. Despite their low number, the landmarks

lie mostly on the skyline, providing robust matching.



(a) Ground truth. Route B (b) BoW predictions. Route B

Fig. 6. Scenario II: Localisation quality predictions for training on Route A and testing on Route B. Red represents a high number of landmark matches
(>80), blue represents a low number of matches (<20). The BoW model captures the variability of the envelope well along the path, but is overconfident
in a few select areas. The white arrow on the ground truth figure, indicates a section of the path where we over-estimate our ability to localise. We refer
the reader to the discussion section where we further elaborate on this example

(a) Ground truth. Route A (b) BoW predictions. Route A

Fig. 7. Scenario III: Localisation quality predictions for training on Route B and testing on Route A. Red represents a high number of landmark matches
(>80), blue represents a low number of matches (<20). The model accurately captures the localisation performance for the turns along the trajectory but
is overall under confident. The white arrow on the ground truth figure, indicates a section of the path where we particularly under-estimate our ability to
localise. We refer the reader to the discussion section for a more detailed study of this example.

(a) Teach. Route B (b) Repeat with a lateral off-
set of +0.25m.

(c) Repeat with a lateral off-
set of -0.25m.

(d) Repeat with a lateral off-
set of -0.5m.

(e) Repeat with a lateral off-
set of +1.0m.

Fig. 8. Teach and repeat images for a location of Route B where the localisation prediction was optimistic in Scenario II, but the ground truth performance
was poor. We overplot in red the landmarks in the teach pass keyframe, and in green the landmarks that effectively found a match in the repeat images.
The keyframe shows good contrast and as many as 102 landmarks to localise against which poses it as a good candidate for localisation. The appearance
of the repeat passes is however dramatically altered by environmental conditions resulting in a low number of matches. The two repeats shown to the right
of the features effectively did not success in matching to the keyframe, and we here represent the match to the closest keyframe in the map. The model
was not able to capture these environmental effects.

There exist a number of limitations to our model. The

primary limitation is that we consider the keyframes col-

lected during the teach pass but do not account for a potential

change in appearance during repeat. This can result in con-

fusion for the regressor where both high and low localisation

scores result for the same input feature vector, which would

be accounted for in the model as measurement noise instead

of modelling error. Other limitations include our choice

of keyframe representation, and localisation performance

metric. Although FAST/BRIEF descriptors are considered for

localisation, we model the appearance with BoW features

based on SURF detectors and descriptors. This mismatch

may cause poorer performance. In addition, localisation

performance seems to correlate with the quality rather than

the quantity of detected features. An interesting follow-up

to this work would be to unify the representation to which

features are particular amenable to robust localisation, as

indicated in Figure 9.



(a) Teach. Route A (b) Repeat with a lateral off-
set of +0.25m.

(c) Repeat with a lateral off-
set of -0.25m.

(d) Repeat with a lateral off-
set of -0.5m.

(e) Repeat with a lateral off-
set of +1.0m.

Fig. 9. Teach and repeat images for a location of Route A where the localisation prediction was pessimistic with regards to the ground truth in Scenario
III. We overplot in red the landmarks in the teach pass keyframe, and in green the landmarks that effectively found a match in the repeat images. The
keyframe shows low contrast due to overcast conditions and offers only 43 landmarks for localisation. The appearance of the repeat passes remains however
admirably similar to that of the teach phase resulting in nearly perfect matching during the repeats.

VII. CONCLUSIONS

This paper proposes an appearance-based approach to

predicting the likely localisation envelope given only a single

teach pass at an otherwise novel location. In doing so it aims

to aid the planning process in the context of visual teach

and repeat systems. Our results indicate that our method

successfully generalises to provide if not an exact, then

nevertheless a faithful representation of the localisation en-

velope of novel trajectories – the key objective of this work.

While the consideration of appearance features provides the

capacity to generalise, it is also the source of our method’s

main limitations. Just as vision-based localisation itself, our

approach relies on the matching of features which are prone

to change due to environmental conditions such as location,

lighting or occlusion. This is likely the area where most

stands to be gained in improving this method. In the spirit

of experience-based navigation as introduced in [7], we

posit that implicitly learning a number of representations for

dissimilar circumstances such as location, time or weather

will alleviate this shortcoming. We leave this to future work.
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[16] P. Krüsi, B. Bücheler, F. Pomerleau, U. Schwesinger, R. Siegwart, and
P. Furgale, “Lighting-invariant adaptive route following using iterative
closest point matching,” Journal of Field Robotics (JFR), 2014.

[17] E. Rosten, G. Reitmayr, and T. Drummond, “Real-time video an-
notations for augmented reality,” International Symposium on Visual
Computing (ISVC), 2005.

[18] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, and
P. Fua, “Brief: Computing a local binary descriptor very fast,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 2012.

[19] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography,” Communications of the ACM, 1981.

[20] M. Cummins and P. Newman, “Appearance-only slam at large scale
with fab-map 2.0,” The International Journal of Robotics Research
(IJRR), 2011.

[21] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach
to object matching in videos,” in Proceedings of the International
Conference on Computer Vision (ICCV), 2003.


