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Abstract

The regular inspection of sewer systems is essential to assess the level of degradation and to plan
maintenance work. Currently, human inspectors must walk through sewers and use their sense of
touch to inspect the roughness of the floor and check for cracks. The sense of touch is used since
the floor is often covered by (waste) water and biofilm, which renders visual inspection very chal-
lenging. In this paper, we demonstrate a robotic inspection system which evaluates concrete de-
terioration using tactile interaction. We deployed the quadruped robot ANYmal in the sewers of
Zurich and commanded it using shared autonomy for several such missions. The inspection itself
is realized via a well-defined scratching motion using one of the limbs on the sewer floor. Inertial
and force/torque sensors embedded within specially designed feet captured the resulting vibrations.
A pre-trained support vector machine is evaluated to assess the state of the concrete. The results
of the classification are then displayed in a 3D map recorded by the robot for easy visualization
and assessment. To train the SVM we recorded 625 samples with ground truth labels provided by
professional sewer inspectors. We make this dataset publicly available. We achieved deterioration
level estimates within three classes of more than 92% accuracy. During the four deployment mis-
sions, we covered a total distance of 300 m and acquired 130 inspection samples.

1 Introduction

The Swiss sewage systems have a total length of over 130.000 km and represent a significant communal invest-
ment. Maintaining the system is crucial for public health, but also imposes a considerable cost upon the various
municipalities. Reports from industrial countries indicate that most sewage systems have reached half of the av-
erage expected lifetime of 80 years [Berger and Falk, 2009]. Thus, the focus is shifting towards maintenance and
renovation. As a first step towards maintenance, cost-effective and accurate inspection is essential to assess the
state of the sewer system. Sewers have been built successively, with parts of the system being over 100 years old.
A large variety materials, components, and standards are used across this time. Categorization can be made between
medium and large sewers, with an inner diameter of more than 800 mm and small sewers, with a diameter down to
100-150 mm. Large sewers are typically made of concrete or masonry and account for around 10% of the network
[Dyk and Lohaus, 1997].



Small sewers are typically made of concrete, stoneware or plastics and account for the remaining 90%. Concrete is
used in almost 40% of all sewers [Berger et al., 2016]. Although the vast majority of small sewers are of a circular or
oval shape, most of the larger ones are jaw-shaped, rectangular or of irregular shape.

The rate of deterioration varies and depends on the design and usage of the sewers. Relevant factors are flow rate,
slope, wastewater composition, cleaning intervals, and more [Parande et al., 2006]. An omnipresent disintegration
mechanism acting on concrete in sewers is microbial induced corrosion (MIC) [Hudon et al., 2011]. This type of cor-
rosion occurs when sulfate-reducing bacteria found in the biofilm produce hydrogen sulfide from wastewater, which
is absorbed on the moist surfaces of the sewers and creates sulfuric acids. These acids react with the alkaline min-
erals in the concrete, which leads to the creation of large, expansive minerals and ultimately the loss of structural
integrity [Wells and Melchers, 2015].

Current inspection approaches vary depending on the diameter, material, shape and expected damage to the
sewer. For example, small pipes are more prone to experience clogging or leaking than large sewers. Thus,
visual inspection is performed by tethered pipe-inspection robots, which crawl through the sewer and some-
times carry tools for removing blockages. Many types of small-scale robots are now commercially available
[Mirats Tur and Garthwaite, 2010].

Up to now, medium to large sewers are inspected by humans with the goal of manually assessing the deterioration
level. Inspectors check the roughness of the concrete visually and tactilely with their hands and feet. As the highest
deterioration occurs in the center of the sewer, which is often covered by a biofilm and wastewater, purely visual as-
sessment fails to predict the deterioration reliably. Humans are also able to adapt to irregular sewer shapes and can
move through pipe diameters down to 800 mm. However, inspection tasks in typical environmental conditions (slip-
pery ground, flowing water, dirty, damp, occasionally narrow spaces) are monotonous, dangerous and carry health-
risks [Berger et al., 2016]. Additionally, extensive safety precautions are necessary such as gas sensors and safety
harnesses. It is common to close off large areas of a sewage system before inspections, which potentially disrupts the
network. Overall, sewer inspection presents an excellent opportunity for versatile service robots.

Only a few inspection robots for medium to large diameter sewers have been developed. SVM-RS from the
Fraunhofer Institute for Factory Operation and Automation is a combined cleaning and inspection robot
[Walter et al., 2012]. The robot weighs 2000 kg, has a size of 3500 x 1500 x 1500 mm (L x W x H) and a reach of
1200 m. Its payload includes cameras, ultrasonic sensors, structured light line scanners, and temperature sensors.
Redzone Robotics’ Responder1 is a 300 kg, tracked platform which can be deployed in sewers with a diameter from
915-6000 mm and has a reach of up to 1000 m. The robot is equipped with cameras, laser sensors and ultrasonic sen-
sors. A robot developed by Nanyang Technological University can be passed through tunnels with a minimum di-
ameter of 3000 mm and has explored distances of up to 400 m [Seet et al., 2018]. The robot uses cameras and a laser
profiler.

The typical method for detecting concrete damage with a robot is through an operator interpreting the acquired cam-
era images and ultrasonic or laser sensor data. All robots are use a power cable to increase their operational range.
For some of the systems, deployment through a common utility hole would be difficult. An interesting robot in this
context is Pure Technology’s SmartBall2, which is a free-swimming robot that can be deployed in a water stream and
scans the sewer with ultrasonic sensors to find leaks. However, there is no means of controlling its path and depend-
ing on the sewer shape the deployment and recovery might be difficult.

We propose the usage of autonomous legged robots to inspect and map large and medium-sized sewers. Legged
robots are relatively small, have high mobility in complex, human-made environments and can adapt their posture
to inspect areas of interest [Hutter et al., 2017a] [Bellicoso et al., 2018]. Similar to humans, legged robots can probe
their environment tactilely by using their limbs [Hoepflinger et al., 2010] [Kolvenbach et al., 2019]. We have suc-
cessfully deployed ANYmal [Hutter et al., 2017b], an autonomous quadruped robot, in the sewers of Zurich as shown
in previous work [Kolvenbach et al., 2019]. With the help of specially designed sensor-equipped feet, we collected a
large dataset by performing an inspection motion with one limb. Later on, we trained a model to assess the level of

1Available at: https://www.redzone.com/technology/responder, Accessed: 2020-03-25
2Available at: https://puretechltd.com/technology/smartball-leak-detection/, Accessed: 2020-03-25



concrete deterioration using supervised machine learning techniques. In this work, we show how the trained model
is used to assess the state of the concrete while performing subsequent inspection missions in the sewer3. During
the missions, the robot was commanded by an operator outside the sewer using a shared autonomy framework. With
this, the robot would map its environment, walk, and perform the inspections while the operator sets the next way-
points and actions, respectively. A 3D map of the sewer including the inspection location and state of the concrete
are the outcome of the missions. The map can be used by humans to return for repair work or monitor the deteriora-
tion rate over time.

This paper is structured as follows. First, we describe the robot with a focus on the foot design in Sec. 2. Then we
present the robot deployment in the sewer (Sec. 3.1), the tactile inspection motion (Sec. 3.2), the creation of the
dataset (Sec. 3.3), the classification approach (Sec. 3.4) and the mission planning system (Sec. 3.5). The outcome
of the inspection missions are presented and discussed in Sec. 4. Finally, we conclude the work in Sec. 5.

2 Hardware description

2.1 ANYmal

ANYmal (Figure 1) is a 30 kg quadruped robot driven by twelve series elastic actuators mounted at the joints. The
dimensions of the robot are 800 mm x 600 mm x 700 mm when standing. With its legs tucked up, it is 800 mm x
600 mm x 400 mm which allows it to be deployed through a common utility hole. The kinematic structure of the
robot is designed to achieve an extensive range of motion, allowing it to overcome obstacles and manipulate the en-
vironment. The structure is made primarily of aluminum and carbon fiber to minimize weight. Shock absorbers and
Kevlar plates protect exposed components from impacts. ANYmal is designed in a modular fashion: each actuator
unit consists of motor, gear, and drive electronics and is connected over the EtherCAT bus. The connection between
sub-assemblies such as the legs are easily accessible, and water-proof quick connectors are used for power and com-
munication lines. This allows component-level ingress protection as well as fast and simple maintenance in case of
hardware failure.

Figure 1: Depiction of ANYmal with custom feet deployed in the sewers of Zurich.

3https://youtu.be/HUWSodmWSg



For localization and navigation, the machine is equipped with a LIDAR (Velodyne VLP16) sensor mounted on top of
the torso. A front-mounted stereo depth camera (Intel RealSense D435) provides a local map of the terrain to assess
traversability and assist foothold planning. Additional sensors modules, such as RGB and thermal cameras, can be
mounted for inspection tasks. Powerful LEDs provide sufficient illumination in dark environments. ANYmal can op-
erate partially or fully autonomously with on-board batteries. The battery allows the system to traverse up to 3.6 km
with a trotting gait at 0.5 m/s on a single charge. Optionally, the robot can be recharged without human interaction
via a docking station in case long-term autonomy is required [Kolvenbach and Hutter, 2018].

2.2 Sensor-equipped, adaptive feet

We designed sensor-equipped, adaptive feet to enhance locomotion on the rough and slippery terrains encountered in
sewers while measuring local ground inclination and surface properties. Similar to the rest of the robot, the feet have
to be sufficiently robust to operate continuously in a challenging environment. The design is based on the adaptive
foot proposed in previous work of our group [Käslin et al., 2018]. The foot consists of a large flat contact surface that
can comply to the local ground inclination without interfering with the locomotion of the robot.

With a possible inclination of the terrain of up to 25°, the range of motion for ground compliance is set to 50°
around the pitch axis and 30° around the roll axis. Since each leg only allows for hip abduction/adduction, hip flex-
ion/extension and knee flexion/extension, the foot compliance around yaw prevents slipping while turning. Weighing
314 g (including cabling and connectors), it is lighter than both the original point foot and the previous adaptive foot.
Figure 2a illustrates the sub-assemblies of the foot, which are described in the following.

(a) Sub-assemblies of the foot

(b) Bottom view of the foot

(c) Side view of the foot

Figure 2: Overview of the newly developed foot for sewer inspection.

1) Foot sole: The sole has a surface area of 60 cm2 (100 mm x 60 mm) and is made from an off-road rubber tire fea-
turing 5 mm studs for increased traction (Figure 2b). The sole is connected to a metal rim by clamping, which avoids



peeling and gluing issues. Damping foam is placed between the rubber sole and the metal structure to reduce the
peak loads resulting from impact forces during walking. An acetal slider avoids the foot getting stuck on overhang-
ing edges and retains the metal rim.

2) Pivot joint: The pivot joint features a lightweight universal joint with integrated end stops to provide the required
ground compliance. It is surrounded by an Ester Polyurethane rubber tube of Shore A70 that provides the retaining
force to reset the foot to its initial position after deflection.

3) Force sensor: A custom, in-house developed 6-axis force/torque sensor is placed above the pivot joint to measure
the forces acting on the foot. It consists of a force sensing element with strain gauges. The sensor is lightweight and
robust and allows sensing up to 1000 N along the z-axis and 400 N along the x and y-axis. The maximum torque the
sensor can sense is specified as 10 Nm. The accuracy lies within 1.5% of the measured value while the repeatability
lies below 0.05% 4. The measurements are filtered at 800 Hz by an integrated sinc filter with cut-off frequency of
1255 Hz. The sensor is temperature compensated to minimize drift during operation.

4) Custom electronics: The electronics of the foot consists of two IMUs (MPU-9250), a force sensor and a micro-
controller board. One of the IMUs is located in the sole, while the other is integrated with the PCB in the shank. The
IMU’s linear acceleration is filtered with a cut-off frequency of 460 Hz while the angular velocity is filtered with a
cut-off frequency of 184 Hz. Both the IMUs and the force sensor are connected to the microcontroller via the serial
peripheral interface bus (SPI). The IMUs are read out with 1 kHz and force measurements are obtained with 400 Hz.
The microcontroller board is connected to the robot via EtherCAT and powered through the auxiliary 12 V power
line. The custom 6-axis force/torque features a PCB with analog-to-digital converters (ADCs) and a microcontroller
that processes the analog signals of the strain gauges. Sensor data is recorded on the high-level side at 400 Hz.

5) Shank: The carbon fiber shank connects the foot to the knee of the robot. The shank is sealed and features a coni-
cal slider for protection of the force sensor.

6) Sealing: The joint is protected by thick bellows (visible in Figure 2c), mechanically clamped to the structure and
sealed, which improves the ingress protection rating compared to previous work. O-rings and sealants have been
used for all the matching surfaces. Water-proof cable glands and connector have been used for the cables.

3 Sewer inspection with quadruped robots

3.1 Deployment

We conducted multiple field test campaigns in the sewage system of Zurich to iterate the hardware, practice opera-
tions, collect datasets, and execute inspection missions. The first test campaign with the robot took place during two
days in February 2019 [Kolvenbach et al., 2019] the second campaign took place on three days in December 2019.
Generally, the robot can be easily deployed through a standard utility hole (d = 0.8 m). To do so, the robot’s legs are
unpowered, tucked up, and the system is lowered into the sewer with a tether (Figure 3). During our tests, the robot
was operated from a base station which was located outside the sewer, nearby the utility hole.

The base station consists of the operator PC, an additional screen, and outlets for electricity and communication links
to the robot. The base station is easy to transport and quick to set up. We installed a gazebo to shelter the robot op-
erator and desk during rainy testing days. We deployed directional Wi-Fi antennas (Ubiquiti airMAX, HyperLink
HG4958DP-19P) into the utility hole via a tripod with reversed column to enable a reliable communication link to
the robot. During the test, a safety operator stayed in the sewers with a professional inspector and communicated
with the robot operator outside via two-way radios (Figure 4).

The sewer inspector had to always accompany the robot for safety reasons. Potential risks include rapid changes in
water levels during heavy rainfall and decreased oxygen concentration. The sewers were humid and relatively warm

4Available at: https://www.botasystems.com/, Accessed: 2020-03-25



compared to the outside temperatures during our trials in February and December 2019 because warm wastewater
was flowing in the sewer. In the morning, fog was observed, which degraded visibility. Additionally, water levels
would vary during the day by a few centimeters as rainfall occurred in the surrounding areas.

Figure 3: Depiction of the field test setup and the deployment of ANYmal into the sewer. The operator base station
and warnings signs are visible in the background.

3.2 Tactile inspection motion

The scratching motion we use to inspect the floor must be repeatable and reliable across the entire range of possible
surface areas. The motion, therefore, needs to be specified in such a way that it can adapt to local terrain geometry
and surface roughness.

We implemented a Cartesian-space impedance controller [Khatib, 1987], which allows a motion design on both
force and position level. Specifying and executing these motions was done by extending the Free Gait framework
[Fankhauser et al., 2016].

The full sequence of the inspection motion, shown in Figure 5, can be split into several phases. A predefined position
relative to the three stance legs is approached in (a) and contact is established in (b). In (c), a straight line trajectory
is followed until a target location (d). In (e) and (f), the foot is re-positioned to return to a nominal stance on four
feet. For the part (c) of the inspection motion, where data is collected, the desired end-effector force is computed as
seen in the following equation.

fff des = fff re f +ΛΛΛ(qqq)ẍxxre f +KKK p(xxx− xxxre f )+KKKd(ẋxx− ẋxxre f )+ cµ

ẋxxre f

‖ẋxxre f ‖
|nnnT fff re f |, (1)

where fff re f is the designed Cartesian end-effector force reference, and xxxre f , ẋxxre f , ẍxxre f are the designed position, ve-
locity and acceleration references. ΛΛΛ(qqq) is the reflected inertia matrix, which depends on the generalized coordinates
qqq. KKK p and KKKd are the position and velocity gain matrices. Finally, cµ is a scalar value used to provide a feedforward
friction compensation in the direction of the motion, scaled by the reference force along the surface normal, nnn.

For the main part of the inspection motion, we apply a force of either 10 or 15 N on the surface. For the missions
we selected 15 N. The force was experimentally tuned to keep the feet on the ground while allowing for a smooth



(a) ANYmal setup in the sewer

(b) Walking on biofilm

(c) Walking through wastewater

Figure 4: Depictions of ANYmal walking in the sewer. A professional sewer inspector accompanies the testing and
assesses the state of the concrete.

scratching motion. The target location is set 100 mm forward and 50 mm sideways from the start location. To-
gether with a total duration of 2 s and an initial and final velocity of zero, a quintic spline interpolation is defined
between the start and end location to generate the motion reference. Impedance gains are set with stiffness KKK p =
diag(200,200,0) in N/m, and damping KKKd = diag(20,20,20) in Ns/m.

Friction compensation cµ was set to 1.0 after experimental tuning in the field. We found the high friction compensa-
tion to be important for successful motion execution on the rougher surfaces. The value of 1.0 served as a safe upper
bound for the roughest terrain encountered. For more slippery surfaces the compensation is too high, but this does
not pose a problem as the damping terms quickly regulate the velocity and stabilize the motion.

3.3 Dataset collection

A dataset was collected over different times in two rectangular shaped sewers to classify concrete deterioration. Both
sewers were accessible through a utility hole and large enough to be traversable by humans. A slight inclination to-
wards the center and towards the direction of flow, resulted in a higher accumulation of water in the center.

Thus, to avoid over-fitting during classification later on, we moved and reoriented the robot frequently to capture
different poses of the robot with respect to the sewer floor. In total, we investigated 20 locations and areas of interest
to capture a broad set of surface conditions.



Typically, the condition detection in sewers is captured by filling in evaluation sheets in which deterioration levels
are grouped in classes [DIN EN 13508-2:2011, 2011]. Similar scales although more general are found in the inspec-
tion of other concrete structures, such as bridges [Everett et al., 2008].

In order to construct the dataset, we defined a scale of five condition ratings for the sewers. The scale was developed
with professional sewer inspectors and is inspired by similar standards [Everett et al., 2008].

• Good: Smooth concrete, no problems noticeable

• Satisfactory: Minor signs of deterioration, increased roughness

• Fair: Medium signs of deterioration, increased roughness and scratches/spalling

• Critical: Major deterioration noticeable, large cracks, imminent failure

• Failure: Loss of structural integrity, leakage

The condition of the concrete we encountered in the sewers ranged from good to fair, while critical or extremely bad
structural failures were not encountered. In total, we were able to collect a total of 625 samples during the two field
test campaigns (good: 183 samples, satisfactory: 183 samples, fair: 259 samples). The samples were taken in dif-
ferent parts of the sewers, and were classified together with a professional sewer inspector who provided the ground
truth. The dataset named STINK (Sewer Terrain Inspection Knowledge) is openly available5.

3.4 Classifying concrete deterioration

We chose a machine learning approach to capture and classify the diverse appearance of concrete deterioration to-
gether with the varying environmental conditions. As mentioned, the surface condition is not only expressed by the
roughness of the concrete but also by macroscopic features such as holes, scratches, or cracks. At the same time,
the surface can be dry, wet, submerged and/or covered by a biofilm (Figure 6). We extracted the raw sensor data ac-
quired while performing the inspection motion in the sewers without further cleanup or filtering.

Figure 5: Picture sequence of the tactile inspection motion with the foot placement phase (a), inspection motion start
location (b), main inspection phase (c), motion target (d), re-positioning movement (e), and final position (f).

5DOI: 10.3929/ethz-b-000336822 (currently being updated)



The acquired data consists of 18 signals (Force/Torque, IMU shank (linear acceleration/angular velocity), IMU sole
(linear acceleration/angular velocity). The data is cropped to 2 seconds, starting at the point of the scratching motion
(Figure 5a). The raw sensor signals show a correlation between signal magnitudes and concrete deterioration level,
which we exploited in the following for classification (Figure 7). The cropped sensor signals are standardized using
z-scores to obtain zero mean and unit standard deviation. The dataset itself is split between randomly chosen 75% of
the data for the training set (468 Samples) and 25% for the validation set (157 Samples).

Next, we decomposed the sensor signals using a fast Fourier transform (FFT) and selected the magnitude of the fre-
quency components as features. Last, we reduced the dimensionality of the training set with a principal component
analysis (PCA), which explained at least 95% of the variability. This PCA transformation of the training set was then
applied to the validation set.

We utilized a support vector machine (SVM) with linear Kernel (LIBSVM for Matlab [Chang and Lin, 2011]) to
train the model. The linear Kernel was chosen since it resulted in high overall accuracy. More complex, non-linear,
or radial basis Kernels were omitted since they increase the chance of over-fitting while only supplying a marginal
increase in performance. We performed training on the data using five-fold cross-validation combined with a grid
search to find an optimal C-setting. The multi-class problem is solved by training three binary one-vs-all classifiers.
The accuracy was determined by predicting the degradation level of the validation set, which was left out during
training.

We were able to classify the deterioration levels with an overall classification accuracy of more than 92% and pre-

(a) good state, water (b) satisfactory state, biofilm (c) fair state, wet

Figure 6: An exemplary set of pictures illustrating the various surface conditions encountered in the sewers.
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(a) Concrete in good condition
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(b) Concrete in fair condition

Figure 7: Comparing the angular velocities of two samples recorded by the foot sole IMU show a correlation be-
tween signal magnitudes and concrete deterioration (Complete sequence of the inspection motion).



Table 1: Classification accuracy related to selected sensor signals (average performance over ten evaluations).

Features Precision, Recall [%] Accuracy

Sensor Signal [#] Fair Satisfactory Good [%]

Force 144 62.9, 73.3 68.2, 56.1 75.3, 69.8 67.0
Torque 171 67.5, 79.0 71.0, 64.7 77.3, 65.8 70.8

Force + Torque 214 70.9, 79.4 78.4, 69.4 79.6, 76.3 75.4
IMU Sole (linear acceleration) 297 77.1, 80.2 74.8, 70.8 86.8, 86.1 79.4
IMU Sole (angular velocity) 269 81.6, 84.0 83.1, 83.5 91.0, 85.7 84.5

IMU Sole 332 87.6, 86.5 83.4, 84.9 92.8, 92.7 87.9
IMU Shank (linear acceleration) 246 79.0, 81.7 76.1, 72.3 93.0, 92.3 82.0
IMU Shank (angular velocity) 138 72.3, 79.4 73.4, 71.0 88.2, 80.1 77.1

IMU Shank 252 85.2, 85.3 83.3, 82.1 94.4, 96.0 86.9
IMU Sole + IMU Shank 335 87.8, 90.3 88.8, 86.2 97.0, 96.1 90.7

F/T + IMU Sole + IMU Shank 341 91.6, 93.0 91.6, 89.5 95.5, 95.5 92.6

cision & recall of at least 89% on the three assigned classes. Comparing the individual sensor contributions to the
classification performance shows that the combined set of sensors provides the highest accuracy (Table 1). The
worst performance was found to be on the Force/Torque data, which includes the axis that is actively controlled by
the robot. Nevertheless, also a smaller setup consisting of only IMU’s achieves a generally good performance. This
matches previous findings on the smaller sewer inspection dataset [Kolvenbach et al., 2019] and a dataset used for
planetary soil classification [Kolvenbach et al., 2019].

Performing the classification with all sensors resulted in the highest accuracy, and further investigations were per-
formed with this selection. A confusion matrix showing the truly and wrongly classified samples was derived by
training and evaluating the model for ten successive trials (Figure 8). Misclassification occurs mostly between the
fair and satisfactory class, which are also fairly similar in terms of roughness compared to the smooth, good class.
More samples were available for the fair class compared to the satisfactory and good class, which might explain the
generally lower classification performance on the satisfactory class of the validation set. Investigating the sampling
time shows that the signals should be captured for at least for one second for high classification accuracy. A small
drop in performance is seen when taking the full sample length, which might be explained by small deviations in the
duration of the scratching motion. Generally, an increase in performance might be realized by increasing the size
of the dataset, further optimize the feet for vibration response, or utilizing alternative classifiers, such as neural net-
works [Bednarek et al., 2019].

3.5 Inspection mission

We utilized the trained SVM model to perform complete inspection missions in the sewer. The missions were
planned and executed using the Director user interface (Figure 9) and system architecture, initially designed by MIT
during the DARPA robotics challenge [Marion et al., 2017]. It features a shared autonomy system where the user can
provide high-level commands to the robot, which are then executed autonomously. For the missions, the robot opera-
tor simply provides multiple waypoints in the online-generated map for inspection. The robot will then walk to these
waypoints and perform the inspection motion autonomously.

The robot’s odometry is provided by the kinematic-inertial Two-State Implicit Filter [Bloesch et al., 2018]. This
is used as a prior to a LIDAR based Iterative Closest Point (ICP) SLAM system for accurate localization and map
building. During the missions, the robot also recorded a local elevation map using the forward-mounted depth sen-



(a) Confusion matrix

0.25 0.5 0.75 1 1.25 1.5 1.75 2

Sample length [s]

70

75

80

85

90

95

100

O
v

er
al

l 
ac

cu
ra

cy
 [

%
]

(b) Accuracy increase over signal duration

Figure 8: Few misclassification events occur between the Satisfactory and Fair class. Correlation between classifi-
cation accuracy and signal length indicates that samples should be collected for at least a second after starting the
scratching motion (Average performance over ten evaluations).

Figure 9: Screenshot of the Director mission interface [Marion et al., 2017], showing three inspection waypoints and
the associated task queue.

sors [Fankhauser et al., 2018]. For each inspection motion, the position of the robot contacts in the map frame, the
elevation map of the terrain around the robot, and the timestamp were recorded for post-processing.

The missions consisted of inspection walks between utility holes and tunnel crossing, which is a scenario equally
performed by human inspectors. The distances between two utility holes typically range from 100-150 m, and cross-
ing between sewers requires the robot to overcome small obstacles such as steps [Fankhauser et al., 2018]. During
testing, we chose a set of different mission environments, such as a straight, featureless tunnel, a turn, and a crossing
between two sewers to capture this diversity. Inspection motions were performed approximately every 3 m along the
way or as commanded by the robot operator. Before each inspection motion, the robot would perform a “square up”
maneuver, which would return the robot in a stable stance and consistent start position before performing the inspec-
tion.

4 Results

4.1 Mission results

Using the shared autonomy framework, we completed four missions as described in Figure 10a and Table 2. For mis-
sions 1-3, the robot was deployed through a utility hole and commanded to inspect a section of the tunnel (of length
145 m). The mission ended if either the final goal was reached or the robot slipped and could not recover. A safety
operator was present at all times during the missions but did not intervene unless the robot fell. Mission 4 was de-
signed to show the capabilities of using legged robots specifically. For this mission, the robot was placed near the
window relief junction and directed by the robot operator outside the sewer to cross the window from tunnel two into
tunnel one. A detailed breakdown of each mission is given below:



• Mission 1
The robot started in the first tunnel sewer access area and then walked down a straight section of the tun-
nel on the left side of the stream. This mission began in the morning when the above surface air was much
cooler than the air in the tunnel. This temperature difference created fog in the sewer, as shown in Figure
10b, which was often detected as an obstacle by the LIDAR. The fog and featureless straight tunnel resulted
in several artifacts in the LIDAR map (see the highlighted section of the straight tunnel in Figure 11) as well
as more drift than in other missions. Since the robot walked from one utility hole to another, this mission
imitates a typical inspection excursion for a human. Once the mission was complete, the robot operator di-
rected the robot to cross the stream and walk back to the start without any interaction from the safety opera-
tor.

• Mission 2
The robot started in the second tunnel sewer access area and then walked towards the curved section of the

(a) Top-down diagram of the missions completed in the sewer.

(b) The robot during mission 1 as it walks
down the straight featureless tunnel. Fog
can be seen in front of the robot.

(c) Mission 2 in the second tunnel. Here
the sewer is more curved and there is a
large pipe suspended from the ceiling.

(d) View of second tunnel in direction
of the window junction during mission
3. Two large windows are visible to the
robot’s left.

(e) The robot performing the crossing maneuver during mission 4. The robot has climbed onto the threshold and is transiting from
tunnel two to tunnel one to continue the inspection.

Figure 10: Photos taken during each robot deployment.



tunnel and the window junction. In this tunnel, a pipe was suspended from the ceiling, which, along with
the curvature of the tunnel in this section, provided good features for LIDAR SLAM. After reaching the
window junction, the robot operator commanded the robot to cross the stream and return to the start. After
crossing the stream, the robot slipped and fell into the stream, which required operator intervention to reset
the robot.

• Mission 3
The robot started in the second tunnel sewer access area then walked towards the curved section of the tun-
nel and the window junction, similar to mission 2. As the robot entered the window junction, it slipped on a
smooth part of concrete. The robot’s controller responded fast enough and automatically froze the joints so
that the robot remained standing in place.

• Mission 4
One key motivation to use legged robots for sewer inspection is their versatility. We demonstrated this by
placing the robot in the second tunnel and having it walk into the window junction. The robot operator then
placed waypoints such that the robot climbed over a 15 cm step from tunnel two into tunnel one and the
performed eight inspections. Because a legged robot can transit from one tunnel to another, they are much
more useful than a robot confined to a single tunnel per mission.

Table 2: Description of the missions performed in the sewer.

Mission Distance [m] No. Inspections Duration [min]

Mission 1 145 55 31
Mission 2 74 41 25
Mission 3 43 26 13
Mission 4 32 8 10

Total 294 130 79

4.2 ICP Mapping

The 3D point cloud shown in Figure 11 combines the ICP maps generated during each of the four missions, stitched
together in post-processing, and overlayed on the sewer construction drawings. It shows that the point cloud recon-
struction of the sewer is both internally consistent and matches the scale and geometry of the plans.

The ICP map was most accurate around the window junction due to the strong geometric features and missions 2
and 3 generated almost identical maps in independent runs. The poorest performance was during mission 1 in the
long, straight portion of the tunnel. As described in Figure 10, this portion of the tunnel is almost perfectly symmet-
ric along the direction of travel, and there were significant artifacts in the point clouds caused by dense fog, leading
to an overestimate of tunnel length by 42.8 %. To analyse the quality of the ICP mapping further we compared it to
a ground truth point cloud collected by tripod-based commercial 3D laser scanner (Leica BLK-360). The majority
of the points in the ICP map lie within 20 cm of the ground truth as shown in Fig. 12, showing the validity of this
approach.

Overall, apart from scale drift in one of the missions, the point cloud is both metrically accurate and consistent with
the building plans, allowing a sewer professional to easily diagnose and localize areas of concern within the sewer
system.



Figure 11: Overview of whole pointcloud map overlaid on sewer plans and satellite
image (1:500 scale). Blue points represent the map generated by the robot’s LIDAR and the
color intensity indicates height with dark blue being the sewer floor. Concrete classifications are
colorized as: Red (Fair), Yellow (Satisfactory) and Green (Good). In green boxes we highlight two
areas of interest: the curved section where missions 2 & 3 occurred and the straight section of mission 1.
In the curved section we have raised the mission 3 contact maps above the ground to improve visibility.

Figure 12: Comparison of the ground truth point cloud and the ICP map generated by the robot. The ICP map shown
contains only the points that lie within 20 cm of the ground truth, showing the accuracy of the ICP map. The point
clouds are colorized by height for clarity.



4.3 Degradation estimates

The outcome of the inspection mission results are projected in Figure 11. In total, we were able to take 130 samples
over 294 m to which we assigned a deterioration class in post-processing. There are several sections of the sewer
with different levels of concrete degradation, which matched our qualitative impression. For example, the worst con-
ditions were found between the sewer access area and window junction, while the straight portion of the tunnel and
the tunnel window junction (where the robot crossed between tunnels) are less degraded. The robot generally in-
spected areas close to the center of the sewer where smooth terrain is not likely to be found. Mission 2 and mission 3
covered the same area in the sewer, and the classification results reflect this. Areas that have been investigated twice
show a high level of consistency in the degradation estimate. Out of 45 samples that have been collected at the same
patch of 43 m, just five samples show a difference in their classification result. Of the five outliers, four showed a de-
viation by one class and one sample by two classes. Due to the small investigated footprint of 0.005 m2 during the
inspection, it might be that the areas are not necessarily misclassified but are rather capturing a general change in de-
terioration of the concrete. The high spatial resolution of the measurements combined with the location in the map
make it easy to visualise clusters of good or worse concrete. Generally, several inspection walks over the same areas
have increased the statistical power of this approach. A possible extension of this work would be to perform the eval-
uation online and increase the amount of samples taken in an area with noticeable change in degradation estimates.

An example of the raw data for contact classifications is provided in Figure 13, showing the vertical ground reaction
force over three inspection motions. There is a clear pattern to the data, making it easy to distinguish between the
three phases of the inspection task – walking, “square up”, and inspection motion. This shows the repeatability of the
robot inspection, even during complex real-world missions.

Overall, the total mission consisted of 130 inspections of which there were a total of 9 Good classifications, 59 Satis-
factory, and 62 Fair which were colorized green, yellow and red respectively in the contact maps.

Figure 13: The vertical component of the ground reaction force of the front right foot as measured during mission 2.
Walking episodes (yellow) can be easily distinguished from the “square up” reorientation maneuver (blue) and the
tactile inspection motion (red). The inspection data is extracted from the sensor stream for classification.

5 Conclusion

We have shown how a legged robot can inspect concrete deterioration in medium and large sewers. Through multiple
field trials, we developed a method that allows the quadruped robot ANYmal to walk through the sewer system of
Zurich, perform tactile inspection of the concrete, and classify the deterioration level.

To cope with the wet and slippery environment in the sewer environment, we have developed adaptive planar feet



with integrated inertial and force/torque sensors. Using an impedance-controlled scratching motion, the robot can
probe the terrain with one of its limbs while maintaining balance with the others. We acquired and open-sourced a
dataset with 625 samples consisting of the sensor data and ground truth labels supplied by professional sewer inspec-
tors. Training a support vector machine on the dataset allowed us to predict the current state of the concrete deteri-
oration within three classes with overall more than 92%, as well as more than 89% precision and recall. Analysis of
the data shows that even a small set of sensors is sufficient for high classification accuracy.

We planned and executed several inspection missions with the robot, which mimic the approach of human inspectors.
Using a shared autonomy framework, we were able to command the robot from outside the sewer in individual mis-
sions of up to 145 m while performing the concrete inspection action at regular intervals. While walking, the robot
would map the sewer using on-board sensors and record the points of inspection. In post-processing, the state of the
concrete was inspected using the pre-trained SVM model. We executed four missions in different areas of the sewer,
including climbing between sewers, which demonstrates the advantage of using a legged system in this environment.
Within the four missions, we covered a total distance of 294 m in 80 min and performed 130 inspection motions.

While the inspection approach worked well, further improvements are required to increase robustness and reliability.
First, the system needs to be tested in narrow, partially flooded, and highly slippery sewers to demonstrate a similar
capability to a human inspector. This also includes further robustifying the locomotion system against slip-induced
falling. Secondly, more data needs to be collected to confirm the robustness on a more diverse set of sewers, to im-
prove classification accuracy, and eventually, the precision of the prediction. Lastly, the mapping could be improved
to cope with straight, featureless tunnels and to increase the accuracy of the inspection locations. Overall, we believe
that these shortcomings will be overcome and that legged robots will become a valuable partner in the inspection of
sewers.
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