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Abstract— This paper presents a weakly-supervised learning
system for real-time road marking detection using images
of complex urban environments obtained from a monocular
camera. We avoid expensive manual labelling by exploiting
additional sensor modalities to generate large quantities of
annotated images in a weakly-supervised way, which are then
used to train a deep semantic segmentation network. At run
time, the road markings in the scene are detected in real time
in a variety of traffic situations and under different lighting
and weather conditions without relying on any preprocessing
steps or predefined models. We achieve reliable qualitative
performance on the Oxford RobotCar dataset, and demonstrate
quantitatively on the CamVid dataset that exploiting these
annotations significantly reduces the required labelling effort
and improves performance.

I. INTRODUCTION

Autonomous vehicles need to understand their workspace

for informed decision making and safe navigation in complex

urban settings. In contrast to recently developed end-to-end

approaches for autonomous driving [1], mediated approaches

detect important objects in the scene separately to build a

combined, real-time model of the environment that can be

employed for navigation and operational purposes. In urban

environments, the collection of all painted road markings

(e.g. Fig. 1) is critical in such models: their underlying

meaning provides rules and guidance to all traffic participants

and warns them of potentially dangerous situations. This

paper presents a first step towards interpretation of these road

rules by presenting a framework for road marking detection

in a variety of traffic, lighting, and weather conditions.

In the domain of autonomous vehicles, highly detailed

mapping services such as Google Maps, HERE Maps,

OpenStreetMap, etc., include road graphs that can support

scene understanding. However, relying solely on these can

cause problems whenever the traffic situation is updated,

or when unmapped places are visited. Even in a future of

connected cars, real-time detection and interpretation of road

markings will remain an important cue for high-level scene

understanding and thereby aid planning, localization [2], and

mapping [3].

In this paper, we detect not only separators that mark the

different lanes, but the collection of all painted markings on

the road surface that dictate the traffic rules for that particular

urban setting. Detecting and interpreting these is a more

complex problem than lane detection. In general, proposed
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Fig. 1. Road marking detection using weakly-supervised annotations. A
LiDAR point cloud of reflectance values is combined with a monocular
image to generate road marking annotations in a weakly-supervised way
using a conditional random field approach (Section III). A deep semantic
segmentation network is then trained using these annotations and the cor-
responding images (Section IV). During deployment the network performs
road marking detection in real time without any additional processing steps
using only a monocular camera (Section V).

solutions in that area do not extend easily to the detection

of a bigger variety of road markings.

Road marking detection is a challenging problem for

several reasons. Firstly, a proposed method has to cope

with occlusions, varying lighting, and changing weather

conditions. Secondly, road markings are often degraded and

vary in sorts and shapes between countries. Lastly, there are

no large datasets available that contain accurate ground-truth

labels for road markings. Most datasets for urban scenarios

such as KITTI [4], Cityscapes [5], and the Oxford RobotCar

dataset [6] do not provide the level of detail that is required

for segmenting such small classes.

Road marking detection in images can be posed as a

semantic segmentation problem. State-of-the-art methods for

these tasks implement deep networks, which are able to

learn specific scene context and thereby cope with the

challenges stated above, as long as sufficient training data
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is available. Although some networks have been trained for

road marking recognition [7], [8], their applicability remains

limited because of the current lack of ground-truth labels.

Manual generation of these ground-truth labels for se-

mantic segmentation tasks is extremely labour expensive,

because of the required pixel-level detail in combination

with the aforementioned visual issues. Therefore, we present

a method for creating annotations in a weakly-supervised

way, by leveraging complementary sensors mounted on the

vehicle. We utilize these annotations to train a deep se-

mantic segmentation network (inspired by U-Net [9]) for

road marking detection using only a monocular camera. The

annotations do not necessarily capture all the road markings

in the image perfectly, but are sufficient for training purposes

as explained in Section III-C.

We present qualitative results of our approach in a variety

of traffic, lighting, and weather conditions on the RobotCar

dataset. Furthermore, we show quantitatively that exploiting

the weakly-supervised RobotCar annotations significantly

reduces the required labelling effort and improves detection

performance on the CamVid dataset [10].

We make the following contributions in this paper:

• We present a method for creating road marking annota-

tions in a weakly-supervised way by using complemen-

tary sensor modalities. These are used for training a

deep semantic segmentation network, thereby avoiding

expensive manual labelling.

• We introduce a real-time framework for road marking

detection in complex urban settings using a monocular

camera without relying on any preprocessing steps or

predefined models. This method performs reliably in a

wide variety of traffic, lighting, and weather conditions.

The combination of these contributions (see Fig. 1) provides

a first step towards road marking classification in datasets

without ground-truth labels to support high-level scene un-

derstanding, mapping, and planning.

II. RELATED WORK

Our work on road marking segmentation based on weakly-

supervised learning from multimodal data is mainly related

to work in the area of road marking detection — which we

discuss first. We further discuss related work in the areas of

lane detection, semantic segmentation, and automatic label

generation.

1) Road Marking Detection: Work on road marking de-

tection can generally be distinguished by the used sensor

modalities (e.g. camera or LiDAR) and whether learning

algorithms are applied (unsupervised or supervised).

Unsupervised camera-based road marking detection sys-

tems often follow a four stage pipeline: preprocessing, filter-

ing/binarization, feature extraction, and (rule-based) classifi-

cation. An early evaluation of several techniques is given

in [11]. While effective in moderate environments, these

approaches fail in the presence of extreme lighting condi-

tions and shadows. Other disadvantages include hand-crafted

features used for template matching [12] and shape-based

classification, which both perform badly in the presence of

occlusions.

Supervised approaches often use a similar pipeline with

the exception that the last step is replaced by a supervised

classification algorithm. Popular classifiers include random

forests [13], SVMs [14], shallow neural nets [15], and

OCR for text recognition [16]. Computed features include

HOG and Hu spatial moments, which are rotation and

scale invariant and thus perform better under challenging

conditions and occlusions. Other approaches [17], [18], do

not classify detected road markings independently, but take

the spatial configuration of the entire scene into account. This

is preferable because road markings are often found in the

same spatial configuration.

More recently, deep networks have been successfully in-

troduced for road marking recognition [7], [19] or purely for

classification [8]. However, these approaches either imple-

ment additional preprocessing algorithms or require detected

road markings as an input, because of the current lack

of ground-truth road marking labels in large-scale urban

datasets. We resolve this issue by creating annotations in

a weakly-supervised way.

Lately, the use of LiDAR reflectance values has become

more popular as an indication for road markings, since

they are not affected by varying lighting. Most solutions

generate an interpolated 2D reflectance image [20], so that

well-known image processing techniques can be applied. In

contrast, the latest approaches work directly on the point

cloud [21]. However, because LiDARs are still relatively

expensive, these approaches are mainly applied for mapping

purposes and not for real-time road marking detection.

Therefore, we make use of LiDAR sensors only during the

offline annotation creation, and rely solely on a monocular

camera during deployment.

2) Lane Detection: Most lane detection systems consist of

detection, model fitting, and tracking stages, as summarized

in [22]. More recently, deep networks [23], [24] have been

proposed, because they perform better under challenging

conditions. However, the extracted information does not

extend beyond detecting driving lanes.

3) Semantic Segmentation: Semantic segmentation solves

a structured pixel-wise labelling problem over meaningful

objects in the scene. In early research, maximum-a-posteriori

inference in a conditional random field (CRF) [25] was used

to compute the labelling layout. More recently, researchers

started exploiting deep networks for modelling and extracting

these latent feature hierarchies with Fully Convolutional

Networks (FCNs) [26]. To improve the output resolution,

which suffers from the down- and upsampling in the encoder

and decoder path, several solutions have been proposed such

as skip connections [9], dilated convolutions [27], and end-

to-end integration of a CRF [28].

4) Automatic Label Generation: To fully exploit scene

context, the aforementioned networks require large-scale

semantic datasets [5]. To reduce the labeling effort for such

datasets, several automatic annotation solutions have been

proposed. In [29] a single 3D scene annotation is projected
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Fig. 2. The vehicle’s reference frame R is located at the middle of the
rear axle. The approximate sensor locations are shown for the monocular
camera C, pushbroom LiDAR Lp, and object detection LiDAR Lo.

into multiple 2D images. The methods proposed in [30], [31]

create weakly-supervised annotations for training networks

for applications which require less detail and are sometimes

supported by a small, manually annotated dataset as in

[32]. In this work we automatically create road marking

annotations from multimodal data.

III. WEAKLY-SUPERVISED ANNOTATIONS FROM

MULTIMODAL DATA

We present a method for creating road marking annota-

tions in a weakly-supervised way by leveraging complemen-

tary sensor modalities. After the network is trained using

these annotations, it requires only a monocular camera at

run time. The annotations are computed offline and thus do

not require real-time generation.

We exploit the property that road markings are highly re-

flective and must lie on the road surface. We utilize a LiDAR

to capture a point cloud of the environment, with a range

and reflectance value associated with each point. The latter

is not prone to varying lighting conditions, and thus provides

benefits over using (only) camera images. The road surface

is extracted from the point cloud using a surface normal

region-growing approach and projected into the image to

decrease the search area for road markings. A dense CRF

is then employed to identify the road marking image pixels

by corresponding them with the high-reflectance laser points.

A. Extracting the Road Surface

As road markings only occur on the road itself, coarse

segmentation of the road surface can decrease the search

domain. This speeds up the algorithm and makes it less prone

to false detections (i.e. high-reflectance objects such as white

vehicles).

A training route is segmented in 25m chunks of laser and

image data. The normal of every laser point is calculated

using a local neighborhood (empirical evaluation showed that

a radius of 0.35m achieved good results). From these, the

surface normal for the selected point is calculated using prin-

cipal component analysis (PCA). We employ a per scan-line

based region-growing approach (we build our point clouds

with a LiDAR mounted in push broom configuration, see Fig.

2) starting at the position of the vehicle and going outwards.

The boundary of the road surface is found whenever the

surface normal is not parallel to the z-axis of the vehicle

anymore. The road surface point cloud is then projected into

the camera image using the extrinsic transform GCLp
to

extract the pixels belonging to the road.

Fig. 3. Four examples of extracted road surfaces generated by the surface
normal region-growing approach and object detection mask. Highly accurate
results are not necessary as this step is only used to restrict the search domain
for later steps.

Since LiDAR Lp is mounted in a push broom configu-

ration (see Fig. 2), at any given time, the fields-of-view of

LiDAR Lp and camera C do not overlap. Sensor covisibility

is simulated by integrating vehicle egomotion estimates.

Thus, and since urban scenes are dynamic, the extracted

road surface points can project onto dynamic objects such as

cars, cyclists, etc. in the image. Hence, we use an additional

horizontal LiDAR Lo on the front of the vehicle to capture

static and dynamic objects in the scene, and implement the

”stixels”-inspired approach of [30] to remove objects from

the extracted road region. In Fig. 3 four examples of extracted

road surfaces are shown.

B. Classifying the Road Marking Pixels

After the road surface image pixels are extracted, each

pixel should be classified as either road marking or non-
road marking. This is a difficult classification problem, since

the non-road marking class has a diverse color and texture

domain. We use a CRF to associate image pixels with the

high-reflectance points of the sparse laser point cloud, be-

cause this is a state-of-the-art method for contextual coherent

image segmentation in the presence of prior knowledge (i.e.

reflectance values).

A CRF models pixel labels as random variables in an

undirected graphical model given some observations (i.e.

the image). The labelling task is then posed as an energy

minimization problem. The framework of [25] is utilized,

in which each pixel is represented by a vertex of the graph,

and all vertices are connected to each other by Gaussian edge

potentials. These pairwise potentials take into account long-

range interactions between pixels. At the same time, they

ensure that the mean field approximation of the CRF can be

computed in a highly efficient manner, so that optimization

over a dense pixel-wise model can be performed within

seconds.

Let Xi ∈ X be the random variable, which represents

the label assigned to pixel i = {1, . . . , N}, where N is the

number of pixels. Each pixel takes a value in the label space

L = {lr, ln}, where lr denotes the class road marking and

ln denotes the class non-road marking. Let G = {V, E} be

the undirected graph, whose vertices Xi are contained in V
and whose edges are contained in E . Given the graph, the

combination of the observed image pixels I and the label
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configuration X can be modelled as a CRF characterized by

the Gibbs distribution

p(X = x|I) = 1

Z(I)
exp (−E (x|I)) , (1)

where Z(I) is the normalization constant and E (x|I) is the

Gibbs energy function defined as

E (x|I) =
∑
c∈CG

Φc(xc|I). (2)

In (2), CG denotes the set of cliques associated with

G, in which each clique c induces a potential Φc. The

most probable label assignment given the observed im-

age data is thus found by minimizing the energy: x∗ =
argmaxx∈LN p(X = x|I). Omitting the conditioning on I
for notational convenience, we use the energy function

E (x) =
∑
i∈V

ψi(xi) +
∑

(i,j)∈E
ψij(xi, xj), (3)

where ψi(xi) : L → R are the unary potentials that denote

the cost of pixel i taking label xi, and ψij(xi, xj) : L×L →
R are the pairwise potentials that denote the cost of assigning

the labels xi and xj to pixel i and j simultaneously. The

unary potential can thus be seen as an independent, discrim-

inative pixel classifier, whereas the pairwise potentials are

smoothing terms that encourage similar labels for pixels with

similar features.
1) Unary Potentials: Ideally, the measured reflectance

value provides a good feature for pixel-wise road mark-

ing classification, because we have ensured that the search

domain only contains the road surface. Unfortunately, this

simple classifier will not give satisfactory results for two

reasons.
Firstly, the measured reflectance value is a function of

the material, the viewing angle, and the distance of the

object. We perform a two-step procedure on a per-beam basis

to make the reflectance values of a scene comparable: 1)

subtract the per-beam median reflectance value, calculated

over the entire dataset, from that beam (since in most cases

it will not hit a road marking), 2) normalize the values of that

beam by dividing them by the per-beam variance calculated

over the entire dataset.
Secondly, a point cloud is significantly sparser than an

image. In order to compute a unary potential for every vertex

(i.e. pixel), the reflectance values of the point cloud are

interpolated linearly. This results in a smooth synthetic laser

image (see Fig. 4), which cannot be used for creating pixel-

accurate unary potentials. Under the assumption that there

exists a correlation between the reflectance and brightness

of road marking pixels, a simple solution is to multiply the

grayscale pixel intensities gi with the reflectance values of

the synthetic image ri

ψi(xi) = gi · ri(xi). (4)

In this way, color and reflectance form a joint, discriminative

feature for road marking pixels given the road surface, so

that only bright and highly reflective pixels are assigned an

increased potential.

Fig. 4. Generating the unary potentials for the CRF. Interpolating the laser
reflectance values results in a smooth synthetic image (left) not sufficient
for the task. The potentials can be improved by multiplying them with the
grayscale intensities of the original image (right).

2) Pairwise Potentials: In order to ensure efficient opti-

mization as in [25], define the Gaussian edge potentials as

ψij(xi, xj) = μ(xi, xj)

M∑
m=1

km (fi, fj) = μ(xi, xj)K(fi, fj),

(5)

where each km is a Gaussian kernel which takes a feature

vector f from the respective pixel. We take the compatibility

function μ(xi, xj) = [xi �= xj ]. In contrast to [25], we do not

weigh the Gaussian kernels, because learning these weights

requires ground-truth labels. However, the same two-kernel

potentials are used where the feature vectors f include the

pixel RGB values I at the pixel position p

K(fi, fj) = exp

(
−‖pi − pj‖2

2θα
− ‖Ii − Ij‖2

2θβ

)
+ (6)

exp

(
−‖pi − pj‖2

2θγ

)
.

The first exponential function forces nearby pixels with

similar features to have the same label, while the second

smoothens the results by removing small, isolated regions.

The θ parameters control the amount of influence between

pixel i and j; increasing θ will increase long-range interac-

tions. We empirically choose θα = 43, θβ = 9, and θγ = 3.

This choice was inspired by [29].

C. Annotation Results

Qualitative evaluation of the created annotations demon-

strates that high-quality results are achieved, as illustrated

in Fig. 5. The current approach does not classify all the

road marking pixels in every image perfectly. This happens

due to the fact that the method is unsupervised and the

dataset contains images with varying lighting conditions and

reflectance range. Learning weights for the kernels to adjust

to specific images is challenging due to the lack of ground-

truth labels. The results might be improved if weights are

learned from a relatively small set of manually labelled

images.

However, as shown later in Section V, the generated an-

notations are sufficient for detecting road markings in urban

settings under varying conditions. The most likely reason

for this is that several regularization techniques incorporated

in the network such as dropout and batch normalization

prevent overfitting to the imperfect annotations. The best

generalized binary segmentation that the network is able to

achieve, groups the road marking pixels in one class, since
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Fig. 5. High-quality annotation results achieved by the CRF approach.
Although not all road markings are captured perfectly, these results are suf-
ficient for training. In the case of over-exposure (bottom right), annotations
are conservatively estimated.

their appearance is very similar to the correctly labelled road

marking pixels.

Note that, although the CRF approach achieves good

results, it is not suited for real-time applications with the

current inference algorithm, because processing of a single

high-resolution image takes several seconds. Furthermore,

we do not claim that the feature and parameter choices are

optimal (see Section III-D), but they generate annotations

that are sufficient for training the network, which is the end

goal.

D. Alternative Features for the CRF Potentials

We have experimented with different features for the unary

and pairwise potentials in order to improve the annotations.

Below we briefly share our findings. However, a more

extensive analysis is necessary to determine the best overall

feature type for this specific application.

For the unary potentials, we found that the Nguyen feature

[33] tends to work well in certain settings as a substitute

for the grayscale intensities. This is likely because the

Nguyen feature emphasizes elongated structures such as lane

markings, and is thus less prone to regions of over-exposure.

Intuitively, the RGB values in the pairwise potentials do

not seem to be the best feature to discriminate the road

surface from road markings, especially not in over-exposed

images. Therefore, we have experimented by adding the

interpolated reflectance value for every pixel to the feature

vector. However, this gave unsatisfactory smoothed results,

even when the respective θ value was decreased. Further-

more, we have experimented with different color spaces such

as CIELUV and HSV, but empirically achieved the best

results across the entire dataset using the RGB values.

IV. DEEP SEMANTIC SEGMENTATION NETWORK

Deep neural networks are the state-of-the-art solution for

semantic segmentation. We argue that these methods (with

adequate training data) will also improve road marking

detection and classification, since they are able to leverage

the global scene context and are robust to spatial defor-

mations, degradation, and partial occlusion. Besides that,

classification is not limited to shapes, but the difference in

underlying meaning of similarly shaped road markings (e.g.

lane separators and separators that mark a parking spot) can

be retrieved based on their place and context in the scene.

A. Network Architecture

We train a U-Net inspired architecture shown in Fig. 6.

Like most deep semantic segmentation networks, it consists

of an encoding and a decoding path, and a way to provide

fine-grained input information to the decoder.

The size of the image is repeatedly reduced by a factor

of 2 in the encoder path to increase the receptive field

of the filters. Consequently, they become invariant to tiny

deformations of the road markings and are able to take

contextual information and long-range interactions into ac-

count. The decoding path is identical to the encoding path

except that the feature maps are now repeatedly upsampled to

generate an output image of the same resolution as the input.

The upsampling is performed with trainable filters. Skip

connections concatenate high-resolution features from the

encoding path to the decoding path, so that fast convergence

is ensured and a fine-grained segmentation output can be

achieved. We modified the original U-Net to include batch

normalization after every convolutional filter, and added

zero-padding to the sides so that the output resolution is

equivalent to the input resolution.

The output of the network is computed by a pixel-wise

softmax over the final feature maps

pi,k =
exp(ai,k)∑M

m=1 exp(ai,m)
, (7)

where ai,k denotes the activation in feature map k at pixel

i, and M is the number of classes. Then, pixel i is assigned

a label by li = argmaxk pi,k. Since the number of road

marking pixels is much lower than non-road marking pixels,

a weighted cross entropy loss is implemented to cope with

the class imbalance

E = −
N∑
i=1

wl� log(pi,l�), (8)

where l� is the ground-truth class for that pixel and wl� is the

weight associated with the ground-truth class of that pixel.

Weights for the two classes are calculated by median

frequency balancing wm = f̃/fm [34], where fm is the total

number of pixels of class m divided by the total number

of pixels in images where class m is present. The scalar f̃
denotes the median of fm.

B. Network Training

The parameters that were used during training against the

created RobotCar annotations are shown in Table I. We use

dropout as a supplementary regularization tool besides batch

normalization to prevent overfitting. Training is done from

scratch with weight initialization as described in [35].

For the quantitative results, we split up the CamVid dataset

into 490 train, 105 validation, and 105 test frames. We select

the epoch for testing in which the accuracy is highest among

the evaluations on the validation set.

At run time, the TensorFlow implementation of our net-

work in Python performs inference on an input image in

16ms (=62.5Hz) using an NVIDIA TITAN Xp GPU.

1867



Fig. 6. The U-Net [9] architecture consisting of an encoder and a decoder
path, which compresses the feature maps to increase the receptive field of
the filters before expanding to a full resolution per-pixel class prediction.

TABLE I

NETWORK & TRAINING PARAMETERS

Network Value Training Value

loss function
weighted
cross entropy

batch size 10

activation function ELU epochs 100

number of layers 5 optimizer Adam

filter size 3×3 learning rate 0.0001

max pool size 2 dropout 0.5

stride 1

image resolution 128 × 320

V. EXPERIMENTAL RESULTS

Due to the absence of a readily available dataset that

contains LiDAR data and pixel-wise ground-truth labels of

road markings, we employ the following approach to test our

system. We train the network using the weakly-supervised

annotations created on the RobotCar (RC) dataset, and then

fine-tune with manually created labels on the CamVid (CV)

dataset to adapt to the different domain. This process allows

for pixel-wise evaluation of our approach against the CamVid

labels, which will be used as ground truth. Additionally, we

show qualitative performance of the network when trained

using only the annotations created on the RobotCar dataset,

in a variety of traffic, lighting, and weather conditions.

A. Quantitative Evaluation

We performed five experiments, all tested against the 105
selected ground-truth CamVid labels (see Table II).

The first two experiments depict baseline results on

CamVid by training against a small set of, and all avail-

able ground-truth labels, respectively. For the remaining

experiments, the network was trained using 24238 weakly-

supervised RobotCar annotations. Herein, the third experi-

ment was tested directly against the CamVid labels, whereas

for the fourth and fifth experiments, the network was fine-

tuned on a varying number of CamVid labels. Evaluating the

results, the following three key observations can be made:

1) The third experiment clearly illustrates that fine-tuning

is necessary. Interestingly, the result demonstrates also that

training against a large dataset of another domain outper-

forms training against a small dataset of the actual test

Fig. 7. The CamVid label (middle) and the predicted output (right) for a
test image. The predicted output reflects the ground truth better at several
places in the images such as the lower part of the bounding box around the
bicycle and the bicycle itself.

TABLE II

QUANTITATIVE PIXEL-WISE RESULTS ON ROBOTCAR (RC) AND

CAMVID (CV) DATASETS

Train Dataset ACC PRE REC IoU F1

25 CV 96.82 46.17 87.64 42.03 58.33

490 CV 98.22 63.96 86.33 57.17 71.10

24238 RC 97.92 62.92 65.25 46.17 62.52

24238 RC + 25 CV 98.20 66.39 78.39 54.27 69.54

24238 RC + 490 CV 98.60 72.64 81.63 61.20 75.04

domain. This likely occurs because the network is trained

on a bigger variety of traffic and lighting conditions, which

improves generalization.

2) The fourth experiment shows that training using the

weakly-supervised annotations, while fine-tuning using only

25 manually created CamVid labels, achieves comparable

performance (in terms of IoU and F1) to the baseline result

trained on 490 manual labels. This significantly reduces the

required labelling effort.

3) The last experiment shows that we outperform the

baseline result, when we fine-tune using all available ground-

truth labels. This is not trivial, since adding more data from a

different domain potentially alters the data distribution. The

result indicates that more training data of another domain

(which requires no additional labelling effort in our case)

improves performance.

Note that the RobotCar annotations were uniquely gen-

erated without the use of data augmentation techniques.

The results further show that pre-training on the annotations

increases the precision but decreases the recall. This is

expected, since the annotations are created conservatively

(see Fig. 5).

Although the manually created CamVid road marking

labels are of high quality, there are instances where the

labels do not accurately represent the ground truth. As shown

in Fig. 7, the predicted output can then correspond better

to the actual ground truth than the label itself. Besides, it

is important to keep in mind that object-level performance

is more relevant than pixel-wise performance, when road

marking detection is performed for planning purposes (which

is our future goal).

B. Qualitative Evaluation

Fig. 8 shows qualitative results on a RobotCar test dataset.

The results demonstrate that the network segments the road

markings from the image without any preprocessing steps

when trained using the weakly-supervised annotations. Even
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Fig. 8. Network output on RobotCar images when trained against
weakly-supervised annotations. The network accurately detects all road
markings without limitations to shape, even when the road markings start
to degrade (fourth row). In case of over-exposure (fifth row), a conservative
segmentation is achieved.

in case of degradation, the network is able to sufficiently seg-

ment the road markings. The network achieves a conservative

segmentation in cases of over-exposure, where intensity-

based approaches most likely fail.

Additionally, we trained a network using annotations gen-

erated under different lighting and weather conditions. Fig. 9

shows the network output under these conditions at the same

location. Although the method performs best in overcast

conditions, the results under more difficult conditions appear

satisfactory considering the image quality.

C. Limitations

Under some conditions the quality of the annotation is

poor, as illustrated in Fig. 10. Bright parts of the pavement

can be mistaken for road marking, when the extraction algo-

rithm has difficulties finding the correct road surface border.

These failure cases could be addressed by more complex road

extraction algorithms, or a more discriminative (supervised)

feature set for the CRF potentials. These annotations were

not included in the training set.

Furthermore, the network output can be spurious at times

in the presence of parked cars or stark shadow lines, as

shown in Fig. 11. False detections occur, because object

edges introduce high-intensity gradients at the same place in

the image where road markings normally appear. This can

likely be resolved when the network is given annotations with

road marking types, so that it can learn improved spatial and

contextual coherence.

Fig. 9. Road marking detection under different conditions (overcast,
night, rain, and sun) at the same location. Despite significant changes in
appearance, the method achieves satisfactory results.

Fig. 10. Poor quality annotation due to insufficient road extraction, because
the pavement is approximately at road height. The result can be improved by
more accurate road extraction algorithms or a more discriminative feature
set for the CRF potentials.

Fig. 11. Examples of spurious network output in the presence of parked
cars and stark shadow lines, because edges introduce high-intensity gradients
at the same place in the image where road markings normally appear.

VI. CONCLUSION

We have presented a weakly-supervised system for real-

time road marking detection using images of complex urban

environments obtained from a monocular camera. At run

time, the road markings in the scene are detected using

a deep segmentation network without relying on any pre-

processing step or predefined models. Crucially, by lever-

aging LiDAR reflectance values in a CRF approach, we

generated vast quantities of annotated road marking images

for training purposes in a weakly-supervised way, thereby

avoiding the need for expensive manual labelling. We have

demonstrated reliable qualitative performance under vary-

ing traffic, lighting, and weather conditions on the Oxford

RobotCar dataset. Furthermore, we showed quantitatively on

the CamVid dataset that weakly-supervised annotations of

another domain significantly reduce the required labelling

effort and improve performance.

In future work we will extend the current framework to
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include semantic classification of the road markings in the

scene to retrieve the rules of the road. This information will

be exploited to aid high-level scene understanding, mapping,

and planning in complex urban environments.
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