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Abstract— In this paper we investigate the application of
semi-dense visual Simultaneous Localisation and Mapping
(SLAM) to the humanoid robotics domain. Challenges of visual
SLAM applied to humanoids include the type of dynamic mo-
tion executed by the robot, a lack of features in man-made en-
vironments and the presence of dynamics in the scene. Previous
research on humanoid SLAM focused mostly on feature-based
methods which result in sparse environment reconstructions.
Instead, we investigate the application of a modern direct
method to obtain a semi-dense visually interpretable map which
can be used for collision free motion planning. We tackle
the challenge of using direct visual SLAM on a humanoid
by proposing a more robust pose tracking method. This is
formulated as an optimisation problem over a cost function
which combines information from the stereo camera and a low-
drift kinematic-inertial motion prior. Extensive experimental
demonstrations characterise the performance of our method
using the NASA Valkyrie humanoid robot in a laboratory
environment equipped with a Vicon motion capture system. Our
experiments demonstrate pose tracking robustness to challenges
such as sudden view change, motion blur in the image, change
in illumination and tracking through sequences of featureless
areas in the environment. Finally, we provide a qualitative
evaluation of our stereo reconstruction against a LIDAR map.

I. INTRODUCTION

For a humanoid robot to carry out useful actions in real

environments, it must have comprehensive and consistent

situational awareness. For instance, visually tracking the

camera pose while building a 3D map allows for localisation

in and reasoning about the environment. During robot oper-

ation, the Simultaneous Localisation and Mapping (SLAM)

system must be robust enough to handle disturbances caused

by robot’s executed motions and structure sparsity in the

environment.

Despite the progress of direct visual SLAM, current meth-

ods still struggle in real-world situations. For example, when

walking sharp accelerations cause motion blur in the images

captured by the robot’s camera. The robot may also simply

point the camera towards blank walls which lack visual

features – this is trivial but fatal as there is no useful structure

to localise against. Further issues are changes in illumination

and the presence of dynamic elements or people.

Where the performance of camera pose tracking fails, 3D

reconstructions become heavily corrupted. Many standard

datasets used to evaluate SLAM methods avoid the most

challenging situations or use artificial clutter to improve

reliability.
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Fig. 1: Top: The NASA Valkyrie humanoid robot during operation
in a laboratory environment. Bottom: stereo 3D reconstruction of a
manipulation scene covering a 12 m2 area

Instead, in this work we leverage proprioceptive sensing

to aid the visual SLAM system to overcome the challenges

stated above.

We extend ElasticFusion [1], which is a dense surfel-based

RGB-D SLAM method. Our contribution is a camera pose

tracking method which combines the frame-to-model visual

tracking of ElasticFusion with a motion prior provided by

a low-drift kinematic-inertial state estimator. We compute

the pose of the camera by optimising over a cost function

which fuses alignment over both geometric and photometric

information as well as the kinematic-inertial motion prior.

We discuss current methods in humanoid state estimation

and visual SLAM in Section II. Section III gives an overview

of our system and describes the individual kinematic-inertial

and visual tracking systems. Section IV states our approach.

As our robot is equipped with a stereo camera, we first de-

scribe pre-processing methods for making this data suitable

to be used within ElasticFusion. We then state the mathe-

matical formulation of our robust pose tracking method.

Section V provides an extensive evaluation of our ap-

proach on the NASA Valkyrie humanoid robot (Figure 1).

Section VI gives the main conclusions and future works of

this research.



Fig. 2: The NASA Valkyrie is an 1.8 m tall electrically actuated
humanoid robot. Within its head is a Carnegie Robotics Multisense
SL which combines a rotating LIDAR sensor and a stereo camera.
The sensor is inverted on the robot. (photo credits: NASA and CRL)

II. BACKGROUND

A. Humanoid Kinematic-Inertial State Estimation

A humanoid robot can operate, to a degree, without

exteroceptive sensors. Instead it can use a combination of

inertial sensing (gyroscopes and accelerometers), kinematic

sensing in the legs and force-torque sensing in the feet to

estimate its state for control purposes. Using this information,

the robot can estimate its position, orientation and velocity

at a high-frequency (>200 Hz).

One group of approaches, including [2] and [3], use the

inverted pendulum model to estimate the centre of mass

(CoM) as this is the quantity of interest for control purposes.

The approach has the benefit of explicitly measuring the

deviation of the CoM value from its expected value. This

allows for the detection of anomalies such as unexpected

contact.

Other approaches estimate the motion of a specific link

(typically the root link of the kinematic chain) by incorpo-

rating the individual sources of information within a filtering

framework ([4], [5]). These approaches were successfully

demonstrated on the Boston Dynamics Atlas humanoid robot

during the DARPA Robotics Challenge.

B. Humanoid Visual Localisation and SLAM

There is a significant history of research in visual local-

isation and SLAM on humanoids. Initially, this focused on

feature-based methods and Extended Kalman Filters (EKF).

Stasse et al. [6] adapted MonoSLAM [7], a monocular EKF-

based SLAM algorithm, to exploit knowledge about the

HRP-2 robot’s motion from its pattern generator and inertial

sensing to improve the robustness of pose tracking. The work

was a notable early example demonstrating loop closure on

a humanoid.

The fusion of a visual tracking/SLAM method with pro-

prioception was also used in the work of Ahn et al. [8] who

also integrated a visual odometry module.

Oriolo et al. [9], [10] instead implemented a complemen-

tary strategy to fuse pose corrections from their sparse visual

SLAM system with their EKF-based kinematic-inertial state

estimator. Demonstrations were carried out on the Nao robot.

Kwak et al. [11] proposed a particle filter-based SLAM

method using a stereo camera. They attempted to build a 3D

grid map for localisation but noise in the stereo data required

them to only record camera data from stationary positions.

They also mentioned that corruptions were introduced into

their reconstructions by areas of the environment with no

texture.

A common characteristic of these works is that they used

sparse representations. These are useful for localisation but

cannot be interpreted visually or be used for path planning.

We investigate the application of a direct semi-dense SLAM

method and aim to achieve sufficient robustness during the

walking and turning motions of the robot.

C. Direct Visual SLAM

In recent years, advances have been made in the field of

dense visual SLAM, supported by the arrival of low-cost

RGB-D cameras such as the Microsoft Kinect or Asus Xtion.

As a result, various methods of direct SLAM have been

developed.

KinectFusion [12] was a seminal contribution to dense

RGB-D SLAM. It was the first method to implement real-

time dense tracking and fusion of depth data. Whelan et

al. [13] extended this approach to large-scale environments.

Kerl et al. [14] [15] improved pose estimation using a robust

cost function during image alignment. ElasticFusion [1]

implements deformation-based loop closures but avoid using

a traditional pose-graph by instead performing relaxation on

the surfaces mapped.

Direct methods for SLAM using passive stereo and

monocular cameras have also been developed, for example

[16], [17]. These methods are semi-dense as accurate dispar-

ity cannot be computed for low-texture image areas.

Many of the above methods perform well in structure-

rich environments if there is a smooth camera trajectory. As

described in Section I, this is rarely the case for locomoting

robots, and consequently, their application has been limited.

An example is the work of Wagner et al. [18] which

fused robot wheel odometry (i.e.not a bipedal robot) with

a dense SLAM solution based on a pose-graph extension

of KinectFusion. Their work combines the two modalities

but as the robot’s motion is planar and smooth it avoids the

complexities of true humanoid SLAM.

In our previous work [19] we integrated a dense SLAM

approach on the Atlas humanoid robot. It provided a dense

reconstruction as input to the robot’s footstep planning

system. However, it did not support loop closure for locally

loopy trajectories, which has motivated this work.

We chose ElasticFusion for the current work as it is de-

signed to handle locally loopy trajectories which are common

in typical humanoid manipulation scenairos. Frame-by-frame

fusion of 3D data results in an up-to-date environment model

which can be used for collision-free motion planning.



III. SYSTEM OVERVIEW

Our robot contains a Carnegie Robotics Multisense SL

global-shutter stereo camera installed in its head (Figure 2).

The sensor provides 1024×1024 image pairs of colour and

corresponding disparity at a rate of 15 Hz. The lenses have

a field of view of 80◦×80◦. Disparity is computed by an

implementation of Semi Global Matching [20] running on

an FPGA on board the device.

The robot is described by a kinematic tree with sensors

attached to different links. An illustration of these coordinate

frames and their corresponding transforms can be seen in

Figure 3.

We define a pose T as a transformation matrix restricted to

the class of rigid body motions forming the special Euclidean

group SE(3) composed of a rotation matrix R ∈ SO(3) and

a translation vector t ∈ R
3. We refer to (est)

TAti
→Btj

as

the transformation measured by the estimator est of frame

B at time tj relative to frame A at time ti.

Our kinematic-inertial state estimator tracks the pose of

the pelvis in the world frame, (ki)
TW→Pt

. The visual

SLAM system tracks the pose of the camera in the world,
(vt)

TW→Ct
using consecutive pairs of images from the

stereo camera.

The pelvis frame P and the camera frame C are connected

through a non-rigid kinematic chain containing 3 back joints

and 3 neck joints. Forward kinematics is used to relate

measurements between the pelvis and camera frame at each

time step t: (fk)
TPt→Ct

.
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Fig. 3: The major co-ordinate frames of this SLAM system. These
frames are connected via a time-varying kinematic tree.

Our system is based on the fusion of the kinematic-inertial

state estimator and visual SLAM. We now describe these

individual sources of information.

A. Kinematic-Inertial State Estimation

The kinematic-inertial state estimator uses sensor measure-

ments from the 6 joints of each leg, force-torque sensors

in each foot and an IMU rigidly attached to the robot’s

pelvis. Estimates of position, orientation and velocity are

produced concurrently and incorporate constraints derived

from the contact state of the feet. The estimate is computed at

high frequency (250 Hz), low latency (2-3 msec) and remains

aligned to gravity. It is the direct input to the low-level

control system.

While our previous research developed a low drift EKF

approach, [5], the estimator integrated with the Valkyrie

control system, [4], performs similarly and is used here.

Motion prior computation: The estimator produces a

running estimate of the pelvis pose (ki)
TW→Pt

. Using the

estimate corresponding to the timestamps of consecutive im-

ages, t to t+1, and the pelvis-to-camera forward kinematics,

the incremental motion of the camera can be computed as

follows:

(ki)
TCt→Ct+1

= ((ki)TW→Pt

(fk)
TPt→Ct

)−1

((ki)TW→Pt+1

(fk)
TPt+1→Ct+1

) (1)

One particular challenge when moving from the Boston

Dynamics Atlas, used in the above works, to the Valkyrie

is the quality of the gyroscope sensing. Atlas contains a

Fibre Optic Gyroscope while Valkyrie relies on a MEMS

Microstrain GX4-25 which required online gyro bias esti-

mation to suppress orientation drift. With this in place, the

approach produces a low drift dead-reckoning estimate. Its

performance is evaluated in Section V.

B. Visual Tracking in ElasticFusion

Transformation matrices are over-parametrised representa-

tions. For pose tracking optimisation the minimal represen-

tation ξ ∈ R
6 expressed in the associated Lie algebra se(3)

is used instead. Correspondences between T ∈ SE(3) and

ξ ∈ se(3) are computed through the matrix logarithm and

exponential functions respectively [21].

Visual tracking in ElasticFusion is implemented as opti-

mising a joint energy function. This function is composed of

two terms which perform photometric (RGB) and geometric

(ICP - Iterative Closest Point) frame-to-model alignment:

E(ξ) = wErgb(ξ) + Eicp(ξ) (2)

The weight w is empirically set to 0.1 reflecting the

difference in units between the two error terms: metres as

used in Eicp and pixel intensity values as used in Ergb.

Our contribution modifies this energy term to incorporate

information from the robot’s proprioceptive sensors.



(a) Colour Image (b) Raw Stereo
Point Cloud

(c) Filtered Stereo
Point Cloud

Fig. 4: The raw disparity images are filtered to remove unreliable
data. (a) is the original colour image. (b) is the corresponding raw
stereo point cloud - red circles highlight erroneous depth from areas
of low texture, such as the floor and a green sheet reconstructed
appart from its actual location (indicated with an arrow). (c) is the
result of our filtering procedure.

IV. ROBUST POSE TRACKING

The fusion of a kinematic-inertial state estimator with vi-

sual SLAM is desirable as the modalities are complementary:

the former can handle degenerate cases where the vision

system fails entirely, such as a lack of visual features or

changes in illumination, while at the same time it provides

information about global roll and pitch through the IMU.

Through force-torque and joint encoder sensing, we can re-

liably know when the robot is stationary. Our goal is to bound

the typical drift of the kinematic-inertial estimate through

frame-to-model alignment and loop closures as performed

by ElasticFusion.

A. Disparity Pre-filtering

ElasticFusion was developed for active RGB-D cameras

and assumes a Gaussian error model associated with the

depth data. This model is not suitable for stereo, where the

error grows quadratically with depth. In order to mitigate

this issue, we carry a pre-processing step on the stereo data.

The procedure is computed in 6.5 msec per frame.

Disparity is not reliably computed for areas in the image

with low texture. Therefore, we filter out data from these

areas by computing for each pixel over a 5×5 window the

gradient in the vertical, horizontal and diagonal directions.

If these gradients are small, the pixel is considered to be an

area of low texture and is dropped.

Our cameras are set-up in a horizontal configuration,

which makes estimating the disparity of horizontal edges

unreliable. We discard data originating from edges oriented

at an angle of less than 10 degrees from horizontal.

Finally, we remove small unconnected groups of points

which could be due to specular effects.

Figure 4 gives a qualitative impression of the effect of this

filtering procedure.

B. Proprioceptive ElasticFusion

Given the cumulative rigid body motion as sensed through

kinematic-inertial measurements between two consecutive

image frames ξki = log((ki)TCt→Ct+1
) taken from Equation

1, we define an additional residual rki which computes the

error between the fused estimate ξ and the kinematic-inertial

estimate ξki:

rki(ξ) = log(exp(ξki)exp(ξ)−1) (3)

With the corresponding energy term:

Eki = r
⊤

kirki (4)

In our system, this term is added to the global energy

function in Equation 2 with a corresponding weight q:

E(ξ) = wErgb(ξ) + Eicp(ξ) + qEki(ξ) (5)

The rigid body motion ξ is then solved by Gauss-Newton

non-linear least squares minimisation using ElasticFusion’s

three-level coarse-to-fine pyramid scheme:

(wJ⊤

rgbJrgb + J
⊤

icpJicp + qJ⊤

kiJki)ξ̂ =

− (wJ⊤

rgbrrgb + J
⊤

icpricp + qJ⊤

kirki) (6)

Where ξ̂ is the increment computed at each iteration which

is used to update the pose:

ξ = log(exp(ξ)exp(ξ̂)) (7)

After the optimisation has converged, we update the global

pose of the camera:

TW→Ct+1
= TW→Ct

exp(ξ) (8)

Weighting Terms in the Tracking Cost Function: A

particular issue is choosing how to balance the numerical

contribution of each error term within the tracking cost

function (Equation 5).

The kinematic-inertial term provides a single constraint

between the previous pose estimate and the kinematic-inertial

pose (Equation 3).

However, the ICP and RGB alignment procedures impose

one constraint per pair of matched 3D points/pixels. This

results in an imbalanced number of constraints, and, if not

considered, the kinematic-inertial term would have inconse-

quential influence.

We implement a simple heuristic for scaling the contri-

bution of the kinematic-inertial term to have a sufficient

influence on the combined motion estimate. Given the pro-

portion of inliers for the ICP and RGB alignment procedures

relative to the size of the point cloud (i.e. the percentages

ICPp, RGBp), we define a corresponding proportional term

for the kinematic-inertial measurement:

1) In a degenerate situation where the proportion of inliers

for both ICP and RGB alignment procedures is low

(ICPp, RGBp < 5%), we trust the kinematic-inertial

estimate fully (KIp = 100%).

2) We observed that in well structured environments, the

kinematic-inertial term should contribute slightly more

than one third to the total pose error minimisation.

Therefore, we set KIp = max(ICPp, RGBp) + α,

where α = 10% was a suitable value in our evaluation.

The contributions from the ICP, RGB and kinematic-

inertial components are evenly balanced within a well struc-

tured scene. However, for sequences with almost no overlap



between consecutive frames the kinematic-inertial compo-

nent dominates. The resulting weight q is computed as:

q =
KIp

100
× points (9)

Although not addressed here, an additional strategy could

be formulated to handle failures in the state estimator. For

example, foot slippage could be detected from unexpected

spikes in velocity and the influence of the kinematic-inertial

term can be reduced during these sequences.

Finally, this approach is implicitly robust to dynamic

elements in the scene. This is achieved by exploiting the

data fusion strategy of ElasticFusion, where continuously

dynamic points are assigned a low confidence and do not

become part of the map.

V. EXPERIMENTAL RESULTS

In this section we will present an evaluation of our method

with a series of experiments on the Valkyrie humanoid

robot. The test environment consists of a manipulation scene

containing several tables with objects on them surrounding

the robot. Our laboratory is equipped with a Vicon motion

capture system which provides ground truth trajectory mea-

surements.

The dataset used as part of this evaluation is described

in Table I. Log1 is a short walking sequence of a single

loop trajectory within a static feature-rich environment i.e

the ideal operating scenario. During this log we also took

care not to perform any fast motions of the neck. Log2 is a

longer and locally loopy trajectory containing several visual

challenges.

We analyse 4 aspects:

A. We assess the tracking performance of the proposed

method against the original ElasticFusion system and

the robot’s kinematic-inertial state estimator for two

different experiments.

B. We then demonstrate that our approach overcomes the

typical limitations of visual tracking during challeng-

ing situations.

C. We perform an evaluation of the accuracy of the

stereo reconstruction against LIDAR point clouds as

produced by the Hokuyo UTM-30LX-EW spinning

planar LIDAR contained within the MultiSense SL.

D. Finally, we demonstrate the integration of our algo-

rithm within the closed-loop walking controller of the

Valkyrie humanoid robot.

In our evaluation we refer to three different estimators:

- EF: ElasticFusion running on stereo data (12 Hz).

- KI: The open-loop kinematic-inertial state estimator

which is also used in the control loop (250 Hz).

- PEF: Proprioceptive ElasticFusion - our proposed sys-

tem which fuses the visual and kinematic-inertial sys-

tems (12 Hz).

We evaluate the performance by comparing trajectories

against ground truth measurements using the metrics pro-

posed by Sturm et al. [22]:

a) Absolute Trajectory Error: We compute the absolute

error between two trajectories that are aligned in the least-

squares sense. At time t, the error between corresponding

poses is:

ATEt =
(gt)

T
−1
W→Ct

(est)
TW→Ct

(10)

b) Relative Pose Error: To measure drift between two

corresponding trajectories, we compute the relative pose

error over a time interval ∆ at each timestep t:

RPEt =
(gt)

T
−1
Ct→Ct+∆

(est)
TCt→Ct+∆ (11)

c) Drift per Distance Travelled: We divide the relative

pose error by the length of the path travelled to obtain the

drift per metre travelled:

DDTt =
RPEt

t+∆∑

k=t

||(gt)tCk→Ck+1
||

(12)

A typical robot walking gait involves oscillatory motion.

As a result, it is difficult to estimate the total distance

travelled. We take the simple approach of integrating the

length of path travelled by the camera for each time sample.

This can overstate what one thinks of as ‘distance travelled’.

We compute these metrics over all timestamps and the

calculate the root mean square (RMS) for each trajectory.

A. Evaluation of Individual Systems

We first explored the performance of ElasticFusion on

stereo data pre-processed as described in Section IV-A. The

robot was commanded to walk clockwise up to the point of

completing a loop in Log1.

In Figure 5, one can see the typical walking gait of

the Valkyrie which involves oscillatory motion as the robot

switches support between its left and right feet. Despite

vibrations due to foot impacts and some sharp rotations, the

motion estimated closely matches the Vicon trajectory —

in large part because the environment contained structure in

all directions. This indicates that stereo-only ElasticFusion

can achieve acceptable tracking performance in feature rich

environments assuming smooth camera motion.

Quantitative tracking performance for each of the esti-

mators is presented in Table II for Log1 and for the more

challenging Log2.

As ElasticFusion uses drift-free frame-to-model tracking,

we evaluate the drift by limiting the size of its local tracking

model to the previous 200 frames only.

For the kinematic-inertial state estimator, the main direc-

tions of drift are in the linear Z-axis and yaw rotation due

to estimator unobservability in those directions. While roll

and pitch are globally observable through the accelerometer,

yaw is computed by integrating the rate gyroscope estimates

and it drifts over time.

PEF achieves the best performance for each portion of

the state with an average translational drift of 0.54 cm/m for

Log2. The baseline ElasticFusion system is unable to operate

in this environment and fails.



Dataset Description Trans. ATE RMSE (m)

Log Dist. (m) Steps Time (sec) Lack of Features Lights Off Motion Blur Continuous Dynamics EF PEF

Log1 18.5 34 485 ✗ ✗ ✗ ✗ 0.048 0.020
Log2 62.96 102 1204 X X X X FAIL 0.025

TABLE I: Description of the dataset used in this evaluation. X/✗ indicates the presence/absence of a certain challenge. ElasticFusion
(EF) fails on Log2 because of these challenges.
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Fig. 5: Overhead view of the camera trajectory as estimated by our
ground truth Vicon system (green) and ElasticFusion using stereo
data only (magenta) for Log1. The direction of motion is indicated
by the black line and the blue frames indicate the point of view of
the robot (facing outside).

Log1 Log2

DDT EF KI PEF EF KI PEF

XYZ (cm/m) 1.06 0.72 0.61 18.55 0.78 0.54

XY (cm/m) 1.00 0.54 0.53 17.06 0.56 0.45
Z (cm/m) 0.35 0.48 0.30 7.28 0.54 0.29

Yaw (deg/m) 0.33 0.53 0.16 6.51 0.38 0.19

TABLE II: Drift per distance travelled averaged over 2 m to
10 m trajectory intervals. The proposed fusion approach, PEF, out-
performs the individual sub-systems.

A more detailed view of the rate of translational drift as

a function of the path length for Log1 is shown in Figure

6. In this case, the relative pose error for PEF grows at the

slowest rate.

Another benefit of performing vision and kinematic-

inertial fusion is an increase in stability of the PEF estimate

when compared to EF. Figure 7 shows that when tracking

against the model, the EF estimate contains high frequency

jitter because of its repeated geometric/photometric optimi-

sations, which is common in visual tracking systems.

B. Evaluation in Challenging Settings

Following on from the previous section, here we focus on

the particularly challenging parts of Log2 which cause the

baseline EF system to fail.

We tested the proposed fusion method with the following

specific challenges:

• Lack of features in the camera view: the camera points

at a blank wall while the robot turns (∼ 20 sec per

sequence). For PEF, the lack of suitable depth causes

the kinematic-inertial tracking to dominate Equation 5.
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Fig. 6: Translational RPE (cm) for increasing path lengths (m) for
Log1, showing PEF achieving the smallest drift rate.
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Fig. 7: Z-component of the robot’s pose for a sequence in Log1
when it is stationary: fusion of kinematic-inertial within visual
tracking (PEF) results in more stable pose than using only vision
(EF).

• Changes in illumination: by turning the room’s lighting

on and off (∼ 15 sec per sequence). Behaviour is similar

to previous case.

• Motion blur: by performing fast head motion (∼ 5 sec

per sequence). While depth can be estimated in this

case, the set of inliers is much smaller, meaning again

kinematic-inertial tracking is preferred.

• Continuous dynamics in the scene: by introducing mov-

ing objects and people covering more than 50% of the

field of view of the camera (∼ 5 sec per sequence).

Depth measurements to moving objects are present,

but the data fusion strategy of ElasticFusion integrates

several frames before inserting the dynamic objects

within the map.

The absolute trajectory error is shown in Table I. Examples

of the successful operation of the PEF algorithm while the

challenges mentioned above are occurring are shown in

Figure 8. In each case the baseline EF system fails.
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Fig. 8: Top: Examples of colour-disparity image pairs during challenging sequences. Bottom: Corresponding frame-to-frame translational
RPE for PEF and the baseline EF.
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Fig. 9: Heat map of stereo per-point error.

C. Evaluation of 3D Reconstruction

In Figure 1 (bottom) we present a 3D model showing

the reconstruction obtained during Log2. We evaluate its

accuracy against a model created using the spinning Hokuyo

LIDAR sensor contained within the MultiSense SL. The

accuracy of the LIDAR sensor is +/-10 mm within the range

of 0.1 m - 10 m, which makes it appropriate for coarsely eval-

uating the stereo reconstruction. We manually align several

LIDAR point clouds from Log2 to create a 3D model of the

test environment. Due to imperfections in how the LIDAR

map is produced, we point out that these results are indicative

of reconstruction quality rather than fully quantitative.

Visual comparison between the two reconstructions is

shown in more detail in the attached video.

For each point in the visual model, we compute the

distance to the closest LIDAR point as a per-point error.

A heat-map of this error is shown in Figure 9. The scale and

structure of the stereo model can be seen to closely match

the LIDAR model. Of particular note is that the stereo model

is aligned with gravity (by design) which is essential for it

to be used in practical applications.

Figure 10 shows the distribution of per-point errors, with a

median error value of 0.02 m. We conclude the reconstruction

is of sufficient accuracy for tasks such as collision free

motion planning.
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D. Closed Loop Integration

In our final experiment we demonstrate the integration of

PEF within the closed loop walking controller of the Valkyrie

robot. This experiment can be seen in the accompanying

video.

The environment used for this experiment is depicted in

Figure 1 (top). It consists of two tables with objects and

corresponding white goal positions on the floor. The robot

walks to each table in turn to reach these goal positions.

The kinematic-inertial state estimator (KI) represents the

direct input to the walking control system of the robot. In

order to prevent this state estimator from drifting, we transmit

pose corrections on a regular interval from our method (PEF)

which enables the robot to successfully reach the goal targets

repeatedly.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we investigated the challenges of imple-

menting direct visual SLAM on a humanoid robot. These

include motion blur in the image, lack of visual features in

the scene, change in illumination and fast motion resulting in

dramatic view change. They typically effect the pose tracking

components of visual SLAM systems, causing them to fail

and in turn leading to corrupted reconstructions of the scene.



In order to handle these challenges, we extended the direct

visual SLAM method ElasticFusion to integrate information

from our high-rate low-drift kinematic-inertial state estima-

tor. We use the state estimator to provide a camera motion

prior which is integrated within the pose tracking component

of ElasticFusion to handle for the described degenerate cases.

As many previous approaches made use of sparse point-based

SLAM methods, our direct approach can produce a semi-

dense reconstruction which can also be interpreted visually

and used for tasks such as collision free motion planning.

We evaluated our approach through a series of experiments

in our laboratory. Our fusion method achieves lower drift

rates than the tracking of the kinematic-inertial state esti-

mator and ElasticFusion’s visual tracking individually but

more importantly it is robust to sequences containing the

aforementioned visual challenges. We provided a qualitative

evaluation of our stereo-produced reconstruction against LI-

DAR and described an online integration experiment of our

method within the walking controller of Valkyrie.

Currently, our method is implicitly robust to dynamics in

the scene by exploiting the fact that dynamic objects are

assigned low confidence and do not become a part of the

model as long as these are continuously moving. In the

future, we are interested in making use of our motion prior to

actively detect dynamic objects in the scene and to segment

them out.

Another observation is that the size of the reconstruction

continues to grow in time even as we continuously explore a

single static scene. This is due to noisy sensor readings which

result in redundant surfels being added to the map. This

represents another aspect we are interested in improving.
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