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Learning to See the Wood for the Trees:
Deep Laser Localization in Urban and Natural

Environments on a CPU
Georgi Tinchev, Adrian Penate-Sanchez, and Maurice Fallon

Abstract—Localization in challenging, natural environments
such as forests or woodlands is an important capability for many
applications from guiding a robot navigating along a forest trail to
monitoring vegetation growth with handheld sensors. In this work
we explore laser-based localization in both urban and natural
environments, which is suitable for online applications. We
propose a deep learning approach capable of learning meaningful
descriptors directly from 3D point clouds by comparing triplets
(anchor, positive and negative examples). The approach learns a
feature space representation for a set of segmented point clouds
that are matched between a current and previous observations.
Our learning method is tailored towards loop closure detection
resulting in a small model which can be deployed using only a
CPU. The proposed learning method would allow the full pipeline
to run on robots with limited computational payload such as
drones, quadrupeds or UGVs.

Index Terms—Localization; Deep Learning in Robotics and
Automation; Visual Learning; SLAM; Field Robots

I. INTRODUCTION

LOCALIZATION is a fundamental task in robotic percep-
tion, a robot needs to know where it is to navigate in the

environment and to make decisions. It has been heavily ex-
plored with computer vision, demonstrating impressive results
at large scales [1], [2], [3]. These types of approaches typi-
cally assume a certain inherent structure in the scene, image
features are dependant on repeatable camera viewpoint [3], and
methods are often tested in urban environments which guide
the robot along the route in question [4]. While the aforemen-
tioned visual approaches have many promising characteristics,
here we explore LIDAR due to its robustness to varying
lighting conditions, changes in viewpoint, and trackline offsets.
It is a precise and long range sensing modality.

The SegMatch system [5] proposed a modular segment-
based approach for LIDAR teach-and-repeat, which could
localize within a prior map while also retaining a degree of
semantic meaning, as the segments matched corresponded to
large physical objects such as cars and parts of a building.
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Fig. 1: Top: Depiction of the obtained results on large,
unstructured environments. The proposed approach regularly
proposes correct loop closures in these challenging natural
scenes, using a deep learning architecture running only on
a CPU. Bottom: Overview of the proposed methodology.
Segments are extracted from the input point cloud (coloured
section) and the map cloud (in black on top). Our neural
network features are extracted for all segments. The features
from the map are stored in a database. The features from the
query cloud are matched against the database. The final pose
is then estimated with PROSAC using both the probability of
a segment matches(from the network) and the position of the
segments (from the map).

The approach was further improved with learned feature
descriptors [6] which achieved greater accuracy. The approach
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uses a GPU to achieve real-time performance.
We are motivated to localize in natural scenarios like forests.

In these environments many assumptions about the appearance
or the geometry of landmarks are no longer valid - vegetation
grows between seasons and there is no planar structure. Our
previous work showed promising results in both structured
(urban) and unstructured (natural) environments [7]. While
reliable localization was achieved, we relied on a hand-crafted
set of features which limited the performance.

The main contribution of this work is a novel description
method for segment-based LIDAR localization. We aim to
improve upon previous works by learning segment represen-
tations in a way that inherently handles the variability of the
given environment. The proposed approach learns a descriptor
space which efficiently represents the similarities between
partial observations of the same segment which makes it robust
to incomplete data. We use a neural network to learn this high
dimensional feature space. The proposed approach utilizes the
convolution operation proposed in [8] to learn an embedding
space for both urban and natural scenarios directly from the
raw point cloud data. The neural network has the following
characteristics:
• Unordered point clouds as input: does not require a

specific ordering of the point clouds in a segment. This
makes our approach flexible by avoiding the computa-
tional cost of creating specific structures for the point
cloud and aligning the inputs to a grid or voxelization.

• Feature space is capable of being generalized: experimen-
tal validation has proven that our proposed deep learning
solution creates a feature space that can generalize, with-
out the need to be retrained to a new sensor or a different
environment.

• The network can estimate the quality of a match: a prob-
ability is computed and can be used when carrying out
probabilistic geometric validation such as PROSAC [9],
making our approach more efficient.

In the results section we demonstrate that our proposed
method significantly outperforms other hand-engineered ap-
proaches, while also improving the computational speed in
comparison to other deep learning approaches. In particular
we achieve localization performance similar to SegMap [6],
but do not require a GPU at runtime. Instead the method
can be deployed online on the CPU of a mobile robot. This
performance improvement comes in large part because our
network is more specifically tailored to the task of localization.
As presented in [6], the SegMap learning approach can be used
to compress and reconstruct point clouds as well as extract and
use semantic meaning from the segments to aid localization.
We demonstrate performance in urban environments as well
as natural environments so as to demonstrate our approach’s
generality and robustness.

II. RELATED WORK

Robot localization has been heavily explored using differ-
ent sensors such as LIDAR [10], vision [11], GPS [12] or
radar [13] with reliable approaches often combining differ-
ent sensing modalities [10], [12], [13]. Our proposed work

focuses on global LIDAR localization particularly applied to
unstructured environments rather than incremental localization
or odometry. Here we will briefly overview some methods
performing LIDAR localization.

For self-driving vehicles many approaches have taken ad-
vantage of LIDAR reflectivity to achieve precise localization.
These methods are commonly used in commercial approaches,
for example, the approach of [14] uses a prior map of reflec-
tivity and exploits road marks to reliably localize a vehicle in
an urban environment. The authors formulate the world as a
mixture of Gaussians (GMM) over 2D grid cells. The GMM
represents the heights of points in each cell and the reflectance
in a vigorous way that allows the approach to be robust to
weather alteration and road degradation.

When localization is carried out concurrently with mapping
it is often treated as a research field of its own (Simultaneous
Localization and Mapping, SLAM) where the key problem of
loop-closure detection is often equivalent to global localiza-
tion. In this context the robot’s odometry provides a rough
estimate of the position of the robot within the world which
can be leveraged to avoid searching for loop closures over
the entire map, thus keeping the computational cost low [15].
When the assumption of a local neighbourhood is lost most
of these approaches require ICP alignments or similar costly
alternatives [16].

Recent approaches aim to localize on a higher level than on
explicit point-to-point basis. The concept of segment localiza-
tion was presented in [17] but more specifically our work is
directly motivated by the works of Dubé et al [5], [6]. We will
describe the framework of segment-based localization in Sec-
tion III. Features created from LIDAR data are less informative
or unique than visual features, thus approaches often prune the
candidate matches to reduce the percentage of outliers before
performing a robust geometric validation [18]. One of the
key advantages of using segments instead of keypoints is that
more semantically meaningful entities are extracted, increasing
the repeatability of the descriptors. This was demonstrated
in [5] and was applied to urban environments. In [6] seg-
ment localization evolved into a segment-based SLAM that
introduced a new segment feature that also encoded semantics
and volumetric shape. This interesting line of work learns
features suitable for localization of voxelized segments and
the semantics of the map simultaneously. The approach was
evaluated in realistic urban setting and in derelict buildings.
Elbaz et al [19] used segments produced from a Random
Sphere Cover Set - overlapping point cloud spheres where each
point of the original point cloud could be part of more than
one sphere. These spheres were then projected to 2D depth
images and processed by a deep auto-encoder. In our previous
work [7] we proposed a larger hybrid feature descriptor which
improved detection performance and achieved localizations in
unstructured environments such as forests, while also being
capable of handling the urban scenarios.

The main drawback of classical approaches that use LIDAR
data is that they rely on handcrafted features which do not
perform as well as learned features [20]. When trying to
apply learning techniques to 3D data there are two prominent
approaches - representing the data as a voxelized grid, or
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Fig. 2: Network architecture used for learning the feature embeddings (left) and a visualization of the embedding space after
training (right). The network takes as input raw point data, it uses four x-convolutional layers (X -conv) and three fully connected
(FC) layers to estimate the feature space. A feature quality branch is also created by appending a fully connected layer to the
feature embedding. The networks learns to cluster similar objects (denoted in the same colour) close together while separating
dissimilar objects. The final feature descriptor is trained using a combination of triplet and pairwise losses.

by using the more common representation of point clouds.
Initially these approaches tended to use voxelized inputs as
the tensor operators generalize directly to this representation
and achieve promising results as shown in [21]. The main
drawback of this approach is the amount of computation
required to model the entirety of the environment. In [21]
the authors used a 32x32x32 voxelized grid, resulting in
a dimensionality of 32768, with 3D convolutions applied
in strides. Because the input resolution is low (due to the
computational complexity), these approaches are not capable
of handling detailed shapes such as the legs of a chair, for
example, as shown in [22]. The issue of handling point clouds
was addressed in [23], [24] by learning a symmetry function
approximated by a multi-layer perceptron (MLP). The authors
created a neural network layer that was invariant to point order.
In contrast to the aforementioned volumetric approach, a raw
processed point cloud containing 1024 points resulted in a
dimensionality of only 3072. In addition, by using a MLP as
the basis of their layer and by aggregation of spatial data, Li et
al [8] managed to create a more descriptive layer to handle
unordered point clouds.

In [25] a query point cloud is downsampled and matched
against a collection of previously collected submaps globally.
All clouds are described on a GPU using a combination of
networks trained with a lazy quadruplet loss to produce a 256-
dimensional feature vector. In contrast, we firstly segment the
query and map point clouds to produce a small set of segments,
local keypoints. The segments are then described in real time
on a CPU. Thus, our approach uses a combination of local
features for each segment and matches those in the map. In
this way we are robust to disturbances from occlusions and
changing environments.

III. METHODOLOGY

In this section we present Efficient Segment Matching
(ESM). This work retains the approach to pose estimation
which was initially proposed by [5]. Our contributions in this

paper are 1) learning a novel segment descriptor, 2) together
with a learned per descriptor measure of performance which
enables the pruning of the features before matching and 3) the
use of a probabilistic robust pose estimation [9] to improve
matching performance.

The problem is formulated as follows: given an input point
cloud P = {pi ∈ R3} and a prior map M = {pj ∈ R3},
we wish to estimate the pose of P in the map M. We
split the task into four modules - Segmentation, Description,
Matching and Pose Estimation. Our methodology is illustrated
in Fig. 1, bottom. An input point cloud is first segmented
using Euclidean segmentation to produce a number of 3D point
cloud objects based on the distance of points between them.

Next the segments are passed to a neural network to extract
a descriptor of each segment and a measure of quality of
that descriptor. For each segment in the live point cloud the
N -closest neighboring segments in the map are found based
on the Euclidean distance of the descriptors. These matches
are ordered based on the extracted feature quality and passed
to PROSAC [9] to produce a set of possible localizations.
In this work the ordering is done by computing the joint
probability of both features (the feature from the live point
cloud and the one from the map). The order of the matches
is important because the geometric consistency and PROSAC
consider first the matches with higher likelihood. Each module
of this pipeline is described in depth in previous works [7],
[5]. In the following section we detail the architecture and the
learning approach.

A. Architecture

Our network architecture is constructed based on the novel
convolutional layers presented in [8]. Fig. 2 illustrates our
model. The network learns directly from point cloud data, it
takes as input a batch of raw point cloud segments. Each seg-
ment is uniformly downsampled to 256 points, zero-centered
with normalized variance.
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The network used for our descriptor learning approach
consists of four X -conv operators [8] and three fully connected
layers; dropout [26] of 0.5 is applied at the second fully
connected layer. The outputs ot the last fully connected layer
are used as the descriptor. The X -conv operator convolves
local regions, similar to convolutions in images by a CNN.
For each point, its closest N neighbors are projected to a local
coordinate frame and lifted to a higher dimensional space with
a multi-layer perceptron (MLP). The X -conv operator learns
a convolution based on the MLPs of the neighbouring points.
In order for the top X -conv operators to see a larger portion
of the point cloud a dilation rate (D) is applied [27]. In this
way the receptive field of the top layers is increased without
an increase of the neighbouring point size (N ) or the kernel
size.

We have selected a specific configuration of the dilation
and neighbourhood in each of our layers that better represents
the problem we are trying to solve. The first layer uses a
neighbourhood of 8 and a dilation of 1 per X -conv operator,
the second a neighbourhood of 12 and dilation 3, the third
a neighbourhood of 16 and a dilation of 3 and the fourth a
neighbourhood of 16 and a dilation of 4. The reason for this is
that the first layer will look at a few points (neighbourhood 8)
that are immediately close (dilation 1). The second will look
into more points (neighbourhood 12) further out (dilation 3).
This way the network creates a representation that aggregates
the information slowly creating a hierarchical representation of
the whole segment. This is done for each point so as to create
a feature of the entire segment from the relative viewpoint
of each point. The final descriptor is computed as an average
of the features for all the points in a single point cloud. In
this way, the feature fuses data from different points creating
an expressive yet simple representation. In our experiments we
managed to achieve good performance by using an embedding
size of 16 dimensions. The dimensionality of a descriptor has
a strong impact on the performance of matching. This keeps
the computational cost low even if the segmentation algorithm
produces many more segments.

The proposed network architecture also includes a classifi-
cation branch that estimates a measure of the quality of each
descriptor. To be able to train this branch we need to train the
feature network first. When training the classification branch
the descriptor layers are not modified, the model optimizes
a single fully connected layer of size two. This represents a
logistic regression that classifies whether a feature is good
for matching or not. The quality of the feature is determined
during training if a successful match is found within the first K
neighbors in the dictionary. The classification branch is trained
until its accuracy converges at ≈ 70% with K = 1 neighbor.
At test time the confidence score from the classification branch
is used to compute a joint probability of all matched segments.
Since two matched segments are gathered during independent
observations, we simply multiply the probabilities. During the
last stage of the localization pipeline the candidates are sorted
using the joint probability distribution and the pose is esti-
mated using PROSAC [9] with applied geometric consistency
constraints [7].

B. Learning the Segment Feature Space

To learn the feature space in the proposed architecture a
variation of the triplet loss [28] is used. The triplet loss clusters
together samples in the feature space that have been labelled as
similar and tries to separate samples that have been labelled as
different. By applying the same label to different examples of a
segment we introduce invariance to many factors such as noise
in the measurements or incomplete segments. The triplet loss
defines a triplet as a combination of a sample (anchor) with
other two samples, one with the same label and the other with
a different label (Fig. 2, left). A pairwise term is defined as a
combination of a sample (anchor) with a different sample that
has the same label. To train our descriptor we use a variation
of the triplet loss similar to the one defined in [29] - in our
case we use a squared L2 norm as shown in Eq. (1) while they
use a regular L2 norm. To train the model we use a batch size
of 256 point clouds from which we extract a large set of triplet
and pairwise terms.

L = Ltriplets + αLpairs + λ‖w‖22. (1)

During training we identify ≈ 300 times more triplet than
pairwise terms. We balance this effect using the α parameter.
In Eq. (1) w denotes the parameters of our model, weighted
by λ = 10−6. The proposed architecture contains only 300K
trainable parameters. We use an initial learning rate of η =
10−3, decaying to minimum η = 10−6 with ADAM [30] as
optimizer. We describe the two losses in detail below.

The classification network is trained using the same data
used for the embeddings layer. The features are precomputed
and used as a dictionary. To train the classification branch, for
each sample we find the K closest matches in the dictionary.
A binary label is assigned for each sample: if a match is found
in the dictionary it is labelled as 1, otherwise 0. The network
optimizes a softmax cross-entropy loss for the classification
branch, given the aforementioned labels.

C. Triplet Loss

As commented before, we use a variation of the definition
of triplet loss similar to the one in [29]. This loss modified the
original triplet loss to solve the vanishing gradient problem.
We modify this loss by using squared L2 norm, instead of
the standard L2 norm, as it created a better clustering of the
feature space. The final triplet loss is defined as the sum of
the following cost function over all the triplets:

Ltriplets =
∑

(si,sj ,sk)∈T

c(si, sj , sk) (2)

c(si, sj , sk) = max
(
0, 1− ‖fw(xi)− fw(xk)‖22

‖fw(xi)− fw(xj)‖22 +m

)
(3)

T denotes the set of all possible triplets. si and sj are segments
with the same label, while si and sk are dissimilar. fw(xi)
is the output of the last descriptor layer for an input point
cloud xi and m is a margin regularizer. The latter denotes the
minimum ratio for the Euclidean distances between dissimilar
pairs of point clouds and similar ones. We use m = 0.01
in our experiments. In this manner the triplet loss will cluster
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Fig. 3: Receiver Operating Characteristic (ROC) curves for
the proposed and baseline approaches [5], [6], [7] on urban
(top) and natural (bottom) datasets. The proposed approach
performs comparably to the current state of the art on both en-
vironments. Learning approaches outperform hand-engineered
ones in both urban and natural scenarios.

similar objects together, while separating dissimilar ones to be
farther apart in the feature space. The proposed architecture
will provide a descriptor of the whole segment per point,
centered at each of those points. Our feature is computed
as the average of those descriptors. Our losses are computed
using the averaged features. Fig. 2 (right) presents a PCA
visualization of the feature space after the network has been
trained with the corresponding segments. Different instances
of the same tree are clustered together while other trees form
their own clusters.

D. Pairwise Loss

The pairwise loss minimizes the distance between samples
of the same class (Fig. 2, orange). As proposed by [29], we
optimise the following:

Lpairs =
∑

(si,sj)∈P

‖fw(xi)− fw(xj)‖22 (4)

where P denotes the set of all pairs. The loss aids the
training process by generating very tight clusters, which in
turn improve the KNN retrieval during the matching phase.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is to utilize learned features
in point clouds to localize with respect to a prior map. The
experiments are designed to support our key claims:
• A novel learned feature descriptor that generalizes across

a variety of natural and urban datasets.
• Real time operation on a CPU as a result of a compact

network architecture.
• The approach produces a measure of quality for each

feature which can be used during the pose estimation
step to decrease computation.

We provide comparisons against a popular method for
segment-based localization, SegMatch1, as proposed in [5], a
data-driven incremental approach SegMap1 [6], and our pre-
vious work NSM [7]. As a metric to evaluate the approaches
we have chosen to compare the True Positive Rate (TPR)
against the False Positive Rate (FPR) for each classifier, the
number of localizations on each dataset, and the computation
time for each pipeline. Supplementary material about our
model’s hyper-parameters and a video accompany the paper
at http://ori.ox.ac.uk/esm-localization.

A. Datasets

We perform evaluations using three datasets of our own
which were collected in natural environments as well as on
a publicly available dataset. First, we compared our novel
descriptor against the baseline approaches using the KITTI [4]
dataset (Karlsruhe, Germany), taken by a 3D Velodyne-HDL64
sensor in an urban scenario. We use Sequence 06 and 05
to train all descriptors, and Sequence 00 to test them. We
also compare the localization performance on Sequence 00.
Second, we compared localization performance in a park and
forest datasets - George’s Square (Edinburgh, Scotland) and
Cornbury Park (Oxfordshire, UK). The former was captured
by a Clearpath Husky UGV equipped with a SICK LMS511
LIDAR, while the latter was captured by a vehicle equipped
with a Velodyne HDL32E. The datasets are described in detail
in [7].

Finally, we used a dataset collected in a natural environment,
located at Burgess Field (Oxfordshire, UK). The dataset was
captured by a Clearpath Husky UGV equipped with a Bumble-
bee3 forward facing camera, a Velodyne VLP-16 LIDAR and a
Push-broom LIDAR LMS151. The vehicle traversed the same
loop of ≈ 2.8 km twice a month during a span of six months.
We used the Velodyne data of Sequence 02 and Sequence 01
for training and testing the classifiers. These two sequences
were collected two weeks apart each other in February when
the foliage was shed. We built a prior map from the Push-
broom LIDAR of Sequence 02 using [2]. The source swathes
were built using the VO method [2] for every 22 meters the
vehicle traversed in Sequence 01.

1We use the open-source implementations of SegMatch/SegMap.

http://ori.ox.ac.uk/esm-localization
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Fig. 4: Illustration of the localization performance of our approach (top left) compared to the baselines on the Burgess Field
dataset. The current point clouds (red) are registered to a previous map (black). Each vertical line corresponds to a recognised
place, while its color corresponds to the time taken to perform the localization.

Dataset Characteristics Number of Localizations
Name Type Length (meters) Sensor Num. Clouds SegMatch NSM SegMap ESM

KITTI Urban 1300 Accum. Velodyne-HDL64E 134 41 53 62 63
George Square City Park 500 Push-broom 30 8 9 8 11
Cornbury Park Forest 700 Velodyne-HDL32E 1125 N/A 29 231 248
Burgess Field Forest 2800 Push-broom 130 41 54 95 94

TABLE I: Number of localizations across one urban and three natural datasets. The proposed approach performs comparably
to the state of the art. These experiments also show the ability of the learning approaches to handle data from different types
of LIDAR sensors.

To label the data we combined four consecutive Velodyne
scans using the motion estimator from [2] and extracted
segments using distance-based segmentation algorithm. All
segments to be within 0.5m in consecutive point clouds are
considered the same object and labelled as such. All segments
further than 4.0m apart are considered a non-match. In this
manner we extracted a total of 82871 segments across 38714
classes for training and 45409 segments in 20583 classes for
testing. Training our model on Burgess Field takes 3 hours
and 25 minutes from scratch. We have used this model to
evaluate our approach on all natural datasets. For experiments
carried out on urban datasets, we trained a different model on
KITTI in 11 hours and 45 minutes. For all the experiments and
methods we use Euclidean segmentation. We segmented the
data into individual point clouds depending on the sampling
density: 3D Velodyne data: 200–15000 points due to higher
frequency, Push-broom type LIDAR: 200–50000 points due to
higher density.

B. Classifier Performance

The first experiment evaluates the performance of our
model, with and without the feature quality, on KITTI and
Burgess Field datasets. Fig. 3 illustrates the Receiver Operator
Characteristic (ROC) curves for each of the algorithms. The
ROC curve for the feature quality network is created by
removing the top bad matches prior to evaluation. A per-
formance decrease is seen between the two datasets for all
algorithms. We attribute this to the more challenging natural
structure in the second environment. In brief, our learning
approach generalizes better than engineered features (NSM,

SegMatch) across datasets and performs comparably to the
learned approach (SegMap). Pruning the matches based on the
feature quality shows an improvement with respect to the basic
features. For all models we have set the classifier thresholds
at FPR=0.1 for urban and FPR=0.2 for forest environments.
We did not retrain the models for each forested scenario or
different sensor modality. This shows the proposed features
can generalize between datasets and sensors.

C. Localization Performance

In the next set of experiments we aim to support our claim
that the proposed algorithm performs comparably to the state
of the art on both urban and natural environments when
localizing, while requiring less computation. Tab. I shows the
total number of loop closures detected in each of the datasets.
For each algorithm we have optimized the parameters to
retrieve the highest number of true localizations, while having
zero false localizations. The learning approaches have not been
retrained for each individual natural dataset but still manage to
detect about two times more loop closures than the engineered
methods. In brief, our algorithm has similar accuracy to [6] on
all datasets. Fig. 4 presents qualitative results for our approach
compared to the baselines on the Burgess Field dataset, while
also highlighting the computational times for each approach. In
this environment the vehicle regularly detected loop closures
during more than 2 km of operation. Fig. 5 demonstrates
the performance of our algorithm across all the datasets.
The method did not produce any false localizations, while
operating in real time on a CPU.
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CPU Multi-core execution times
Algorithm Desc. size Segmentation Preprocessing Descriptor Matching (K) Prunning (RF) Pose Est. Total
SegMatch 7 (647) 17 0 605 50 (200) 755 64 1491 ms
NSM 66 17 0 24 207 (200) 913 65 1226 ms
SegMap 64 17 15 5902 19 (25) 0 21 5974 ms
ESM 16 17 3 578 8 (25) 0 9 615 ms

CPU Single-core execution times
Algorithm Desc. size Segmentation Preprocessing Descriptor Matching (K) Prunning (RF) Pose Est. Total
SegMatch 7 (647) 21 0 596 70 (200) 773 64 1524 ms
NSM 66 21 0 37 213 (200) 936 65 1272 ms
SegMap 64 21 26 25945 26 (25) 0 21 26039 ms
ESM 16 21 3 2126 12 (25) 0 11 2173 ms

GPU Computation comparison
Algorithm Desc. size Segmentation Preprocessing Descriptor Matching Pruning (RF) Pose Est. Total
SegMap 64 17 15 15 19 0 15 81 ms
ESM 16 17 3 2 8 0 6 36 ms

TABLE II: Average computational times in milliseconds recorded per point cloud on the Burgess Field dataset.
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Fig. 5: Qualitative visualization of the performance of the proposed approach (ESM) on all datasets. The used datasets provide
a variety of contexts to show the behaviour of ESM when coping with structured and unstructured locations.

D. Computation Efficiency

Finally, we evaluate the computational performance of the
various approaches. We tested our approach on a mobile
Intel Xeon E3-1535M CPU with the following configurations:
(1) single-core of the processor, (2) multi-core on the same
processor, (3) CPU + NVIDIA Titan Xp GPU. We have
processed the push-broom point cloud data from Burgess Field
and recorded the mean computational speeds. The target map
consisted of 2783 segments — individual trees, bushes, and
interleaved shrubs. Individual source clouds were created for
every 22m travelled with each source cloud containing an av-
erage of 46 segments. In order to provide a fair comparison, we
have utilized the same Euclidean segmentation method across
algorithms, to create the same segments. This is important for
the description stage of each pipeline. The segmentation was
carefully parametrized to increase localization performance in

this challenging natural environment. To estimate the pose we
have used the same geometric consistency algorithm for all
baselines substituting RANSAC [31] with PROSAC [9] for
the proposed method to incorporate the quality of the features.
In this setting, using an incremental geometric consistency as
in [6] is not possible, as the push-broom LIDAR provides only
a single observation of a segment.

We have empirically evaluated the number of neighbors
in feature space (K) on Burgess Field to retrieve the most
positive localizations, while keeping zero false positives. For
this experiment K influences the KNN retrieval and pruning
speeds. K = 25 worked well for learning approaches as the
features were very descriptive, while we kept K = 200 for
NSM and SegMatch. Tab. II summarizes the average runtime
performance, per point cloud, in milliseconds. The size of the
descriptor dimension corresponds directly to the computation
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time taken to describe a segment. The preprocessing and
descriptor times scale linearly with the number of segments in
a live point cloud (≈ 46 in Burgess Field). The time required
for matching also depends on the embedding dimension. Point
clouds tend to be of similar size, thus the computation time
for the segmentation does not vary. The pose estimation
depends on the number of segments and their closest neighbors
(K) and the pose estimator approach. The total size of the
SegMatch descriptor is 647 dimensions, only 7 of which are
used during the matching stage. These 647 are compressed
efficiently to the 45 processed by the Random Forest. This
results in fast KNN retrieval and slower RF pruning. The
total size of the NSM descriptor is 66, which are extended
to 330 for the pruning stage, making it less efficient for KNN
retrieval and pruning. The SegMap descriptor requires PCA
alignment and voxelization of the segments as preprocessing
steps, after which the forward pass of the model is executed in
C++. Even though the implementation is efficient, the 9.3M
parameters of the network describe a single segment in 0.5 s
on a CPU. Tab. II also summarizes the recorded GPU times
for the learned approaches with K = 25 during matching.

We focused our analysis on CPU-only solutions due to the
particular efficiency of our approach. Our network does not
require expensive pre-processing of the segments, the model
consists of 4 X-conv layers with an input of 256 points. This
results in only 300K parameters, which represents the number
of operations needed to be performed. Compared to other
learning methods our network has 30–65x less parameters,
which allows the model to work in real time on a CPU.
In addition, the embedding dimension is kept to just 16
dimensions which speeds up matching.

V. CONCLUSION

In this paper, we presented a novel descriptor for place
recognition based on LIDAR segment matching in both urban
and natural environments. Our method exploits an efficient
deep learning architecture that operates directly on point cloud
data without the need of extensive preprocessing. This allows
us to successfully detect loop closures at ≈ 1Hz while using
only a CPU. We implemented and evaluated our approach on
four different datasets containing natural forest and parkland
as well as urban scenes and provided comparisons to other
existing techniques. Our approach operates in real time on
a CPU and achieves performance comparable to the state
of the art, SegMap [6], which requires a GPU to run in
real time. The experiments suggest that our approach can be
applied to mobile robots with limited computational power. In
future work we are interested in deploying the approach on an
ANYMAL quadruped and UAVs both of which lack a GPU.

VI. ACKNOWLEDGEMENTS

We would like to thank Oliver Bartlett and our colleagues
at the Oxford Robotics Institute for the datasets.

REFERENCES

[1] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a
versatile and accurate monocular SLAM system,” TRO, vol. 31, no. 5,
pp. 1147–1163, 2015.

[2] W. Churchill and P. Newman, “Experience-based Navigation for Long-
term Localisation,” IJRR, 2013.

[3] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz,
and R. Szeliski, “Building Rome in a Day,” CACM, vol. 54, no. 10, pp.
105–112, 2011.

[4] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” IJRR, vol. 32, no. 11, pp. 1231–1237, 2013.
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