
Work Smart, Not Hard: Recalling Relevant Experiences for Vast-Scale
but Time-Constrained Localisation

Chris Linegar, Winston Churchill and Paul Newman

Abstract— This paper is about life-long vast-scale localisation
in spite of changes in weather, lighting and scene structure.
Building upon our previous work in Experience-based Naviga-
tion [1], we continually grow and curate a visual map of the
world that explicitly supports multiple representations of the
same place. We refer to these representations as experiences,
where a single experience captures the appearance of an envi-
ronment under certain conditions. Pedagogically, an experience
can be thought of as a visual memory. By accumulating experi-
ences we are able to handle cyclic appearance change (diurnal
lighting, seasonal changes, and extreme weather conditions) and
also adapt to slow structural change. This strategy, although
elegant and effective, poses a new challenge: In a region with
many stored representations – which one(s) should we try to
localise against given finite computational resources?

By learning from our previous use of the experience-map, we
can make predictions about which memories we should consider
next, conditioned on how the robot is currently localised in the
experience-map. During localisation, we prioritise the loading of
past experiences in order to minimise the expected computation
required. We do this in a probabilistic way and show that
this memory policy significantly improves localisation efficiency,
enabling long-term autonomy on robots with limited compu-
tational resources. We demonstrate and evaluate our system
over three challenging datasets, totalling 206km of outdoor
travel. We demonstrate the system in a diverse range of lighting
and weather conditions, scene clutter, camera occlusions, and
permanent structural change in the environment.

I. INTRODUCTION

This paper is about life-long, vast-scale localisation in
challenging outdoor environments, where appearance change
can be caused by changes in lighting, weather conditions and
scene structure. It is also about intelligently managing a map
of visual memories, and the prioritised recollection of past
images to support time-constrained localisation.

We approach the localisation problem with a map of
“experiences”, where an experience is a single representation
of the environment under particular conditions, much like a
snapshot. Environments which exhibit multiple appearances
may need many overlapping experiences to capture the full
spectrum of change. While this approach has been shown
to provide significant robustness to appearance change [1],
it is computationally demanding. As experience density
increases, the robot must do more work to obtain a success-
ful localisation. This results in a navigation system which
becomes less efficient, and poses a problem for resource-
constrained systems. We find that robots with limited com-
putational resources cannot keep up with the additional work
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Fig. 1. Appearance change poses a significant challenge to outdoor
visual localisation. We grow and curate a map of visual memories which
captures the full the spectrum of change in an environment. At run-time,
the robot recalls a small number of these visual memories for localisation.
We present a technique which enables the robot to predict which visual
memory will be relevant to the live camera image, greatly increasing
computational efficiency and enabling life-long navigation on robots with
finite computational resources. Images here are sampled from the 206km
dataset used to evaluate the system.

load, resulting in localisation performance which degrades
over time. This places an unacceptable limit on the robot’s
ability to navigate in a changing environment.

This paper presents a method for predicting which experi-
ences the robot is most likely to localise against, given how
the robot is currently localised in the experience-map. We
allow the robot to learn from its past use of the experience-
map in order to make these predictions, and present this in
a probabilistic framework.

The robot’s past use of the experience-map is captured
in “path memory”. We introduce this concept as a way
to encode the robot’s localisation history into the map
representation. Path memory consists of a collection of paths,
where each path links experiences used by the robot during
localisation on a particular outing. These paths implicitly
link relevant experiences together. For example, consider
an experience-map containing sunny and rainy experiences.
Without knowledge of the underlying causes of the appear-
ance change (in this case weather), paths link the sunny
experiences together, and the rainy experiences together. Path
memory is used as training data to make predictions about
which experiences will be relevant – this makes the learning



process unsupervised and one that continually improves.
We evaluate this system against three challenging outdoor

datasets covering a total of 206km and show that this
technique significantly increases efficiency. We demonstrate
that this technique makes life-long navigation possible for
resource-constrained robots.

This paper proceeds by reviewing related work in Section
II and discusses some preliminary concepts in Section III.
Section IV introduces path memory as a way to encode
the robot’s past use of the experience-map into the map
representation. We show how this is used to intelligently
retrieve relevant experiences from the experience-map in
Section V. The datasets used to evaluate the technique are
discussed in Section VI. We present our results in Section
VII.

II. RELATED WORK

Experience-based Navigation (EBN) has been demon-
strated as a robust method for localisation in challenging
environments [1]. It was shown that over 53 traverses of
a 700m loop in an outdoor environment, the number of
experiences required to represent a dynamic environment
tended towards a constant. To achieve on-line performance,
processing was done on a high-end desktop computer with
2 Intel Xeon 2.93GHz CPUs, offering 16 available cores.

Much of the prior work on localisation in a map of
experiences has focused on permanently deleting experiences
to maintain on-line performance.

Milford and Wyeth’s RatSLAM system [2] has a similar
map of experiences to EBN. They prune their map of expe-
riences to keep experience density below a given threshold,
where they pick experiences at random for deletion. Results
are presented for a two-week period in an office environment,
where they point out that the technique works inefficiently
with cyclic changes, such as appearance change between day
and night. They suggest that the technique would not be
suited to handling large-scale topological change.

Glover et al. combine the RatSLAM system with FAB-
MAP [3] for appearance-based localisation across multiple
times of the day in a set of outdoor datasets. They note a
linear increase in the number of place-representations with
time, and highlight the need for a map management or
pruning algorithm for long-term autonomy.

Konolige, et al. developed a localisation system based on
“views”, which are similar to our experiences [4]. In [5],
Konolige and Bowman propose a technique for limiting the
number of views in an area to a chosen constant, while
preserving view diversity and removing unmatched views.

Dayoub and Duckett [6] present a system based on short-
term and long-term memory, where stable features in long-
term memory represent the adaptive map of the environment,
and are forgotten if used infrequently.

In many cases, experience density is the result of locali-
sation failure caused by changes in lighting. McManus et al.
make use of an illumination-invariant transformation [7] that
operates on an RGB image, making subsequent localisation
more robust to changes in lighting.

Fq
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Fig. 2. This figure shows a simple experience graph G, where the robot
(with live stereo frame Fq) has a position in the graph specified by a
reference node nk = n1, and a six degree of freedom transformation
representing the robot’s position in the node’s coordinate frame tq,k = tq,1.

Johns and Yang [8] assert that representing appearance
change with multiple images of the environment is compu-
tationally inefficient. Instead, they present a system which
operates on the co-occurrence of features at different times
of the day.

Maddern et al. describe a technique for capping the
computation time and storage requirements for a CAT-SLAM
system [9]. They prune nodes from the trajectory based on
a node’s information content relative to its neighbours.

We approach the problem of computational efficiency in a
new way. A deletion policy for outdoor environments would
need to distinguish between experiences that are outdated,
and those only temporarily not relevant. For example, do we
want to delete all the map’s rainy experiences simply because
it has not rained for the past two weeks? But what if the
experience density is still too high after pruning? To delete
more experiences would reduce the diversity of our map
representation. Instead, we present a technique for recalling
experiences which are relevant to the live camera image. This
allows us to maintain a much larger number of experiences
in the map, while only localising in a small subset of these
during localisation.

III. PRELIMINARIES

Before discussing this paper’s contribution we recap some
Experience-based Navigation fundamentals.

A. Visual odometry

Our implementation makes extensive use of visual odom-
etry [10][11][12]. Visual odometry is used to estimate the
robot’s trajectory through the world, and to estimate the
transformation between the robot and an experience saved in
memory. Our implementation of visual odometry operates on
a stereo image pair to produce a stereo frame Fq containing
a set of observed 3D landmarks, where each landmark is
defined relative to the co-ordinate frame of camera. To
estimate the robot’s trajectory, visual odometry acts on the
frame Fq and the previous frame Fq−1. During localisation,
Fq is matched against the 3D landmarks contained in one of
the experiences in the map.

B. The experience graph

The experience-map is stored in a graph structure, referred
to as the experience graph G. The graph consists of edges
and nodes, where nodes contain the set of 3D landmarks
extracted by visual odometry, and edges contain six degree
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Fig. 3. This graph demonstrates a typical iteration during the localisation
phase. A stereo image pair is obtained from the camera. Features are
identified using a FAST corner detector [16] and BRIEF descriptor [17].
3D landmarks are calculated in the stereo frame and saved to Fq . Visual
odometry operates on Fq and Fq−1 to update the robot’s position estimate
in the map. Attempts are made to match Fq with candidate nodes Y in the
graph. This last step is performed in parallel, where we show the number
of parallel processes Np = 4 and the number of matching rounds Nr = 2.
The requirement for on-line performance is shown as a dashed red line.
As shown, with Nr = 2 the system would not be meeting its on-line
performance criteria, and would have to reduce the number of localisation
attempts by setting Nr = 1. This results in fewer localisation attempts. We
note that the second core is used for the additional processing work during
experience creation.

of freedom transformations between nodes. A simple expe-
rience graph G is shown in Figure 2.

The graph structure forms a topometric map [13][14],
where over short distances a metric assumption holds, but
over large distances we assume only topological connectivity.
The robot’s position in the map is specified by a reference
node nk (the node currently localised by the robot), and a
transformation tq,k. This is shown in Figure 2.

C. Localisation and the problem of experience density

Localisation is achieved by obtaining a stereo match
between the live frame Fq and a node nk in the experience
graph G. We distinguish between local and large-scale lo-
calisation [14], where large-scale loop closures are detected
using FAB-MAP [15], and local localisation (the focus of this
paper) is performed within a local metric neighbourhood of
the robot’s position estimate in the experience graph.

Localisation begins by querying the experience graph for
all neighbouring nodes. We refer to these as the set of
candidate nodes Y , and they represent the possible nodes in
which the robot may localise. We refer to the ith candidate
node as iY . The number of candidate nodes |Y | grows with
the number of overlapping experiences in an area. Given
finite computational resources, we may only be able to
attempt to localise in a small number of these experiences
before being forced to abort the localiser to maintain constant
processing time.

To maximise our chances of obtaining a successful lo-
calisation with a limited number of localisation attempts,
a ranking policy, Γ, orders the candidate nodes by their
likelihood of obtaining a successful localisation with the live
stereo image. We use a simple ranking policy Γ(distance)
which ranks candidate nodes by their distance to the robot’s
estimated position. We found that ranking policies based on
a simple image similarity metric did not accurately rank
candidate nodes while meeting computational requirements.

Figure 3 illustrates the pipeline for localisation, showing
the parameters which control the number of matches that can
be performed. Localisation performance could be improved
by increasing the number of CPU cores Np, or by increasing
the number of matching rounds Nr, but this would require
more expensive hardware, or a reduction in on-line perfor-
mance, both of which may not be feasible. Rather, this paper
presents a technique for improving the ranking policy, Γ.

IV. PATH MEMORY

In this section we present “path memory” as a way
to encode the robot’s past use of the experience graph.
Path memory is a collection of paths, where an individual
path records the robot’s trajectory through the experience
graph on a particular outing. A path implicitly links nodes
that represent the environment under similar conditions. For
example, consider the two paths in Figure 4. The red path
might have been created on a sunny day and the blue path
on a rainy day. The two paths link different nodes, since
the weather conditions force the robot to localise in either
sunny or rainy experiences. If the robot re-visits the area for a
third time and starts to localise to nodes on the sunny path,
we can infer that the robot will probably localise to other
sunny nodes in the near future too. So, without knowing
anything about what caused the appearance change in the
environment, the robot can automatically learn which nodes
are more likely to result in a successful localisation.

Previously we discussed metric edges containing transfor-
mations which gave the experience graph a relative structure.
Here, we introduce non-metric edges which do not contribute
to the relative structure. A path Pm of length k consists of a
sequence of these non-metric edges, Pm = [e0, e1, ..., ek],
where an edge connects two nodes, ns and nt in the
experience graph G. Path creation is done incrementally at
run-time, after the localiser has finished processing. If the
localiser returns a successful localisation matching the live
frame Fq to node nk, which is different to the previously
matched node nk−1, the robot is said to have moved in
experience space from nk−1 to nk. This triggers the creation
of a new edge belonging to path Pm, between nk−1 and nk.

We define path memory as a collection of these paths:

P =
{
P1, ...,P|P|

}
where |P | is the number of paths recorded, and a single path
Pm represents the robot’s trajectory through the experience
graph on a particular outing.

In the following section, we show how this information is
leveraged to intelligently select candidate nodes for localisa-
tion.

V. LEARNING TO SELECT RELEVANT EXPERIENCES

We propose a probabilistic framework which enables the
robot to predict candidate nodes that are likely to localise
successfully. We generate a probability distribution over the
set of candidate nodes Y based on a set of conditionally
independent observations. The system uses the robot’s past
localisation history as training data, and since this is stored
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Fig. 4. Paths connect nodes in the experience graph. Here, two paths
are shown, P1 (red) and P2 (blue). From this we can infer that nodes
{n1, n2, n3, n4, n9} represent the environment under similar conditions
(e.g. afternoon sunshine), and {n6, n7, n8, n4, n5} represent the environ-
ment under a different set of conditions (e.g. rain). Note that the robot may
localise in some nodes under both conditions, as shown here by n4.
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Fig. 5. This diagram illustrates how path memory is leveraged to
make predictions about which candidate nodes are most likely to result
in a successful localisation. Nodes in the experience graph are labelled
n1, ..., n9 and two paths from path memory are shown, P1 and P2. In
this example, the set of candidate nodes are Y = {n5, n9}. In Figure
5a, nk is the node the robot is currently localised against (nk = n4).
The prior distribution over the candidate nodes is calculated based on the
number of paths connecting nk and each node in Y . In Figure 5b, the set
of observation nodes W = {n1, n2, n3, n4, n8} are the nodes which the
robot has recently tried to localise against (the robot’s trajectory is shown
as a dot-dashed line). Green nodes denote successful localisation attempts,
whereas red nodes denote failed localisation attempts. The corresponding
observation vector is thus Z = [1, 1, 1, 1, 0]. A probability distribution
over the candidate nodes is generated as shown, which is combined with
the prior to make predictions about which candidate node is most likely to
result in a successful localisation.

implicitly in path memory P , the learning process is unsu-
pervised.

In addition to recording path memory P , we also explicitly
record a summary of the robot’s recent localisation attempts
on the live run. We record these nodes in W and refer
to the jth node in the set as jW . We define the term
“recent” by the parameter T , where T is the number of
preceding iterations of the localiser to remember (recall that
the localiser can make several localisation attempts on one
iteration). An example of these nodes is shown in Figure 5b,
where W = {n1, n2, n3, n4, n8}.

Each localisation attempt with nodes in W will have
resulted in either a successful or failed stereo match. In

Figure 5b, successful localisation attempts are marked green,
while failed localisation attempts are marked red. We record
success or failure in the binary observation vector Z =
[z1, ..., z|W|]. For each node in W , there exists a correspond-
ing bit in Z such that:

zj =

{
1 if localisation with node jW succeeded
0 if localisation with node jW failed

In the example in Figure 5b, we see that Z = [1, 1, 1, 1, 0].
Lastly, we define the indicator variable y =

(0, ..., 1, ..., 0)T as a vector of length |Y |. One element takes
the value 1 and all remaining elements are 0. We define y
as a discrete random variable describing which candidate
node will localise successfully. We use p(y = i) to refer
to the probability of successfully localising the live camera
frame Fq to the ith candidate node iY .

Using Bayes Theorem, we calculate the probability distri-
bution over y as follows:

p(y|Z,θ,π) =
1

β
p(Z|y,θ)︸ ︷︷ ︸

likelihood

p(y,π)︸ ︷︷ ︸
prior

(1)

where θ is a |Y | × |W | matrix describing p(Z|y), π is
a 1 × |Y | vector describing p(y), and β is a normalisation
constant. Since we only need to rank the candidate nodes by
their corresponding p(y = i|Z,θ,π), we do not explicitly
calculate β.

We discuss the likelihood and prior terms separately,
before presenting the system as a whole again.

A. The likelihood

Intuitively, we want to capture the following: in path
memory, if many paths connect node jW and node iY , it
means jW and iY must represent the world under similar
conditions (e.g. early morning sunshine). At run-time, if the
robot localises in iW , path memory would suggest that we
are also likely to localise in iY . For example, in Figure 5b
if we have localised to n3, we also expect to localise to n9
since it is connected by a path.

Recall that each binary element in Z represents an obser-
vation, and that each observation corresponds to a node in
W which either succeeded (zi = 1) or failed to localise
(zi = 0). We make the assumption that all localisation
attempts in Z are conditionally independent, given that we
know which candidate node iY will localise successfully.
This is a simplification of reality, since the probability of
localising to a node on a path is affected by the success or
failure of all neighbouring localisation attempts.

We express the likelihood term for a particular candidate
node iY as:

p(Z|y = i) ∝
|W|∏
j=1

p(zj |y = i). (2)

Previously, θ was introduced as a |Y | × |W | matrix. We
define a single element θi,j as:

θi,j = p(zj |y = i) (3)



and refer to the ith row in θ as θi, which corresponds to
p(Z|y = i).

We treat each observation in zj as a single Bernoulli
experiment parametrised by θi,j . We learn these parameters
from path memory:

θi,j ∝ p(y = i|zj)︸ ︷︷ ︸
Binomial

distribution

p(zj)︸ ︷︷ ︸
Beta

distribution

(4)

where θi is normalised such that
|W|∑
j=1

θi,j = 1. Since

the Beta distribution is the conjugate prior to the Binomial
distribution, the posterior is also a Beta distribution [18].
We calculate θi,j using the expectation of the resulting Beta
distribution:

θi,j =
Zi,j + αj

|W|∑
x=1

(Zi,x + αx)

(5)

where Zi,j is the number of times a path links jW and iY in
path memory, and the parameter αj specifies the prior Beta
distribution. We set αj = 1 to represent the probability that
in the absence of path memory, all observations are equally
likely. This can be thought of as adding “pseudocounts” to
the results from the binomial experiment in order to prevent
the “zero count problem” which can occur in sparse training
sets [19].

The likelihood term can be thought of as the probability
of the robot’s live trajectory generating the observation
vector Z , given that a particular candidate node localises
successfully. In the example in Figure 5b, we would say the
observation vector Z = [1, 1, 1, 1, 0] is unlikely if n5 were
to localise successfully. However, the observation vector
Z would be likely if n9 localised successfully, since this
corresponds with the knowledge in path memory. Thus, we
calculate the likelihood term as:

p(Z|y = i) ∝
n∏

j=1

θ
I(zj=1)
i,j (1− θi,j)I(zj=0) (6)

where I(x = a) is an indicator function, such that:

I(x = a) =

{
1 if x = a
0 otherwise

B. The prior

The prior models our initial belief in the probability
distribution over Y , in the absence of the observation vector
Z . The prior is calculated by querying path memory P
for the number of paths connecting the node nk currently
localised in, to each candidate node in Y . We bias the prior
towards candidate nodes with many paths connecting nk and
iY . An example of this is shown in Figure 5a, where paths
connect nk and the candidate nodes Y = {n5, n9}.

We use the parameter vector π to model the probability
distribution over Y , where πi is the probability that candidate
node iY will localise successfully. We model π as:

π = p(nk|y)︸ ︷︷ ︸
Multinomial
distribution

p(y)︸︷︷︸
Dirichlet

distribution

(7)

where p(nk|y) is a multinomial distribution and p(y) is
a Dirichlet distribution parametrised by the parameter vector
γ. Since the Dirichlet distribution is the conjugate prior to
the multinomial distribution, the posterior distribution is also
a Dirichlet distribution [18]. We calculate each element in
π using the Dirichlet expectation for the corresponding ith

candidate node:

πi =
Ni,k + γi
|Y|∑
x=1

(Nx + γx)

(8)

where Ni,k is the number of paths in path memory con-
necting nk and iY . We set γi = 1 to represent a uniform
distribution over the candidate nodes in the absence of path
memory.

C. Implementation

We began by introducing our system’s output as a prob-
ability distribution over the set of candidate nodes Y in
Equation 1. We have shown that this can be achieved by
simple event counting (Equations 5, 6 and 8), where events
are stored implicitly in path memory. This enables the robot
to learn from its past localisation history and make robust
yet computationally inexpensive predictions.

We calculate the probability distribution over the candidate
nodes Y using the equations for the likelihood (Equation 6)
and prior (Equation 8):

p(y = i|Z,θi,π) ∝ πi
n∏

j=1

θ
I(zj=1)
i,j (1− θi,j)I(zj=0) (9)

Finally, we rank the set of candidate nodes Y by the
probability distribution over Y so that relevant nodes are
prioritised over nodes unlikely to obtain a localisation.

VI. EVALUATION DATA

We evaluate our system on three challenging outdoor
datasets, covering a total of 206km.

A. Begbroke dataset

The Begbroke dataset (Figure 6) consists of 75km of
driving around a 0.7km loop of the Begbroke Science Park
in North Oxford. The dataset represents a 12-hour daylight
period, with data captured between 7am and 7pm, over a
period spanning two months. Data was captured using the
Oxford University RobotCar.

B. Keble dataset

The Keble dataset (Figure 7) consists of 56km of data
captured around a busy urban environment in central Ox-
ford. Data was collected using a Bumblebee stereo camera
attached to the handlebars of a bicycle. Data was collected
around a 2.2km route with many intersections and loop
closures, over a period of three months, between the hours



Fig. 6. The Begbroke datatset, consisting of a 0.7km loop with a total of
75km of data recorded.

Fig. 7. The Keble Dataset, consisting of a 2.2km route with a total of
56km of data recorded.

of 9am and 5pm. The dataset contains areas of harsh lighting
conditions and changes in weather, occlusion of the camera
by pedestrians and cars, and scene structure change.

C. Central Oxford dataset

The Central Oxford dataset (Figure 8) consists of 76km
of data captured over a 7.6km route in busy central Oxford.
Data was collected using one of the group’s autonomous
vehicles, the Bowler Wildcat. This dataset represents typical
city driving, and includes loop closures, travel in both
directions on the same road, occlusion of the camera as a
result of other vehicles, and difficult lighting conditions. Data
was captured between 9am and 7pm during summer.

VII. RESULTS

In this section we compare the performance of the ranking
policy Γ(path) with the baseline ranking policy Γ(distance)
over three challenging outdoor datasets. The results presented
here are obtained through 5-fold cross-validation. This is
implemented as follows. Firstly, the datasets are divided into
five groups. Four of the groups are used to create the experi-
ence graph, where new experiences are saved on localisation
failure as discussed in [1]. The remaining group is used to
localise in the experience graph, but the system is prevented
from adding new experiences (it may only localise). This
is repeated five times, so that each group of datasets is
used for localisation exactly once. The localisation results

Fig. 8. The Central Oxford dataset, consisting of a 7.6km route with a
total of 76km of data recorded.
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Fig. 9. The probability of travelling more than 10m without a successful
localisation is shown as a function of map size (the number of nodes in the
experience graph), where the length of the route is kept constant. Without
an informed ranking policy, localisation failure increases with map size,
whereas our proposed ranking policy Γ(path) results in an improvement by
a factor of 4 over time.

are aggregated to produce the graphs here, and represent the
probability of localisation failure on the robot’s next (unseen)
outing.

A. Life-long navigation

Figure 9 shows that using the baseline ranking policy
Γ(distance) on a robot with limited CPU cores results in
localisation performance that degrades as nodes are added to
the experience graph. Localisation performance is measured
as the probability of travelling more than 10m without
a successful localisation. The reduction in performance is
caused by high node density, where the baseline ranking
policy Γ(distance) is not able to reliably prioritise nodes
likely to localise successfully. Figure 10 plots the number
of candidate nodes |Y | as a function of distance for one
lap of the Begbroke Science Park. It also shows that only a
small portion of candidate nodes can result in successful lo-
calisation. This is because nodes represent the environment’s
appearance under different conditions, so are by definition
visually different to one another.

Figure 9 shows that the ranking policy Γ(path) provides
a significant improvement in localisation performance, re-
ducing the probability of failure by a factor of 4 as nodes
are added to the map. This is because the additional nodes
provide experience diversity (we can model the environment



100 200 300 400 500 600 700
0

20

40

60

80

Distance (m)

N
u

m
b

e
r 

o
f 

n
o

d
e

s

 

 
Failed
Successful

Fig. 10. The size of the candidate node set |Y| is plotted as a function of
distance around one loop of the Begbroke Science Park. The red and green
areas are the number of candidate nodes that would have resulted in failed
and successful localisation attempts respectively, had the robot attempted
to localise against every candidate node in Y . This graph was calculated
offline for demonstration purposes - at run-time, the robot can make only
a finite number of localisation attempts and needs to predict which node is
likely to result in localisation success.
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(a) Begbroke dataset
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(b) Keble dataset

2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

Number of cores

P
ro

b
a

b
ili

ty

 

 
Γ(path)
Γ(distance)

(c) Central Oxford dataset

Fig. 11. The probability of travelling more than 10m without a successful
localisation in the experience graph, as a function of the number of
cores available during localisation. We see that in all three datasets the
ranking policy leveraging path memory, Γ(path), is less likely to result in
localisation failure compared with the ranking policy based on distance,
Γ(distance).

over a wide spectrum of appearance change), which the
ranking policy Γ(path) exploits by selecting experiences that
are more likely to localise the live camera image successfully.

This is a significant result for robots with limited computa-
tional resources, as it demonstrates that Γ(path) enables long-
term autonomy and life-long learning on these platforms.

B. Localisation performance

We present our key result in Figure 11, which compares
the ranking policies Γ(path) and Γ(distance) for the Beg-
broke, Keble and Central Oxford datasets. The graphs show
the probability of travelling further than 10m without a
successful localisation in the experience graph as a function
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Fig. 12. Graph showing the probability of travelling a certain distance
without successfully localising in the experience graph, using the Begbroke
dataset. During this period, the robot proceeds in open-loop using visual
odometry. The graph shows that using Γ(path) maintains performance using
using half the number of cores when comparing Γ(path) with Np = 2 and
Γ(path) with Np = 4.

of the number of CPU cores available during localisation.
During periods of localisation failure, the robot must proceed
in open-loop on visual odometry, which acculumulates drift
in the position estimate. After travelling 10m without a
successful localisation, the robot begins a re-localisation
procedure using FAB-MAP [15].

From Figure 11, it is clear that for both ranking poli-
cies, localisation failures reduce as the number of cores
are increased, converging on the best possible localisation
performance given infinite resources. This is because a
greater number of localisation attempts can be made in a
single iteration, resulting in a statistically higher chance
of choosing the right node. However, Γ(path) clearly out-
performs Γ(distance) when the number of CPU cores is
fixed to a small number. In terms of efficiency, Γ(path)
results in approximately the same localisation performance
as Γ(distance), but uses only half the number of CPU cores.

Of the three datasets, the Begbroke dataset (Figure 11a)
showed the biggest improvement using Γ(path), reducing
localisation performance by a factor of 5 for number of
cores Np = 2. We attribute this to the large amount
of training data available. We also note that the Central
Oxford dataset’s performance with Γ(path) and Γ(distance)
converges at approximately six CPU cores, fewer than the
Begbroke and Keble datasets. This is because the Central
Oxford dataset does not include as much training data
(repeat traverses through the same area) as the Begbroke
and Keble datasets, resulting in reduced experience density.
Over time, experience density would certainly increase and
require more CPU cores to obtain the optimal performance
with Γ(distance).

Figure 12 uses the Begbroke dataset to present the prob-
ability of travelling a certain distance without a successful
localisation. The graph shows that Γ(path) and number of
CPU cores Np = 2 provides nearly identical performance to
Γ(distance) and Np = 4, showing that the same performance
is obtained while performing half the computation work.

We monitored the computational cost of implementing
Γ(path) by observing the processing time on a 2.3GHz Intel
Core i7 processor. We found that processing times never
exceeded 0.5ms. This is a negligible portion of the processing
time required to perform a single localisation attempt.

We note that while Γ(path) outperforms Γ(distance) in
every test, Γ(distance) still performs reasonably well con-
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Fig. 13. Graph showing that localisation performance is not sensitive to
T , for T > 5. This parameter controls the number of preceding localisation
iterations to remember when generating the set of observation nodes W .

sidering it operates on very limited information. This is
because the point features used by visual odometry during
localisation have limited invariance to translation, so nodes
that are closer to the robot are more likely to result in suc-
cessful feature correspondences and consequently in success-
ful localisation. However, this approach scales poorly with
experience-density, requiring more CPU cores to process
greater numbers of candidate nodes for reliable localisation.

C. The effect of changing T

Parameter T controls the number of preceding localisation
iterations to remember when generating the summary of re-
cent localisation attempts W and corresponding observation
vector Z (see Section V). Figure 13 shows that between
T = 5 and T = 200, localisation failure increases very
slightly with T , a result of observations close to the robot
being more relevant than those further away. However, this
effect is minimal and for 5 > T > 200 the localisation
performance is not sensitive to the parameter T .

For T = 0 the performance decreases significantly. This is
because the likelihood term (Section V-A) is not used when
T = 0 and the candidate nodes are predicted solely using
the prior distribution (Section V-B). This justifies the use of
the likelihood term in Section V-A.

VIII. CONCLUSION

We have presented a technique for life-long, vast-scale
localisation in challenging outdoor conditions. We have
demonstrated how the prioritised recollection of relevant
experiences is crucial for robots with finite resources and
a limited amount of time for processing. We evaluate our
system on three different datasets totalling 206km of outdoor
travel. We show that an informed ranking policy that exploits
knowledge of the robot’s past use of the experience-map
reduces localisation failure by as much as a factor of 5 for
robots with a limit on the number of CPU cores and process-
ing time for localisation. Even in the case of sparse training
data, the system still outperforms the baseline ranking policy
based on distance. From an efficiency point-of-view, we are
able to maintain localisation performance while using half
the number of CPU cores as previously.

The computational cost of implementing this system is
minimal and the performance gains substantial. We show
that by predicting relevant experiences, we are able to work
smarter and not harder.
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