
Robust Legged Robot State Estimation
Using Factor Graph Optimization

David Wisth, Marco Camurri, Maurice Fallon

Abstract— Legged robots, specifically quadrupeds, are be-
coming increasingly attractive for industrial applications such
as inspection. However, to leave the laboratory and to become
useful to an end user requires reliability in harsh conditions.
From the perspective of perception, it is essential to be able
to accurately estimate the robot’s state despite challenges such
as uneven or slippery terrain, textureless and reflective scenes,
as well as dynamic camera occlusions. We are motivated to
reduce the dependency on foot contact classifications, which
fail when slipping, and to reduce position drift during dynamic
motions such as trotting. To this end, we present a factor
graph optimization method for state estimation which tightly
fuses and smooths inertial navigation, leg odometry and visual
odometry. The effectiveness of the approach is demonstrated
using the ANYmal quadruped robot navigating in a realis-
tic outdoor industrial environment. This experiment included
trotting, walking, crossing obstacles and ascending a staircase.
The proposed approach decreased the relative position error
by up to 55% and absolute position error by 76% compared
to kinematic-inertial odometry.

I. INTRODUCTION

For legged robots to become truly autonomous and useful
they must have a consistent and accurate understanding of
their location in the world. This is essential for almost
every aspect of robot navigation, including control, motion
generation, path planning, and local mapping.

Legged robots pose unique challenges to state estimation.
First, the dynamic motions generated by the robot footsteps
can induce motion blur on camera images as well as slippage
or flexibility in the kinematics. Second, the strict real-time
requirements of legged locomotion require low latency, high
frequency estimates which are robust. Third, the sensor
messages are heterogeneous, with different frequencies and
latencies. Finally, the conditions where legged robots are ex-
pected to operate are far from ideal: poorly lit or textureless
areas, self-similar structures, muddy or slippery grounds are
some examples.

For these reasons, legged robotics have traditionally relied
on filter-based state estimation, using proprioceptive inputs
(IMUs, force/torque sensors and joint encoders) [1], [2], [3].
While these approaches give reliable and high frequency
estimates, they are limited in their ability to reject linear
and angular position drift.

For statically stable walking, leg odometry drift is low
enough that terrain mapping can be used for continuous
footstep planning and execution [4]. However for dynamic
locomotion, position drift is much higher which makes such
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Fig. 1. Experiments were conducted using an ANYbotics ANYmal
quadruped [5] in outdoor environments, including the Oil Rig training
facility shown above. The ANYmal robot has 12 actuated degrees of
freedom, an IMU, dual forward-facing RealSense D435 cameras and a
Velodyne VLP-16 LIDAR.

mapping ineffective, as illustrated in Fig. 2. The result of this
is that we do not know what the shape of the terrain is under
the robot due to drift and cannot properly plan motions.

To overcome this limitation, some previous works have
incorporated exteroceptive inputs (cameras and LIDAR) into
filtering estimators in a loosely coupled fashion. This has
been successfully demonstrated on legged machines operat-
ing in field experiments [6], [7].

However, because these filters marginalize all previous
states of the robot, it is not possible to fully exploit a (recent)
history of measurements, as smoothing methods can.

Research into smoothing approaches applied to Visual-
Inertial Navigation Systems (VINS) is now well established
in the Micro-Aerial-Vehicle (MAV) community. On a MAV
this approach have been successful due to careful time
synchronization of the IMU and cameras, smooth vehicle
motion and also the absence of the challenges of articulated
legged machines.

A recent work by Hartley et al. [8] demonstrated that a
VINS approach could be adapted to inertial-legged legged
robots — in their case, a biped. Their initial results were
promising, but only tested in a controlled scenario. Addi-
tionally, vision was integrated as relative pose constraints,
rather than incorporating the feature residuals directly into
the optimization.

Contribution

This paper aims to progress the deployment of state esti-
mation smoothing methods in realistic application scenarios.



Fig. 2. An elevation map created by the GridMap package [9] while
walking over flat terrain shows discrete ridges due to position drift in
the current kinematic state estimator. This makes dynamic locomotion and
footstep planning much more challenging.

Compared to previous research, we present the following
contributions:
• We present the first state estimation method based

on factor graphs that tightly integrates visual features
directly into the cost function (rather than adding a
pose constraint from a separate visual inertial module),
together with preintegrated inertial factors and relative
pose constraints from the kinematics. We will refer
to our proposed method as VILENS (Visual Inertial
LEgged Navigation System);

• We demonstrate the performance and robustness of
our method with extensive experiments on two field
scenarios. Challenges included motion blur, dynamic
scene occludants, textureless and reflective scenes and
locomotion on uneven, muddy and slippery terrain;

• We demonstrate that a low-cost consumer-grade depth
camera, the RealSense D435, is sufficient to signifi-
cantly improve the state estimate in these conditions.

The remainder of the article is presented as follows: in
Section II we describe the previous research in the field;
the theoretical background of the algorithm is described in
Sections III and IV. Section V outlines the details of our
implementation. The experimental results and their discus-
sion are shown in Sections VI and VII. Finally, Section VIII
concludes the article.

II. RELATED WORK

Multi-sensor fusion for mobile robot state estimation has
been widely described in the literature [10]. Here, we limit
our discussion to filtering and smoothing approaches with
particular focus on dynamic legged robots.

A. Filtering Approaches

Since the diffusion of filtering methods for proprioceptive
state estimation [1], researchers have been interested in
including exteroceptive inputs, particularly Visual Odometry
(VO).

Ma et al. [6] presented a method based on an Extended
Kalman Filter (EKF) with an error state formulation de-
veloped for the Boston Dynamics LS3. The system was
primarily driven by inertial predictions with VO updates:
a modular sensor head performs the fusion of very high

quality tactical grade IMU with two hardware synchronized
stereo cameras. The leg odometry (fused with an additional
navigation grade IMU in the body) was used only in case
of VO failure. Their extensive evaluation (over several km)
achieved 1 % error per distance traveled.

Nobili et al. [7] recently presented a state estimator for the
HyQ quadruped robot which used an EKF to combine iner-
tial, kinematic, visual, and LIDAR measurements. In contrast
to [6], the EKF was driven by an inertial process model with
the primary corrections coming from leg odometry (synchro-
nized in EtherCAT) at the nominal control rate (1 kHz). The
VO updates and an ICP-based matching algorithm were run
on a separate computer at lower frequency and integrated
into the estimator when available. This allowed the use of
the estimator inside the control loop and has been recently
demonstrated in dynamic motions with local mapping [11].

B. Smoothing Approaches

There has been a significant body of work on visual
inertial navigation, especially for use with MAVs. A recent
benchmark paper [12] evaluated a number of state-of-the-
art methods on the EuRoC dataset [13]. The maturity of
the field was highlighted by the fact that many algorithms
achieved an average Relative Position Error (RPE) of less
than 20 cm per 35 m traveled. The authors concluded that
the best performing algorithms were OKVIS [14], ROVIO
[15], and VINS-Mono [16]. All of these algorithms perform
windowed optimization to achieve the most accurate state
estimate while bounding computation time. An exception
was SVO+GTSAM [17] which loosely coupled the SVO
visual odometry algorithm with IMU data using iSAM2 as
the smoothing back-end [18].

The methods were, however, typically designed assuming
that the IMU and cameras were synchronized in hardware,
and that the vehicle motions were smooth. They are difficult
to implement on legged platforms due to their hardware
complexity and the high vibrations caused by locomotion.

As mentioned above, the first approach to use smooth-
ing/optimization on legged robots was the work of Hartley
et al. [8] which presented a fusion of kinematic, inertial,
and visual information, again using iSAM2 as the smooth-
ing back-end. They presented a mathematical framework
to model contact points as landmarks in the environment,
similar to [1]. Their system incorporated contact information
from only a single contact point at a time, and directly
integrates (as pose constraints) the relative motion estimate
of the SVO2 [19] algorithm. The approach was tested using
inertial and visual input from a MultiSense S7 sensor (which
was hardware synchronized) mounted on a Cassie biped
(from Agility Robotics). A short indoor experiment of 60 s
showed that adding vision into the optimization reduced the
relative position error.

Our approach aims to combine best practice from the
mature field of VINS – including windowed optimization and
tight integration of visual features – with legged odometry to
provide robust state estimation for legged robots. In Section



Sensor Model Hz Specs

IMU Xsens MTi-100 400 Init Bias: 0.2 ◦/s | 5mg
Bias Stab: 10 ◦/h | 15mg

Camera RealSense D435 30

Keble College Dataset:
Resolution: 848× 480 px
FoV: 91.2◦ × 65.5◦

Imager: IR global shutter
Oil Rig Dataset:
Resolution: 640× 480 px
FoV: 69.4◦ × 42.5◦

Imager: RGB rolling shutter

Encoder ANYdrive 400 Resolution: <0.025◦

Torque ANYdrive 400 Resolution: <0.1Nm

TABLE I
SENSOR SPECIFICATIONS

VI we show our system outperforming both kinematic-
inertial and visual-inertial approaches in large-scale outdoor
urban and industrial experiments.

III. PROBLEM STATEMENT

We wish to track the linear position and velocity of a
12 Degrees of Freedom (DoF) legged robot equipped with
an industrial grade MEMS IMU, an RGB/IR camera, joint
encoders and torque sensors. The sensor specifications are
detailed in Table I.

In Fig. 3 we provide a schematic of the reference frames
involved. The pose of the robot’s base B expressed in the
fixed-world, inertial frame W is defined as:

TWB =

[
RWB pW WB

0 1

]
∈ SE(3)

The IMU and camera sensing frames are I and C, respec-
tively. The relative transformations between B, I and C are
assumed to be known from CAD design. The location of a
foot in base coordinates is expressed as pB BK.

A. State Definition

Borrowing the notation from [17], we define the state of
the system at time ti as:

xi , [Ri,pi,vi,bi] (1)

where the couple (Ri,pi) expresses the robot pose and vi ∈
R3 is the robot linear velocity. As is common in this field, the
stack of gyro and accelerometer IMU biases bi = [bω

i ba
i ] ∈

R6 replaces the angular velocity, which is directly measured
by the IMU.

Let Kk be the set of camera keyframe indices up to time
tk ∈ R. We assume that for each keyframe image Ci (with
i ∈ Kk) a number of landmark points mW j are visible, where
j ∈ Mi ⊆ M; Mi indicates the set of landmark indices visible
from keyframe Ci out of the full set of landmarks, M. We
then define the objective of our estimation problem Xk as
the history of robot states and landmarks detected up to tk:

Xk ,
⋃
∀i∈Kk

{xi},
⋃
∀j∈Mi

{mj}

 (2)

W
B

C
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Fig. 3. Reference frames conventions. The world frame W is fixed to earth,
while the base frame B, the camera’s optical frame C, and the IMU frame, I
are rigidly attached to the robot’s chassis. When a foot touches the ground
(e.g., the Right Front, RF), a contact frame K (perpendicular to the ground
and parallel to W’s y-axis) is defined. The projection of a landmark point
m onto the image plane is π(m).

Fig. 4. The sensors inputs are images, IMU measurements, and joint states,
which are in general unsynchronized with each other.

B. Measurements

The input measurements consist of camera images, IMU
readings, and joint sensing (position, velocity and torque).
The measurements are not assumed to be synchronized.
However, we assume they have a common time frame. The
IMU and joint states have the same frequency (see Fig. 4).
For each pair of consecutive keyframe indices ∆i = i −
1, i ∈ Kk we define I∆i as the set of IMU measurements
indices such that ∀ m ∈ I∆i we have ti−1 ≤ tm < ti.
We then indicate with I∆i =

⋃
∀j∈I∆i

(ωj ,aj) all angular
velocity and proper acceleration measurements collected
between time ti−1 and ti. Analogous definitions apply to
joint states Q∆i =

⋃
∀j∈Q∆i

(qj , q̇j , τ j), which include all
joint positions, velocities and torques collected between time
ti−1 and ti. Strategies to account for synchronization issues
are discussed in Section V-A.

Finally, we then let Zk denote the set of all measurements
up to time tk:

Zk ,
⋃
∀i∈Kk

{I∆i, Ci,Q∆i} (3)

C. Maximum-A-Posteriori Estimation

The aim of the factor graph framework is to maximize the
posterior of the state Xk given the inputs Zk:

X ∗k = arg max
Xk

p(Xk|Zk) ∝ p(X0)p(Zk|Xk) (4)
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Fig. 5. The factor graph consists of state and landmark nodes linked by
prior, visual, inertial, and leg odometry factors.

Where the last member of (4) is the likelihood function,
which is proportional to the posterior and therefore can be
used as a cost function. If the measurements are conditionally
independent and corrupted by zero mean Gaussian noise,
then (4) is equivalent to a least squares problem of the form:

X ∗ = arg min
Xk

∑
T

∑
∀i∈Kk

‖rTi‖2ΣTi
(5)

where rTi is the residual of the error between the predicted
and measured value of type T (e.g., IMU I) at keyframe
index i ∈ Kk. The quadratic cost of each residual is weighted
by the corresponding covariance ΣTi .

From (2) and (3) the optimization becomes the following:

X ∗ = arg min
X

∑
j∈M
‖rmj,0

‖2Σmj,0
+
∑
i∈Kk

‖rI∆i
‖2ΣI∆i

+

+ ‖r0‖2Σ0
+
∑
i∈Kk

∑
j∈Mi

‖rmj
‖2Σmj

+
∑
i∈Kk

‖rQ∆i
‖2ΣQ∆i

(6)

where the residuals are from: landmark prior, IMU, state
prior, camera and leg odometry factors, respectively. These
factors will be used to create the factor graph structure shown
in Fig. 5. In the next section we define each residual of (6).

IV. FACTOR DEFINITIONS

A. Prior Factors

Prior factors are used to anchor the unobservable modes
of the system (i.e., position and yaw) to a fixed reference
frame, typically during initialization. The residual is defined
as the error between the estimated state x0 and the prior xp0

:

r0(x0,Z) =


Φ(T−1

0 Tp0)
v0 − vp0

ba
0 − ba

p0

bω
0 − bω

p0

 (7)

where Φ : SE(3) 7→ R6 is the lifting operator [17].

B. Visual Odometry Factors

The visual odometry residual consists of two components.
The first is the difference between the measured landmark
pixel location, (ui,j , vi,j), and the re-projection of the
estimated landmark location into image coordinates, (πu, πv)

using the standard radial-tangential distortion model. The
residual is defined as:

rmj =

(
πu(Ri,pi,mj)− ui,j
πv(Ri,pi,mj)− vi,j

)
(8)

The second is the error between the prior on the landmark
location mj,0 and the estimated landmark location mj :

rmj,0 = mj −mj,0 (9)

The landmark prior helps to constrain the estimated land-
mark location in space if it is not well-constrained by the
measurements, and is explained further in Section V.

C. Preintegrated IMU Factors

We use the IMU preintegration algorithm described by
Forster [17]. This approach preintegrates the IMU measure-
ments between nodes in the factor graph to provide high
frequency state updates between optimization steps. The
preintegrated IMU measurements are then used to create a
new IMU factor between two consecute keyframes. This will
use an error term of the form:

rI∆i
=
[
rT∆R∆i

, rT∆p∆i
, rT∆v∆i

]
(10)

where I∆i are the IMU measurements between times i− 1
and i. The individual elements of the residual are defined as:

r∆R∆i
= log

(
∆R̃∆i(b

g
i−1)

)
RT

i−1Ri (11)

r∆p∆i = RT
i−1

(
pi − pi−1 − vi−1∆t∆i −

1

2
g∆t2∆i

)
−∆p̃∆i(b

g
i−1, b

a
i−1) (12)

r∆v∆i = RT
i−1 (vi − vi−1 − g∆t∆i)

−∆ṽ∆i(b
g
i−1, b

a
i−1) (13)

r∆b∆i = bi − bi−1 (14)

where ∆R̃∆i,∆p̃∆i,∆ṽ∆i are the preintegrated IMU mea-
surements defined in [17].

D. Leg Odometry Factors

Leg Odometry (LO) is the process of estimating the
incremental motion of a walking robot given its kinematic
sensing as well as information about the contact the robot’s
legs make with the ground. The main assumption behind LO
measurements is that the absolute velocity of a contact point
is zero. This is assumed to occur when the Ground Reaction
Force (GRF) at a contact point is inside a hypothetical
friction cone. Torques at contact points are neglected as
quadruped robots’ feet are idealized as points.

Since the GRF, the terrain inclination, and the coefficient
of static friction are typically unknown, an appropriate fusion
of the dynamic model, kinematics, and IMU is required.
In this work, we rely on the state estimator provided by
ANYbotics, the Two-State Implicit Filter (TSIF) [3]. We
resolve the estimate from the TSIF into estimates of relative
base motion and use these to formulate additional factors to
constrain the robot’s motion.

So as to synchronize kinematic measurements to the
camera timestamps, when given a new keyframe at time
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Fig. 6. The proposed state estimation architecture consists of measurement
handlers which process the sensor input and the current state from the
optimizer to create the factors. These factors are then smoothed using
iSAM2 for incremental factor graph optimization.

ti (with i ∈ Kk), we extract from the filter the base pose
estimate immediately before and after ti−1 and also ti. The
corresponding estimated poses T̃i−1, T̃i are then computed
via linear/slerp interpolation and used to produce the relative
pose constraint:

rQ∆i = Φ
(

(T−1
i−1Ti)

−1T̃−1
i−1T̃i

)
(15)

where the covariance ΣQ∆i
is provided by the filter, and Φ

is the lifting operator defined in [17].

E. Zero Velocity Update Factors

To limit drift and factor graph growth when the robot
is stationary, we detect zero velocity motion from camera
frames by calculating the average feature motion:

∆x =

∑k
i=k−N

(√
(ui − ui−1)2 + (vi − vi−1)2

)
N + 1

(16)

If ∆x is below a certain threshold β over N successive
frames, we stop adding image landmark measurements to
the graph and simply add a zero relative pose factor to the
graph of the same form as (15).

V. IMPLEMENTATION

The factor graph optimization was implemented using the
iSAM2 incremental optimization library [18]. The structure
of the system is shown in Fig. 6. The algorithm consists of a
series of measurement handlers running in separate threads
that process the different sensor inputs. When a new node is
created (e.g., when an image measurement is received) each
of the measurement handlers adds a new factor to the graph.
The output of the factor graph optimization is then fed back
to the measurement handlers.

A. Synchronization

Given two consecutive keyframe indices i − 1, i ∈ Kk,
preintegrating all IMU measurements between times ti−1 and
ti would result in an incorrect motion estimation as the IMU
measurement timestamps may not be aligned with the image
frames (see Fig. 7). To avoid this, we correct the ∆t of

Keyframes

IMU

Fig. 7. We consider and account for camera/IMU asynchronousity so as
to improve the accuracy of the IMU factors.

the IMU measurements directly before and after the camera
image timestamp ti:

∆ti−1 = tIMU + ∆tIMU − ti (17)
∆ti = ti − tIMU (18)

where we assume constant acceleration and angular velocity
between IMU measurements.

B. Visual Feature Tracking

A core component of the VILENS system is the tight inte-
gration of visual features into the optimization. It can provide
lower drift state estimates by tracking and optimizing the
robot state and landmark positions over many observations.
Our visual feature tracking method is based upon the robust
pixel-based tracking approaches used in ROVIO [20] and
VINS-Mono [16].

Visual features are first detected using the Harris Corner
Detector and then tracked through successive images using
the Kanade-Lucas-Tomasi feature tracker. This method pro-
vides sub-pixel accuracy and is well-suited to the constrained
but jerky motions typical of a legged robot. After the track-
ing, outliers are rejected using RANSAC with a fundamental
matrix model similar to [16]. New features are then detected
in the image to maintain a minimum number of tracked
features. These new features are constrained to be a minimum
distance (in image space) from existing features, to ensure
an even distributed.

To limit the graph growth, we estimate the location of a
feature in the world frame only after it has been observed
more than Nobs = 30 times. When depth is available, it is
used for the initial landmark location estimate. When only
monocular data are available, we triangulate the landmark
location mj,0 using the last Nobs frames with the Direct
Linear Transformation (DLT) algorithm from [21]. If the
landmark is successfully triangulated with a depth smaller
than dmax = 50 m then this and successive measurements of
the same landmark are added to the graph.

C. Marginalization

An important consideration in a legged robot system
is latency, and without marginalization, the time taken by
iSAM2 optimization increases over time [18]. This becomes
an important consideration when operating the robot for
extended periods of time.

We marginalize states older than a threshold (typically,
10 s) and landmarks which are no longer observed, whilst
keeping a minimum number of nodes in the factor graph.
These marginalized states and landmarks are replaced with a
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Fig. 8. Performance comparison between our baseline VILENS system
(blue), ROVIO (red), OKVIS (green), and VINS-Mono (cyan) compared to
VICON ground truth for EuRoC V2 01 dataset.

simple linear Gaussian factor based on the current lineariza-
tion point of the node. This Gaussian factor has the same
form as the residual defined in (7).

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental evaluation of
the proposed algorithm on three different datasets: EuRoC,
Keble College and Oil Rig. The first dataset is a purely
VINS dataset collected on a MAV. The other two datasets
were collected using our ANYmal robot in different outdoor
environments: a college campus and an industrial oil rig
firefighter training facility.

A. EuRoC Dataset

To demonstrate that our approach builds upon a stand-
alone VINS system, we evaluated it on a portion of the
EuRoC benchmark dataset [13] and compared it to sev-
eral state-of-the-art VINS algorithms including OKVIS [14],
ROVIO [20], and VINS-Mono [16]. The estimated trajectory
from the EuRoC V2 01 dataset is shown in Fig. 8.

In brief, we found that our core system can achieve
comparable performance to these VINS algorithms. This
demonstrates that the estimator can function without leg
odometry information, which is important when that modal-
ity becomes unreliable (e.g., on slippery or soft ground).

B. Outdoor Datasets Experimental Setup

The outdoor experiments were conducted using the
12-DoF ANYmal quadruped [5] (Fig. 1). The measurements
from the motors (i.e., joint states) were synchronized via
EtherCAT, while the other sensors were by Network Time
Protocol. The sensor configurations used for the two datasets
are specified in Table I.

To generate ground truth, we collected a dense gravity-
aligned prior map of the site using the commercial Leica
BLK-360 3D laser scanner. Afterwards, we performed ICP
localization (using the AICP algorithm [22]) against the prior
map using data from ANYmal’s Velodyne VLP-16 LIDAR.

Fig. 9. The Keble College dataset involved the ANYmal trotting around
an open urban environment.

RPE µ(σ) [m] Yaw Error µ(σ) [deg]

Dataset TSIF [3] VILENS TSIF [3] VILENS

Keble 1 0.53 (0.21) 0.30 (0.12) 6.64 (2.23) 0.99 (0.80)
Keble 2 0.51 (0.10) 0.23 (0.10) 5.72 (0.94) 1.47 (1.07)
Keble 3 0.67 (0.10) 0.52 (0.15) 6.68 (0.80) 3.86 (1.90)
Keble 4 0.47 (0.11) 0.40 (0.10) 3.32 (1.15) 1.13 (1.46)

Oil Rig 0.44 (0.37) 0.41 (0.18) 4.89 (3.38) 3.68 (4.10)

TABLE II
MEAN (AND STANDARD DEVIATION) PERFORMANCE ON THE KEBLE

COLLEGE AND OIL RIG DATASETS.

This provided a ground truth trajectory with approximately
5 cm accuracy, but only at 2 Hz.

C. Keble College Dataset

The first outdoor dataset was collected in a urban environ-
ment at Keble College, Oxford, UK. The dataset consists of
the robot trotting on a concrete path around a 28 m× 60 m
open lawn surrounded by a residential building (Fig. 9). The
main challenges were vegetation moving in the wind, long
distances to visual features (>10 m), and limited angular
motion, which made feature triangulation difficult.

We ran four trials each approximately 22 m in length and
evaluated the mean and standard deviation of the Relative
Position Error (RPE) over a 10 m distance (see Table II).
Compared to the kinematic-inertial estimator, our algorithm
reduces the RPE by 15 % to 55 % and yaw error by 42 % to
85 %, as visual features tracked over many frames constrain
pose drift.

D. Oil Rig Dataset

A second outdoor dataset was collected at an industrial
firefighter training facility in Moreton-In-Marsh, UK (Fig. 1).
The facility closely matches the locations where ANYmal is
likely to be deployed in future.

This 110 m (22 min) long dataset involves the ANYmal
robot trotting through the facility, climbing over a slab,
and walking up a staircase into a smoke-blackened room.
Challenging situations include: featureless areas, stationary



RPE µ(σ) [m] Yaw Error µ(σ) [deg]

Dataset TSIF VINS VILENS TSIF VINS VILENS

Keble 1 0.30 0.36 0.25 4.28 0.74 0.75
(0.06) (0.12) (0.13) (1.07) (0.61) (0.56)

Oil Rig 1.09 5.33 0.34 10.38 5.03 1.21
(0.09) (0.53) (0.12) (0.75) (3.21) (0.90)

TABLE III
MEAN (AND STANDARD DEVIATION) PERFORMANCE OF TSIF, VILENS

AS VINS SYSTEM, AND VILENS BEFORE VINS FAILURE (∼70 s)

VILENS TSIFGround Truth

0 5 10 m

Fig. 10. Top view of the estimated trajectories of VILENS (blue), TSIF
(magenta), and ground truth (green) on the Oil Rig Dataset.

periods with intermittent motion, dynamic obstacles occlud-
ing large portions of the image, non-flat terrain traversal, and
foot slip caused by a combination of mud, oil, and water on
the ground (Fig. 11).

Figure 10 shows the estimated trajectory from VILENS,
compared to TSIF [3] and ground truth. The Absolute
Translation Error (ATE) for VILENS is 76 % lower compared
to the TSIF (1.65 m and 6.88 m, respectively).

Looking at the relative performance over 10 m, the error
reduction is 7 % for RPE and 25 % for yaw (Table III). This
suggests that the Oil Rig dataset is more challenging than
Keble, since the accuracy at small scale is closer to the TSIF
(see Section VII).

Note that performance evaluation against the VINS algo-
rithms mentioned in Section VI-A was not possible because
they either failed to initialize due to the lack of motion
or diverged after a short period. This is also confirmed in
Table III, where we evaluated the performance of VILENS
as standalone VINS system against TSIF and full VILENS.
Without Leg Odometry factors, VILENS fails for all the
datasets except the first 70 s of Keble 1 and Oil Rig, where
it performs worse or same.

E. Timing

A summary of the key computation times in the proposed
algorithm are shown in Table IV. Since the kinematic-inertial
filter, the image processing, and the optimization are run
in separate threads, the system is capable of outputting a

Thread Module µ(σ) [ms]

Optimization
Factor Creation 10.80 (4.50)
Optimization 10.05 (7.69)
Marginalization 0.82 (0.97)

Total 21.67 (13.12)

Image Proc

Image Equalization 0.87 (0.51)
Feature Tracking 2.04 (0.98)
Outlier Rejection 1.74 (1.87)
Feature Detection 5.33 (0.91)

Total 9.99 (4.27)

TABLE IV
MEAN (AND STANDARD DEVIATION) PROCESSING TIME FOR

COMPONENTS OF THE VILENS SYSTEM, ON THE OIL RIG DATASET.

Fig. 11. Notable situations within the Oil Rig dataset. Top-Left: VILENS
outperforms TSIF where there are many visual features. Top-Right: VILENS
and TSIF perform similarly where there is no structure in front of the robot.
Bottom: Moving objects and reflections are robustly handled by VILENS.

high-frequency kinematic-inertial state estimate (for control
purposes) at 400 Hz, and an optimized estimate incorporating
visual features at approximately 10 Hz.

VII. DISCUSSION

In the previous section, we have demonstrated that
VILENS outperforms kinematic-inertial and visual-inertial
methods for all the datasets. However, from Table II we can
see that the gap between VILENS and TSIF is not uniform
across the datasets. An in-depth analysis of performance was
limited by the accuracy and frequency of our LIDAR ground
truth. Nonetheless, we see that the feature quality has an
influence of the drift rate over small scales.

In Fig. 12 we compare the drift rate of VILENS and TSIF
over different distance scales for the Keble College and the
Oil Rig datasets. The latter experiment is more challenging
from the perspective of exteroception and as a result the scale
at which VILENS starts to outperform TSIF is larger. This is
due to the tracking of poor quality features in the conditions
highlighted in Fig. 11.

In future work, we are motivated to improve performance
in these challenging scenarios by exploring the use of re-
dundant or wider field-of-view cameras as well as different
methods of incorporating the kinematics directly into the
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Fig. 12. Mean RPE for VILENS and TSIF at different distance scales.
Top: Keble College Dataset. Bottom: Oil Rig Dataset. The Oil Rig dataset is
more challenging and therefore VILENS outperforms TSIF at larger distance
(8.5m) than for Keble.

factor graph. Additionally, as part of an ongoing project,
we intend to test performance in soft and compliant surface
materials such as sand, mud and gravel where we envisage
the visual part of the estimator predominating during sinking,
sliding and slipping.

VIII. CONCLUSION

In this paper, we have presented VILENS (Visual Iner-
tial LEgged Navigation System), a robust state estimation
method for legged robots based on factor graphs, which
incorporates kinematic, inertial and visual information. This
method outperforms the robot’s kinematic-inertial estimator
and robustly estimates the robot trajectory in challenging sce-
narios, including textureless areas, moving occludants, reflec-
tions and slippery ground. Under the same conditions, current
state-of-the-art visual-inertial algorithms diverge rapidly.
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