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Abstract— The classification of semantically meaningful road
markings in images is an important and safety critical task for
autonomous and semi-autonomous vehicles. However, beyond
simple lane markings, real-time detection and interpretation
of road markings is challenging as images are subject to
occlusions, partial observations, lighting changes and differing
weather conditions. Additionally, there is high variation in the
road markings between countries and regions, which makes
interpretation difficult. In this work we present a three-fold
approach to the semantic classification. Firstly, we employ a
weakly supervised neural network to detect pixels belonging to
road markings under different conditions. Subsequently, these
pixels are classified into geometric primitives, from which we
retrieve the semantic classes through a fast and parallel model-
fitting algorithm that offers real-time performance. Unlike other
methods in the literature that perform road marking classifica-
tion independently, our proposed approach performs a joint
classification leveraging the highly structured configurations
that characterise urban traffic scenes. Consequently, we retrieve
the underlying semantic classes under a variety of weather and
lighting conditions as we demonstrate in our results.

I. INTRODUCTION

The safe operation and deployment of a robot is intrinsi-

cally tied to its understanding of the work-space it operates

in. In the case of an autonomous vehicles this extends from

the knowledge of its location and its surroundings to the

allowable behaviour at that particular location. The latter is

mainly encoded into painted markings on the road surface

which guide vehicles into acceptable behaviour and serve as

warning for different hazards.

Offline mapping services such as Google Maps, HERE

maps, and OpenStreetMap nowadays attempt to include these

kind of details to aid autonomous driving. However, these

offline systems do not fully negate the need for autonomous

vehicles to be able to directly detect and interpret road

markings in real-time through their live sensors for several

reasons (i.e. roads are constantly changing, increasing, or

undergoing maintenance). These off-line methods cannot

directly compensate for this, leading to safety concerns for

autonomous operation especially as regions that receive less

traffic are considered.

Therefore, we focus on scene understanding for au-

tonomous vehicles from live perception. More specifically,

we present a method for the classification of a collection

of road markings (i.e. not just lane markings) from a front-

facing monocular camera. We operate on the premise that the

majority of the painted road markings originate from simple

geometric primitives (i.e. lines), even though their scale and

rotation differ greatly due to the camera perspective. The
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Fig. 1. Semantic classification of road markings in an urban environment as
implemented in this paper. From an image taken by the front-facing camera
of an autonomous vehicle (top left), pixels of potential road markings can
be identified by a trained deep neural network (top right) under various
lighting conditions. A fast and real-time two-step global energy optimisation
approach then retrieves the road marking classes. The first optimisation step
reveals geometric primitives (lines) which encode road marking segments
(bottom left), before a further optimisation step classifies these primitives
into semantically meaningful road markings as seen in the bottom right
image.

spatial configuration of these primitives distinguishes the

road marking classes.

Early approaches for road marking classification [1], [2]

proposed the matching of features/shapes to obtain the road

marking classes from geometric primitives, but generally

struggle with changes in orientation and scale. Additionally,

these approaches performed shape classification indepen-

dently, neglecting the fact that combinations of road mark-

ings are often found in the same spatial configuration. Fur-

thermore, there is a decrease of performances in scenes with

occlusions or changes in lighting and weather conditions.

End-to-end deep learning approaches [3] offer solutions to

some of these problems. However, creating pixel-wise road

marking classification labels is extremely labour expensive

and cannot be done automatically as in [4]. Besides, no

techniques currently exist for including domain knowledge

(e.g. structure of the road scene or geometric primitives of

road markings) directly into these deep learning frameworks.

In this paper, we propose an integrated framework for the

detection and semantic classification of road markings. As

demonstrated in Figure 1, pixels that belong to road markings

are first identified by a trained deep neural network [4].



This allows for accurate detection of road marking pixels

under varying lighting and weather conditions. From these

pixels a two-step method retrieves the semantic road marking

classes. This method is based on a fast, robust, real-time,

global energy optimisation implemented through a COnvex

Relaxation Algorithm (CORAL) [5]. Unlike most geometric

multi-model fitting approaches, global energy approaches

inherently consider the overall classification of data points

to underlying models, in this case considering the spatial

proximity of road marking classes. In the first optimisation

step, geometric primitives (i.e. lines) from the identified

pixels are extracted. These are then clustered through a

subsequent optimisation, due to their specific configurations,

to the different semantic classes through a further energy

optimisation revealing a joint classification of road markings

in a scene as shown in the bottom right of Figure 1. This

removes the need for expensive and time-consuming manual

annotations used for training purposes in proposed learning

techniques [3], while still retaining strong and real-time

classification performance.
In particular this work offers the following contributions:

• A robust, accurate method for extracting geometric

primitives from road marking pixels.

• A fast, global labelling for the semantic classification

of road markings using a combination of the geometric

primitives and the road marking pixels.

• A method to track road marking classes from frame to

frame.

The rest of the paper is organised as follows. In Section

II related work in the area of road marking detection is

summarised. In Section III the process for obtaining the

road marking pixels is explained, followed by Section III-

B wherein the details of the geometric primitive extraction

technique are described, before presenting the subsequent

segmentation in Section III-C. In Section IV we introduce

the road marking tracking pipeline before showing qualita-

tive and quantitative results in Section V. Conclusions and

discussion follow in Section VI.

II. RELATED WORK

Early work on the classification and interpretation of

road markings was majorly concerned with the detection of

lane markings, which form a subset of the road markings

but are important for semi-autonomous vehicles as lane-

following and lane departure warning systems are popular

Advanced Driver Assistance Systems (ADAS). The survey

by Hillel et al. [6] presents the common pipeline imple-

mented by most lane marking detection algorithms using

images. This pipeline includes a feature detection step to

extract the outlines of the lane separators through edge or

gradient detection, followed by a model fitting algorithm,

usually a Hough transform for straight roads and a spline

or polynomial model for curved roads. However, the feature

detection is prone to occlusions and changes in illumination

and weather conditions, while the model-fitting is dependent

on correct parametrization and model choice. This limits the

usability of these techniques to simple scenes (e.g. highway

environments), not alike the urban environments studied in

this paper.

To improve on the aforementioned problems, several ap-

proaches introduced an extra filtering step that attempts to

extract regions of the viewed scene which contain road

markings, as presented in the survey by Veit et al. [7].

While these are able to improve the baseline performance,

they still suffer under varying illumination forcing the use

of additional heuristics for practical functionality [8], [9].

Additionally as more complex road markings are sought the

extracted features evolve from simple edges to retrieve lanes

to more complex shape contours to detect arrows and spatial

configurations for zebra crossings. Examples of these are

descriptor-based approaches such as Histogram of Gradients

(HOG) used in [10] and Fourier approaches used in [11],

[12]. Classification of these features can then be performed

by template matching as seen in [13], [14] or by heuristic

shape-based rules. These techniques, while showing good

performance on their evaluated datasets, do not generalise

well and are sensitive to occlusions and partial observations

limiting their practical use.

Supervised learning approaches offered a way to improve

generalisation and thus several flavours of these appeared

in the literature, ranging from KNN classification [15] and

Support Vector Machines [16], [17] to shallow neural net-

works [18], [19]. It must be noted that these techniques

each focus on a different specific subset of road markings,

which are then independently detected and classified and

hence generalisation to new features is limited. A divergence

from this approach is presented by Bonolo et al. [20], who

exploited the spatial relationship between road markings to

improve classification using a Conditional Random Field

(CRF). This however requires perfect detection of road

markings and with the optimisation taking a few seconds

per image it is not suited for online use.

More recently, deep networks have been successfully

trained for road marking recognition [21], [22] or purely for

classification [23]. However, these approaches either imple-

ment additional preprocessing algorithms or require detected

road markings as an input, because of a lack of ground-truth

road marking labels in large-scale urban datasets. The authors

of [3] are the first to train a network on a large-scale (hand-

labelled) dataset and perform coarse road marking detection

under challenging conditions.

In comparison to all of the aforementioned work, our

approach leverages the power of deep learning to perform

robust pixel-accurate road marking detection under difficult

conditions and occlusions without the need for expensive

road marking class labels, while still integrating domain

knowledge to semantically classify road markings jointly in

real time.

III. SYSTEM OVERVIEW

In this work, we take a three-fold approach to the semantic

classification of road markings. Firstly, we deploy a deep

semantic segmentation network to detect road marking pixels

u ∈ {u1, · · · , unp
}, where np is the number of detected

pixels, in a monocular image. This non-trivial operation

removes artefacts from the image such as cars, buildings,

and other objects with line features, which introduce noise

to the subsequent steps.



Secondly, a global energy optimisation retrieves an a

priori unknown number of geometric primitives A ∈
{A1, · · · , Anl

}, where nl is the number of extracted prim-

itives, from the road marking pixels which encode the road

marking segments.

Lastly, we cluster these road marking segments into se-

mantically meaningful classes ψ ∈ {ψ1, · · · , ψnc
}, with

two types of constraints followed by a subsequent energy

optimisation. This pipeline is described in more detail in the

following subsections.

A. Road Marking Detection

We deploy a deep semantic segmentation network to

identify image pixels that belong to the road markings. It

can be seen [4] that in the presence of adequate training

data, such a network will outperform existing techniques as

it is able to exploit the global scene context, making it more

robust to lighting changes, spatial deformations, degradation,

and partial occlusions.

Creating adequate training data, in this case pixel-wise

road marking labels, is extremely labour expensive. To

bootstrap this, the monocular image is combined with a

LiDAR reflectance point cloud to create road marking an-

notations in a weakly supervised way using several domain

assumptions. We exploit the property that road markings are

highly reflective and optimise a dense CRF over the image

to detect the road marking pixels by relating them to high-

reflectance LiDAR points, which are not affected by lighting

changes. This allows for the automatic generation of a large

set of road marking annotations under various conditions,

which are used for training purposes.

After the network is trained with these annotations, a road

marking mask can be retrieved in real-time from a monocular

image. Figure 2 shows that the network is robust to both

appearance and lighting changes in the scene, providing a

strong set of pixels from which individual road markings can

be obtained. Due to space constraints we direct the reader to

[4] for further details and the utilised network architecture.

B. Road Marking Geometric Primitive Extraction

After the identification of the road marking pixels by the

trained deep segmentation network, we extract geometric

primitives. linear segments, that encapsulate road marking

segments. The number of road marking segments in a specific

scene is a priori unknown, and apart from the trivial case

of lane markings, they occur in different orientations and

lengths with various levels of occlusion. Additionally, the

network output also contains some level of noise, as objects

of high reflectance (i.e. curbs) not corresponding to road

markings can sometimes be wrongly segmented.

Several techniques for multi-line fitting in images such

as vanishing point detection [3], RANSAC [24] and the

Hough transform have been employed to obtain road marking

segments. However, when moving away from the simple

lane detection scenario performance of these techniques

deteriorates. The Hough transform is highly dependent on

parametrisation, while sequential RANSAC techniques strug-

gle in scenes with noise and clutter, which cascades inaccu-

racy leading to poor outputs. In contrast, robust energy based

Fig. 2. Road marking detection under different lighting conditions (over-
cast, night, rainy, and sunny). Despite the large changes in the prevailing
conditions the trained deep segmentation network [4] is able to accurately
identify the pixels belonging to the road markings from the monocular
image.

multi-model fitting approaches [25], [5] have been shown to

outperform greedy approaches in the presence of noise. This

is as energy based approaches take into consideration the

overall classification of the data points to all the models.

Firstly, by promoting locality through a smoothness prior

that ensures that points that are close together have a similar

model. In addition, these techniques are able to converge to

the correct number of geometric models present in the data

through a compactness prior.

With this in mind, we adopt the formulation given by

CORAL [5] to perform the multi-line fitting. We define a

global energy function:

nl∑

l=1

nrm∑

i=1

(‖D(Al,ui)‖)φl(u)

︸ ︷︷ ︸

Geometric Error Energy

+λ

nl∑

l=1

nrm∑

i=1

|∇Nφl(u)|1

︸ ︷︷ ︸

Smoothness Energy

+ β‖L‖
︸ ︷︷ ︸

Compactness Energy

(1)

The data term in Equation 1 accounts for the distance

between a point and the geometric primitive. Here A is the

line equation Al = (al, bl, cl) and we refer to D as the

Euclidean distance between a point ui = (xi, yi) and the

line Al. Membership of data points to their respective model

is encapsulated through the indicator function

φl(u) =

{

1 u ∈ Al

0 otherwise
, (2)

which is self-constrained,
∑nl

l=1
φl(u) = 1, such that a point

can only be a member to one model. To account for outliers –

as not all data points might be explained by a linear segment–

a special label ∅, representing the outlier model is added. In

this way a constant cost γ is assigned to points that cannot

be explained by any geometric model.



Fig. 3. A sample of the results from road marking geometric primitive extraction under different prevailing conditions. It can be seen that our proposed
energy optimisation approach is able to accurately extract linear segments in a diversity of scenes. Revealing the underlying primitives for a large number
of road markings present in the urban scene.

The smoothness term in Equation 1 promotes a homo-

geneous assignment of models to neighbouring points, intro-

ducing a spatial smoothness prior. By calculating the gradient

∇N of the indicator function over the neighbourhood N of

a point given by its k-nearest neighbours, points that belong

to the same neighbourhood but do not share the same model

are penalised. The trade-off between the smoothness and

data terms is controlled by the parameter λ. Finally, the

compactness term in Equation 1 penalises the number of

models by adding a constant cost β per model. This penalises

redundant models resulting in a more compact solution.

Minimisation of the energy in Equation 1 reveals the

underlying geometric models. In CORAL a continuous opti-

misation approach leveraging a primal dual optimisation [26]

is employed. This approach is inherently parallelisable allow-

ing for easy implementation on General Purpose Graphical

Processing Unit (GPGPU) hardware and real-time line model

detection. Due to space constraints we refer the reader to [5]

for further implementation details.

To reduce the search space for models in the CORAL

optimisation, a finite number of models is usually proposed.

In this work we use the Hough Transform for the model

initialisation which generally proposes more models with low

accuracy than are present in the scene. This is followed by

an iterative process of primal dual optimisation for energy

optimisation and model re-estimation up until the energy

converges. Thus converging on nl road marking segments.

A sample of the results can be seen in Figure 3, where this

approach is able to extract the underlying primitives for a

large number of road markings in a diversity of scenes.

C. Road Marking Geometric Primitive Clustering

The approach described in the previous section is able

to accurately extract the road marking geometric primitives

under different conditions. However, it is the underlying

meaning encoded in these primitives that is actually interest-

ing for autonomous driving. Therefore, we seek a clustering

of the geometric primitives to perform classification. For the

clustering, we utilise the idea that a collection of geometric

primitives, however complicated, is still a geometric model

albeit with more intra-class constraints θ(·). Additionally, a

set of fixed rules governs the spatial relationships between

road marking classes which can be encoded into inter-class

constraints Ω(·).
Before the clustering can be performed, the effect of the

camera perspective must be removed as it distorts the length,

orientation and position of the road marking segments. By

positioning a virtual camera above the observed scene this

effect can be removed providing consistency not only in

the detected road marking segments but also in their spatial

configurations. This is performed through a homography

warping of the scene, referred to as the Inverse Perspective

Mapping (IPM) [20], which despite assuming that the road

surface is planar works well in practice as seen in Figure 4.

We focus on the detection of six classes of road mark-

ings: single lane boundaries, double lane boundaries, lane

separators, intersection markings, zig-zag, and junction road

markings. Detection of these classes informs an autonomous

vehicle about an upcoming road situation (e.g. a pedestrian

crossing or a junction) or the allowable drivable area, both

are crucial functions for autonomous driving.

Double lane boundaries, zig-zag and junction road mark-

ings all originate from a collection of geometric primitives

and thus introduce intra-class constraints. These constraints

are the angle and the distance between two road marking

segments. Given the equation of a geometric primitive Al =
(al, bl, cl), we introduce two simple constraints as follows

With these classes in mind two constraints were intro-

duced, the angle between road marking segments and the

corresponding distance between them. While simple these

constraints encompass the possible configurations of the road

marking classes and can be defined as:

θangle(Ai,Aj) = |arctan(ai/bi)− arctan(aj/bj)| (3)

θdist(Ai,Aj ,u
m
i ,u

m
j ) = (D(Al,u

m
i ) +D(Al,u

m
j ))/2,

(4)

where Ai = (ai, bi, ci) is the equation of the road marking

segment i and u
m
i is the midpoint of the pixels assigned to

it.

By observing the classes it can be seen that the lane

boundaries, lane separators and intersection road markings

all consist of singular infinite line models. There is however,

a strong prior that these classes appear parallel to each other

allowing for the definition of an inter-class constraint that



Fig. 4. Manually annotated road markings after inverse perspective
mapping. These show a junction (top left), lane markings (top right), zig-
zag lines (bottom left), and a road intersection (bottom right) scene. As the
semantic classes are encoded through a specific configuration of geometric
primitives a subsequent CORAL optimisation reveals the underlying road
marking classes.

penalises a collection of these if they are not parallel through

the angle constraint. Similarly the double lane boundary con-

sists of two parallel singular infinite line models within close

proximity of each other, providing a inter-class constraints

based on the angle and distance. Lastly, the angle is preserved

in the zig-zag and junction crossings classes, producing a

similar inter-class constraint.

We can thus propose several instances of these semantic

classes through a targeted search that aims to find collection

of lines that are parallel as well as those that fulfil the

angle constraints of the zig-zag and junction classes. These

instances form an initial set of ”models” that are fed into

the CORAL. The iterative optimisation of which reveals a

compact set of semantic class instances as but additionally

optimises for spatial smoothness, in essence performing a

joint optimisation.

A sample of results of these is given in Figure 5, showing

that this approach achieves high classification accuracy even

in the presence of occlusions. To differentiate between the

three classes of singular infinite line models in these results,

the contiguity of their associated pixel inliers is used.

IV. ROAD MARKING TRACKING

The previous section has described a framework for re-

trieving the road marking classes in a single image frame.

Tracking of the road markings through consecutive frames

improves the robustness of the classification, because, in

most cases, road markings are seldom only seen in one

frame, and persist from frame to frame. By exploiting

this persistence our confidence of correct classification is

increased when a road marking is detected over multiple

frames. Additionally, some road markings are not fully

observable in the current image (e.g. when traversing a road

junction), making their classification ambiguous. By tracking

classes, we can ensure that the correct assignment is made

even when the road markings become partially observed.

Algorithm 1: Multi-Frame Road Marking Tracking

if First Frame then

Propose Θ̂0 models with HT;

else

Calculate homography;

Warp lines Θi−1 to Θ̌i;

Remove inliers;

Propose ΘHT models from outliers using HT;

Θ̂i = {Θ̌i,ΘHT};

end

while not converged do

Primal Dual Optimisation;

Merge lines;

Re-estimate lines;

end

N road marking segments Θi;

Semantic road markings;

In this work, the selected road marking classes are collec-

tions of geometric primitives. These primitives can be tracked

between subsequent frames if the motion T = {R, t}
between the frames is known. We use the homography

transformation between the subsequent frames to project a

line model into the next frame

H = R+
tn

t
plane

dplane

Ai+1 = HAi. (5)

These give an initial set of projected models for the subse-

quent frame, obtained from the initial frame. However, this

set does not include all possible models, as road marking

segments can appear for the first time in a particular frame.

To cope with this, road marking pixels that are inliers to

the projected models are first removed before a further

Hough Transform (HT) initialisation is performed to the

outliers availing new road marking geometric primitives as

summarised in Algorithm 1. We implement a sliding-window

approach to track road marking classes when they become

fully occluded or the image becomes over-exposed. This

allows detected semantic classes to persist further in time

more accurately.

V. EXPERIMENTAL RESULTS

To evaluate the presented approach, the Oxford RobotCar

dataset [27] is used. This dataset consists of 100 repetitions

of a 10-km route in central Oxford under different prevailing

weather and lighting conditions. Using the pre-trained deep

segmentation network [4], we deploy our approach on three

runs that were captured under vastly different conditions

(overcast, rain, and night-time). It can be seen that our

approach is able to retrieve the underlying semantic classes

of the road markings in a variety of scenes even despite

significant changes in appearance, as shown in Figure 5.

In Figure 6, we demonstrate the benefit of our road

marking tracking algorithm. In this sequence, the junction

markings become partially observable, leading to wrong



Fig. 5. Sample of results from the semantic classification of road marking pixels under different weather and lighting conditions (overcast/rain/night). By
using a global energy approach, our proposed approach is able to detect multiple road marking segments in images from detected road marking pixels.
These segments are aggregated through another energy minimisation into their semantic classes. Thereby, we reveal the underlying meaning of the road
markings in complex urban environments, providing important cues for autonomous vehicles. These include indication for upcoming road situation, which
could require specific behaviour. For instance, the zig-zag markers (purple) indicate an upcoming pedestrian crossing and the give-way dashes (cyan)
indicate a junction.

Fig. 6. Given the fully observed junction road marking (left), our approach is able to correctly detect the underlying semantic class. However, when the
junction becomes partially observed (middle), the interaction of the underlying geometric primitives with others in the scene can cause mis-classification.
In this case, the junction was labelled as a zig-zag line. By introducing road marking tracking (right), the correct class is retrieved even under partial
observation, making the classification more robust.



classification when only the current image frame is taken

into account. By tracking the road markings, our approach

memorises the scene and correctly initialises a new semantic

road marking, increasing the robustness of the system.

The CORAL global energy optimisation is implemented

using CUDA and deployed on an NVIDIA TITAN GPU. To

obtain the running times, we averaged the computational time

of 100 different images from the dataset. The timing results

are presented in Table I. The results show that this method

can be performed in real time (∼6 Hz), allowing online road

marking classification.

TABLE I

TIMING RESULTS FOR THE ROAD MARKING SEGMENTATION

Module Time (ms)

Road marking pixel detection 16
Energy minimisation (line models) 110.8
Energy minimisation (semantic classes) 38.4

VI. CONCLUSION

In this paper we have presented a framework for the

classification and interpretation of road markings in complex

urban environments under varying weather conditions. From

detected road marking pixels, this approach describes the

semantic classes as different configurations of primitive geo-

metric models and then employs a fast energy minimisation

to extract the respective class in real time. By detecting

certain classes we are able to reason about upcoming road sit-

uations, which could require specific behaviour. Unlike most

of the contemporary approaches, we classify road markings

jointly without requiring expensive manual annotations and

are able to perform well in the presences of occlusions and

degradation. Furthermore, the method is easily extendable to

more classes and is thus able to provide an important cue

for planning and navigation in urban scenes.
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