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Abstract— Different legged robot locomotion controllers offer
different advantages; from speed of motion to energy, compu-
tational demand, safety and others. In this paper we propose a
method for planning locomotion with multiple controllers and
sub-planners, explicitly considering the multi-objective nature
of the legged locomotion planning problem. The planner first
obtains body paths extended with a choice of controller or sub-
planner, and then fills the gaps by sub-planning. The method
leads to paths with a mix of static and dynamic walking
which only plan footsteps where necessary. We show that our
approach is faster than pure footstep planning methods both
in computation (2x) and mission time (1.4x), and safer than
pure dynamic-walking methods. In addition, we propose two
methods for aggregating the multiple objectives in search-based
planning and reach desirable trade-offs without weight tuning.
We show that they reach desirable Pareto-optimal solutions
up to 8x faster than fairly-tuned traditional weighted-sum
methods. Our conclusions are drawn from a combination of
planning, physics simulation, and real robot experiments.

I. INTRODUCTION

Legged robots have the potential to be deployed in a wide
range of real-world domains due to their high versatility.
Such systems can offer unmatched mobility over complex
terrain as they don’t require (smooth) continuous support and
naturally handle environments built with humans in mind.
One key strength of modern legged robots, similar to their
biological counterparts, is that they can change and adapt
their gait to suit the environment at hand. For example, the
ANYmal quadruped robot can utilize a trotting gait to swiftly
traverse flat areas, use a slower walking gait to cross more
challenging terrain, and use a planning-focused controller to
carefully pick footholds over, for example, gaps, stepping
stones and stairs.

In this paper we present an approach to legged locomotion
planning using multiple controllers and objectives. Much of
the work on legged locomotion has focused on develop-
ing single controllers and planners. We focus on planning
locomotion when multiple controllers and sub-planners are
available. The contributions of our work are the following:

• We propose and evaluate a legged locomotion plan-
ning architecture that plans the use of controllers and
complex sub-planners together with robot trajectories to
increase mission efficiency and safety.

• We propose and evaluate the use of utopian and lexi-
cographic cost aggregation methods on multi-objective
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Fig. 1: A testing facility used for fire-fighter training, as a
mock-up of an oil rig. Among other scenarios, we evaluate
our method on this environment both in simulation and the
actual location. The bottom row highlights different parts
of a 25m long locomotion plan where 3 different modes of
locomotion are required. The accompanying video presents
the full experiment.

settings, that lead to faster convergence to desirable
Pareto-optimal solutions without weight tuning

• We show the method can plan safe, fast, versatile
quadruped robot locomotion over realistic environments
with gaps, bumps, obstacles, steps, and computationally
challenging environments such as stepping-stones.

We demonstrate our approach on the ANYmal quadruped
robot [1] with a combination of simulated and real world
examples, and focus on our goal to deploy the system in an
offshore facility similar to the one depicted in Fig.1.

II. RELATED WORK

Legged locomotion planning has traditionally been tackled
with search, sampling and optimization-based methods. Most
approaches require planning full-body or contact motion to
execute on a single controller, which might be unnecessary in
certain terrain conditions; [2], [3] compute footstep positions,
[4], [5] searches over rough body paths and selects locally-
best footholds, [6] uses hierarchical trajectory optimization
to plan dynamic motion and contact sequences, while [7]
jointly optimizes body motion and foothold locations.

In this paper we instead focus on planning locomotion
when multiple controllers and sub-planners are available,
which we call “controllers”, “gaits” or “modes” interchange-
ably. The problem is related to planning with a library of
motion primitives: where the choice of primitive is discrete



but each primitive is parameterized in continuous space. [8]
used a search-based planner over a discrete set of primitives
which were randomly perturbed from a continuous space.
[9] applied a sampling-based planner with motion primitive
projections to the same problem. Another related approach is
adaptive dimensionality planning [10], where a single graph
search is made on a hybrid state space with multiple low-
dimensional subspaces, a high-level subspace, and mappings
between them. The approach has been applied to legged
robots for automatically planning over crawling, bipedal and
climbing motions [11], although currently reported results
have low planning success rates.

When simulating a controller or executing a sub-planner
within the planning stage is unfeasible or time consuming, it
makes sense solve the multi-modal-planning problem hierar-
chically [12], [13]. In such an approach, the first hierarchy
level plans only a guide path and a mode, and the second
level executes the controllers or sub-planners over sections
of that path. This is the approach we also adopt in this
paper. Similarly to [13], we consider modes which are
directly executable without further sub-planning depending
on environment statistics (e.g. blind trotting on flat ground).
In the manner of [12], we first plan a path over robot base
motion and mode, followed by execution and sub-planning
where appropriate. Compared to [12] we introduce feasibility
constraints at mode transitions and explicitly consider the
multi-objective nature of the problem. Another promising
method is the use of mixed-integer optimization for such
hybrid problems, as was used for joint-planning of contact
order and position in [14] - although it requires potentially
expensive or semi-supervised methods for decomposing the
environment into convex shapes [15].

While the most common way to solve multi-objective
problems in the robotics literature is through weighted-sums
[16], [17], some efforts have been made for sound no-
preference sampling-based planning [18] and Pareto-optimal
planning [19], [20]. In this paper we introduce a new cost
aggregation method for a typical optimization setting in
robotics: of a ranked set of objectives which have to be
optimized in order of preference (usually called hierarchical
optimization). We also empirically evaluate the behavior
of no-preference and ranked-preference multi-objective opti-
mization over time on an anytime search-based planner and
compare it to traditional weighted-sum methods.

Finally, there is also a connection of this work to multi-
task learning [21] and hierarchical reinforcement learning
[22], [23]. For example, [23] learns a high-level policy neural
network which selects lower-level “skills” that are committed
to for a certain amount of steps. This is a similar hierarchical
setup to ours, the difference being that the high-level (and
potentially low-level) policies are learned instead of solved
through classical planning methods.

III. MULTI-CONTROLLER MULTI-OBJECTIVE PLANNER

A. Problem statement
Let S be the state space of a locomotion planning problem

and Sfree ⇢ S be the set of states free of collision with

obstacles. We define a set of robot locomotion controllers
M = {m1,m2, ...,mM

}, where the term “controller” is
used in a loose sense to represent anything from a periodic-
gait locomotion controller (e.g. a velocity-based trotting
controller), requiring just desired direction input, to a more
complex footstep or whole-body sub-planner used together
with a joint-level controller.

The goal in this paper is to obtain optimal paths (i.e.
sequences of states) ⇡ = s1, ..., sn, where s

i

2 (Sfree⇥M)8i.
The path ⇡ simultaneously minimizes a set of cost functions
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states such as those in collision, so in practice our problem is
that of constrained multi-objective optimization. The typical
approach to the multi-objective problem (1) is to optimize
a weighted-sum of the cost functions, i.e.
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2 R, although in this paper (Section III-D) we
will also look into alternative aggregation methods.

As mentioned previously, the motivation for including a
choice of controller in the search space comes from the
observation that different controllers may have different
advantages depending on terrain features at hand, and so
should be the object of planning. Importantly, this will allow
us to save computational resources by running a complex
sub-planner only when required, and to reduce mission time
by running faster dynamic controllers, for example a walking
or running trot, wherever possible and optimal.

B. State spaces and controllers
In this paper we consider a high-level search space Sxyzt =

{(x, y, z, ✓)|(x, y, z) 2 R3, ✓ 2 SO(2)}, and a set of
controllers M = {mWalking,mTrotting,mFootPlan} where:

1) mWalking refers to a statically stable walking gait con-
troller without terrain geometry information [24]

2) mTrotting refers to a dynamic velocity-based trotting
controller without terrain geometry information [24]

3) mFootPlan refers to a footstep planner which computes
a sequence of statically stable footsteps based on a
3D map of the environment, which are later passed to
and executed by a walking controller. This planner is
explained in detail next.

Each path section where m = mFootPlan will be further
refined by a footstep planner involving the same search-based
planning method as the high-level planner. The search space
of this planner is Sstance = R3⇥L⇥{1, ..., V }, where L is the
number of limbs, and where the last index 1, ..., V indicates
the node in a gait transition graph G with V nodes. For
simplicity, we use a fixed cyclic graph that moves one limb
at a time (i.e. 1 ! 2 ! 3 ! 4 ! 1 ! 2 ! ...), though
we could also include other transitions, such as a trotting or
bounding cycle. State expansion in A* involves moving the
next limb(s) in G across a X ⇥ Y grid, while the height of



the contact is obtained automatically by projection onto the
environment model, a heightmap in our case.

For both high-level and footstep planning we use a simpli-
fied robot model to estimate state and transition feasibility.
Inspired by [25], we approximate the robot by a set of
spheres for the body of the robot, that need to be collision-
free, and a set of spheres at the contact points, that need
to be partly in collision. During footstep planning in Sstance

the positions of the contact spheres are taken directly from
the state’s limb positions. During high-level planning in
Sxyzt they are fixed with respect to the base of the robot,
and set according to the nominal posture associated with
controller m of state s. We consider a state feasible if all
contact spheres partially collide with the environment and
the body spheres do not, and if distances between contact
positions are within some feasible interval with respect to
the limb’s workspace. Additionally, we consider constraints
on mode transitions, as each controller can usually be started
only when certain conditions are satisfied on the robot’s
state. For our particular choice of controllers this amounts
to satisfying a feasible nominal posture at mode transitions,
which means we enforce footstep planning trajectories to
end in nominal stances or in close-to-goal stances where
projection to nominal state is feasible (i.e. all feet partially
collide with the environment model on a locally flat surface).

During execution, transitions between states in Sstance are
made by square-interpolated trajectories on the moving end-
effectors and QP-based optimization of the base pose [26].

C. Objective functions

We consider the simultaneous optimization of multiple
conflicting objectives:

1) Energy cost:
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time required to execute the state transition. To approxi-
mate this duration we use assume each controller executes
trajectories at a constant characteristic velocity v(m) =
(v
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) defined on the reference frame of the robot’s
body. Additionally, we assume each controller may require
extra time for computation while the robot is standing still:
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where tFootPlan is empirically measured over a set of toy
problems. Finally, let (d
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. We estimate the total duration of a
state transition by a Manhattan-distance upper bound:
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2) Feasibility cost (expected success probability):
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states are statically feasible (i.e. reachable and providing
enough contact area), and S(s
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motion execution on those states.
For the experiments in this paper we model these quanti-

ties by an average over both states
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and then for each state we compute,

P (S(s)F (s)) = P (S(s)|F (s))P (F (s)) (8)

i.e. the probability of motion around a state being successful
given that the state is statically feasible, and the probability
of a state being statically feasible, which we define as
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where R
i

and T
i

are average map roughness and traversabil-
ity heuristics at contact i (averaged over a local radius
around the contact point), defined as in [27]. We assume that
motion from the footstep planner has constant success rate
�FootPlan independent of ground geometry as long as stances
are statically stable. Lastly, ⇢(l

i

) is point density (number of
points per area) at each contact point l

i

and ⇢max is the ideal
density given by map resolution.

3) WiFi signal strength, for remote and shared-autonomy
operations:

cwifi(si, si+1) = Nwalls(xteleoperator,x(si+1)), (11)

where the function Nwalls(x1,x2) involves performing ray-
casting between x1 and x2 and counting the number
of intersections with map geometry. The function is the
environment-dependent term of the model of WiFi signal
strength of [28]. The objective is to provide paths that
keep signal strength high, by preferring to keep line-of-sight
visibility of the communication station and thus avoiding
delays in communication with the operating station. The
same function would make sense in scenarios where it is
desirable to visualize the robot from an external camera (e.g.
security camera in an industrial building).



D. Multi-objective search

Although the typical approach to the multi-objective prob-
lem (1) is to optimize a weighted-sum of the cost functions,
i.e.

P
K
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c
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(⇡) where w
k

2 R, in this paper we look
into alternative methods that avoid the need of tuning w

k

in
the case of no-preference or lexicographic optimization, as
well as taking into account the bounds of each cost function.

In cases where we care equally about all cost functions
we use the no-preference method from the multi-objective
optimization literature [29] and solve a new approximate
optimization problem which minimizes the scalar cost:
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and ✏ is a small constant that promotes few-state-transition
paths and avoids issues of zero-cost transitions in A*. In this
approach, we are therefore normalizing the cost functions
such as to obtain scalar transition-costs of ✏ when all costs
are minimum, and K+ ✏ when all are maximum. In practice
the upper and lower bounds can be estimated by inspection
of the cost functions (3) (6) (11) by respectively computing
the maximum and minimum possible values of each function
across all modes. All cost functions we use are bounded
with known bounds for each mode and therefore we only
have to take maximum and minimum values over modes.
Bounds on d come from environment discretization, v and
�t are known, bounds on T and R are [0, 1], and we
assume Nwalls 2 [0, 5] given the geometry and scale of our
experimental scenarios2.

We also consider cases where a preference ranking exists,
e.g. maximize feasibility first, then minimize energy con-
sumption within the space that keeps feasibility unchanged.
Based on the no-preference method, we propose to use a
hierarchical optimization approach on the normalized costs
using the common 10k rule for scalarization [16], [17]:
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We will call this function lexiSoft (short for “soft lexico-
graphic” cost aggregation).

In the experimental section we compare these two op-
tions to more traditional cost-aggregation schemes through
weighted-sums. To make the comparison fair, in particular
in order to obtain the same lower-bound of cost values in
an automatic fashion, we use the following normalization

1Note that we have chosen this notation instead of, for example, zk and
zk , to be consistent with the notation in [29].

2This means that in our experiments we are assuming a maximum of 5
walls between the robot and the WiFi router, which is appropriate for the
scale of the missions we consider, e.g. Fig. 4.

strategy:
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so that the costs of state transitions at their minimum will
be equal to ✏ for all methods.

E. Heuristic

Following [30], we compute heuristics as lower bounds
of cost-per-Euclidean-distance (i.e. cost-of-transport), mul-
tiplied by Euclidean distance to the goal state sgoal. Since
✏ is the lower bound of all cost-aggregation methods we
consider, the lower bound cost-per-distance is ✏

�

where � is
the largest side of discretized cells. Our heuristic cost-to-goal
is therefore

h(s
i

, sgoal) =
||s

i

� sgoal||✏
�

. (16)

IV. RESULTS

A. Experimental setup

In the first part of this section we analyze the performance
of our planning method with a simulated model of the ANY-
mal robot, on the set of simulated environments described
next. Then in Section IV-E we validate our approach with
an experiment with the real robot.

Limb reachability checks were implemented by upper and
lower bounds on distances between each limb and the body,
as well as distances between (left/right, fore/hind, diagonal)
limbs as per the default values used within the robot’s
software. We evaluated our locomotion planning method on
several simulated scenarios, shown in Fig. 4:

• “Steps & barrier”. This scenario was manually designed
to showcase the advantages of each controller and
to involve geometry relevant to our cost functions (a
bump, steps, and a barrier that lowers line-of-sight to a
communication station).

• “Stepping stones”. This scenario tests the feasibility of
the footstep planner.

• “Industrial floor”. This is 3D model of an industrial floor
used in the ARGOS challenge for mobile robotics [31].

• “Oil rig”. This is a point cloud of a mock-up oil rig
shown in Fig. 1, acquired at the Fire Service College,
Moreton-in-Marsh, UK.

We used Anytime Repairing A* [32] as implemented in the
SBPL library [33] to solve all search problems.

We analyze the performance of utopian- and lexiSoft-
aggregated costs and compare them to the traditional
weighted-cost baseline. For lexiSoft, we prioritize the fea-
sibility cost, so the contribution of feasibility costs is 10
times greater than that of energy. ✏ = 0.1 is the same for all
cost aggregation methods. We used a grid of X⇥Y = 7⇥7
cells around nominal contact positions for state expansion in
Sstance, we obtained tFootPlan = 10s experimentally from our
scenarios and set �FootPlan = 1.



Fig. 2: Success rate of planning multi-controller (ours) and
footstep-only (FootPlan) paths, for different computation
time budgets and cost aggregation functions.

B. Evaluation of the multi-controller planner

In our first experiment we evaluated our multi-controller
planning architecture. Fig. 2 shows a comparison of the
success rate of our planner and a footstep-planner. The same
footstep planner is used within our method whenever it is
chosen at the first planning stage. Reported success rate is
the percentage of problems for which a solution is found.
Each problem corresponds to one scenario and a start/goal
state. The distances between start and goal states were 5m,
8m, 5m and 16m, for the steps&barrier, stones, industrial,
and oil rig scenarios respectively. Fig. 2 shows that, what-
ever the cost-aggregation method chosen, our method finds
feasible trajectories with less computation than pure footstep
planning. The times reported in Fig. 2 refer to planning only
and do not include environment pre-processing time as this
varies greatly across the different scenarios (i.e. the time to
build a heightmap from a large point cloud in the case of
the “oil rig” scenario, from a mesh in the “industrial floor”
scenario, or to load it from a file in the other scenarios). Our
method can solve 50% of the scenarios within 2 seconds. For
computation budgets of 4 seconds and higher, our planner
can solve all scenarios around twice as fast as a pure footstep
planner even though they also include footstep planning
regions as we will show later. The reason for this is the
hierarchical nature of our planner, that quickly finds paths
in a small state-space of position-and-controller, followed by
footstep planning only in regions where that is necessary. On
the pure footstep planning setting, the utopian and lexiSoft
functions lead to higher success rates than normalized, which
is likely due to a more uniform distribution of costs when
compared to the normalized method. Because weighted-
sum aggregation does not consider the upper bounds of the
individual cost functions, the aggregated values in (15) can
be very large when z⇤⇤

k

⌧ znad
k

. This will lead to more
exploration by A* when compared to utopia and lexiSoft.
Interestingly, the figure suggests our method is more robust
to the choice of cost-aggregation function, since success
rates are more similar across functions when compared to a
footstep planner. This could again be due to the hierarchical
nature of the planner that reduces the length of the path over
which footstep planning is run.

TABLE I: Mission performance, sim. industrial scenario

Method Failures* Mission time (min:sec)

Trotting 2 1:05
Walking 0 5:21
FootPlan 0 4:25

Ours (lexiSoft) 0 3:57
Ours (utopia) 0 3:09

*Number of times any contact enters a slipping state during execution.

We then executed the obtained plans in the industrial floor
scenario, using the Gazebo physics simulator [34], to obtain
mission time and a measure of plan safety. Mission time was
measured as the time to go from start to goal state, and lack
of safety was measured by the number of times that contacts
entered a slipping state in Gazebo. Note that blind controllers
execute paths successfully in simulation even if feet get
briefly stuck in gaps (leading to slippage, high torques and
velocity peaks), which would hardly be executable on the
real robot. We use contact slipping in Gazebo as a proxy
for failure. Table I shows the results on the industrial floor
scenario. The blind trotting controller completed the mission
in 1 minute but with failures (i.e. feet stuck in gaps), the
blind walking controller successfully completed the mission
in 5:20, and the executed footstep-only plan in 4:25. Our
utopian method was the fastest feasible method (3:09) while
lexiSoft, as it prioritizes safety, completed in 3:57 - still faster
than a footstep-only plan due to slight use of trotting.

C. Analysis of multi-objective aggregation methods
In another experiment we compared the performance of

the different cost aggregation functions in an anytime plan-
ning scenario. The idea is to evaluate the Pareto-optimality
of the different solutions as the computation time budget is
increased, and empirically characterize the paths traced by
the different methods in objective space. For simplicity of
visualization and computation we solved the same problems
as before on only two cost functions: energy and feasibility.
We estimated the Pareto-curve of each problem by solving it
for a large computation budget (128 seconds) over multiple
times using different cost weights, i.e. c1 +w2c2 with w2 =
10i/2, i = �6,�5,�4, ..., 6, and different cost aggregation
functions: utopia, normalized-sum, and sum. We then com-
puted the epigraph of all the points (c1, c2) obtained from
those experiments, which we plot in Fig. 3 as the Pareto-
curve. We ran our method in the space Sxyzt ⇥M, without
running the footstep planner, for different computation time
budgets, and report the resulting cost values overlaid by
computation time in Fig. 3. On the one hand, the figure shows
that traditional weighted-sum aggregation can take up to 64
seconds to reach the Pareto curve in these problems, while it
has a slight preference towards one of the costs (energy). This
bias exists because the weighted-sum aggregation scheme
does not take into account the upper bounds of the cost
functions. On the other hand, utopia-aggregated costs move
in the direction of the utopia point (i.e. lower left corner
where both costs are low) and reach the Pareto curve within 4
to 8 seconds of ARA* repairing time. Our proposed lexiSoft
method, which has an explicit preference for feasibility,



(a) Steps & barrier scenario (b) Stepping stones scenario (c) Industrial floor scenario

Fig. 3: Pareto curves and solutions using a sum, utopian, and lexicographic-based cost aggregation. Computation time budget
(in seconds) is indicated on top of each point. Lower total costs (to the bottom right) are better, and axes go linearly from
minimum to maximum attainable path cost values.

Start Goal

(a) Steps & barrier scenario
Start Goal

(b) Stepping stones scenario

Start Goal

(c) Industrial floor scenario

Start

Goal

(d) Oil rig scenario

Fig. 4: Left to right: Multi-controller paths obtained with normalized weighted-sum, lexiSoft and utopia cost aggregation.
Coloring of the map is based on traversability (red is less traversable) for the first 3 rows and based on height for the last
row. Coloring of paths is based on chosen controller (blue for walking, purple for trotting, red for footstep plans).

shows the desirable property of quick convergence to the
Pareto curve (within 2 seconds) and then moving along
the curve towards energy reduction as more computation
time is allowed - without visibly sacrificing feasibility. Since
both utopian and normalized aggregations are attempts to
automatically obtain no-preference solutions to the original
multi-objective problem, without weight tuning, the figure
shows that utopia-aggregation is more suited to that goal.

D. Qualitative analysis of paths

Next we show the actual paths obtained by our method
on the different scenarios. Fig. 4 shows the planned COM
paths, color-coded according to the chosen controller at each

time, as well as footsteps planned within mFootPlan sections.
The figure shows that weighted-sum solutions involve more
trotting, lexiSoft involve more footstep planning (which is
expected as it prioritizes feasibility), and utopian solutions
are more balanced. The latter leads to trotting only on flat
ground and footstep planning over gaps and steps. Weighted-
sum results, on the other hand, lead to trotting even over
gaps and steps, which would lead to trips and falls as we
will analyze later on. This is because of the large gain in
energetic cost (i.e. trot has low energy per distance because
it progresses very quickly) even if weights are fairly chosen,
for the reasons discussed in the previous section (i.e. it does
not consider the upper bounds of the cost functions). Fig. 4



Fig. 5: Utopian trajectory executed on the real robot (same scenario as the simulated “Steps & barrier”). Left to right:
footsteps over bump, fast trotting within line of sight, slow walking over the wooden planks, sideways trot to the goal pose.

Fig. 6: Utopian trajectory executed on the real robot and oil rig scenario. Left to right and top to bottom: footsteps over
slab, then fast trotting towards goal.

also shows that utopian paths are the only ones that respect
WiFi signal preferences. Note that we assume the WiFi
communication point to the robot is placed at the robot’s
initial position. This is a valid assumption as the real-world
robot can start from a charging station that also serves as a
communication point. In both the barrier and industrial floor
scenarios, the figure shows that utopian trajectories keep a
direct-line-of-sight with the starting point on the left of the
images. Instead of moving on a straight path to the goal
after overcoming an obstacle, utopian trajectories keep line-
of-sight for longer and only move to the goal sideways at
the end.

We also executed the utopian trajectory of the “oil rig”
scenario within Gazebo. Fig. 1 shows the robot successfully
executing the sequence of footsteps required to go over a
0.2m block, followed by trotting under the facility until the
goal. The full results are also shown in the accompanying
video for clarity.

E. Real robot experiments
Finally, to validate our planning approach we executed

the utopian trajectory of the “oil rig” and “steps & barrier”
scenarios on the real robot.

For the “steps & barrier” scenario, we arranged a barrier-
obstacle, bump (2cm thick metal piece) and steps (wooden
planks) in the laboratory in the same way as in Fig. 4.
The robot successfully executed the path as seen in Fig. 5.
It moved the front feet over the bump, trotted sideways,
moved the hind feet over the bump, trotted forwards while
the surface was flat, placed feet carefully on or between the
wooden planks and then trotted sideways on flat ground. We
refer the reader to the accompanying video for the whole
experiment.

For the oil rig scenario, we tested at the actual location
at the Fire Service College. We manually localized the robot

with respect to the previously acquired global map which we
used to generate the plan. We executed the plan open loop,
i.e. without re-localizing against the global map. Fig. 6 shows
that the robot successfully executed the plan: it first executed
the footstep plan over a small 0.2m wall, and then trotted
towards the goal. This demonstrates how our approach can
be successfully deployed in realistic conditions.

V. CONCLUSION

We presented a multi-controller search-based locomotion
planner which considers multiple objectives using utopian or
lexicographic cost aggregation according to user preference.
The method does not require manual tuning of optimiza-
tion parameters, and has several desirable properties. It is
computationally faster than a pure footstep planner using the
same method and costs, reaches Pareto-optimal solutions in
shorter times than weighted-cost-aggregation, leads to faster
missions than pure-static-controllers and to safer missions
than pure dynamic controllers. It achieves that by lever-
aging the advantages and disadvantages of each controller,
e.g. trotting on flat ground for low energy per distance,
carefully planning footsteps for feasibility. According to
our experimental evaluation, our proposed ranked-preference
cost aggregation scheme has the empirical advantage of quick
convergence to Pareto-optimal solutions which satisfy the
user’s cost priorities, followed by a decrease in other costs,
along the Pareto-curve, as more computation time is allowed,
without parameter tuning.

A limitation of our approach is the requirement of pre-
dicting computation time of a sub-planner, which breaks the
possibility of using the method in strict anytime-fashion as,
for example footstep planning might go over the desired
computation time budget. In this paper we rely on the
empirical quick convergence of our sub-planner for short



paths (around 1 second in our problems). It is still an open
problem to design an architecture that provides guarantees
for strict anytime planning of the whole pipeline—which is
a direction we plan to pursue.

Other future research directions include learning cost and
feasibility functions from experience [2], including slippage
predictions in the objectives [35], and analyzing Pareto-
optimality in higher dimensions. We are also interested
in comparing our hierarchical multi-controller planning ap-
proach to other hierarchical architectures, investigating the
use of other cost aggregation methods, and learning map
representations for faster multi-gait planning.
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and M. Hutter, “Navigation planning for legged robots in challenging
terrain,” in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on. IEEE, 2016, pp. 1184–1189.

[28] H. K. Rath, S. Timmadasari, B. Panigrahi, and A. Simha, “Realistic
indoor path loss modeling for regular wifi operations in india,” in
Communications (NCC), 2017 Twenty-third National Conference on.
IEEE, 2017, pp. 1–6.

[29] K. Miettinen, “Introduction to multiobjective optimization: Noninter-
active approaches,” in Multiobjective optimization. Springer, 2008,
pp. 1–26.

[30] M. Brandao, K. Hashimoto, J. Santos-Victor, and A. Takanishi, “Foot-
step planning for slippery and slanted terrain using human-inspired
models,” IEEE Transactions on Robotics, vol. 32, no. 4, pp. 868–879,
Aug 2016.

[31] Argos challenge. [Online]. Available: http://www.argos-challenge.
com/

[32] M. Likhachev, G. J. Gordon, and S. Thrun, “Ara*: Anytime a*
with provable bounds on sub-optimality,” in Advances in Neural
Information Processing Systems, 2003, pp. 767–774.

[33] M. Likhachev. (2010) Search-based planning library. [Online].
Available: http://www.ros.org/wiki/sbpl

[34] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sendai, Japan, Sep
2004, pp. 2149–2154.

[35] M. Brandao, K. Hashimoto, J. Santos-Victor, and A. Takanishi, “Gait
planning for biped locomotion on slippery terrain,” in 14th IEEE-RAS
International Conference on Humanoid Robots, November 2014, pp.
303–308.

https://hal.archives-ouvertes.fr/hal-01349880
http://www.argos-challenge.com/
http://www.argos-challenge.com/
http://www.ros.org/wiki/sbpl

	Introduction
	Related work
	Multi-controller multi-objective planner
	Problem statement
	State spaces and controllers
	Objective functions
	Energy cost
	Feasibility cost (expected success probability)
	WiFi signal strength, for remote and shared-autonomy operations

	Multi-objective search
	Heuristic

	Results
	Experimental setup
	Evaluation of the multi-controller planner
	Analysis of multi-objective aggregation methods
	Qualitative analysis of paths
	Real robot experiments

	Conclusion
	References

