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Abstract— State estimation techniques for humanoid robots
are typically based on proprioceptive sensing and accumulate
drift over time. This drift can be corrected using exteroceptive
sensors such as laser scanners via a scene registration proce-
dure. For this procedure the common assumption of high point
cloud overlap is violated when the scenario and the robot’s
point-of-view are not static and the sensor’s field-of-view (FOV)
is limited. In this paper we focus on the localization of a robot
with limited FOV in a semi-structured environment. We analyze
the effect of overlap variations on registration performance
and demonstrate that where overlap varies, outlier filtering
needs to be tuned accordingly. We define a novel parameter
which gives a measure of this overlap. In this context, we
propose a strategy for robust non-incremental registration. The
pre-filtering module selects planar macro-features from the
input clouds, discarding clutter. Outlier filtering is automat-
ically tuned at run-time to allow registration to a common
reference in conditions of non-uniform overlap. An extensive
experimental demonstration is presented which characterizes
the performance of the algorithm using two humanoids: the
NASA Valkyrie, in a laboratory environment, and the Boston
Dynamics Atlas, during the DARPA Robotics Challenge Finals.

I. INTRODUCTION

The primary input to a bipedal locomotion control system
is a high frequency estimate of the robot’s state — the 6
degrees-of-freedom (DOF) pose of the robot’s pelvis and
its joints configuration. The accuracy of the state estimate
is critically important to facilitate effective control and to
achieve greater autonomy by maintaining consistent and pre-
cise reference of the terrain and objects in the environment.

Approaches for state estimation which have been tested
on humanoid robots fuse proprioceptive measurements from
joint encoders, contact sensors and inertial sensors. Drift in
the estimate is reflected by mis-alignment of consecutive
point clouds. However, point cloud registration algorithms
are highly sensitive to the properties of the input clouds,
such as structural features (the presence of planar surfaces),
the initial alignment error and the degree of overlap.

Overlap is influenced by multiple factors such as the
presence of non-static elements in the scene, the viewpoint
of the sensor/robot and its field-of-view (FOV). In addition,
while the registration of consecutive point clouds leads to
accumulated errors, the registration of the current cloud to a
common reference prevents accumulated errors but becomes
more challenging as the robot moves away from its original
pose. Indeed, overlap decreases with the distance from the
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Fig. 1: The NASA humanoid robot Valkyrie, operating in a
laboratory (top). The Boston Dynamics humanoid Atlas during the
DRC finals (bottom right, photo credits: MIT team) and the crowded
(red box) scenario from the robot’s point of view (bottom left).

pose of the reference point cloud also due to occlusions and
non-uniform sampling of the sensor.

In this paper we demonstrate how laser-based localization
can be combined with a proprioceptive state estimator for a
humanoid robot to fulfill the exacting accuracy and robust-
ness requirements described in Section III.

We analyze the effect of point cloud overlap variation
on the performance of Iterative Closest Point (ICP) align-
ment. In the case of human-like robots, one of the biggest
challenges is introduced by the reduced FOV of the sensors
available for exteroception (Figure 2). We define a parameter
which describes overlap between two point clouds based on
the relative positions of the sensor, the maximum range and
the sensor FOV, as well as the distribution of points in the
clouds.

We propose a strategy for non-incremental 3D scene
registration in real environments, called Auto-tuned Iterative
Closest Point (AICP). Having first pre-filtered the raw input
point clouds to include macro-features such as planes and to
implicitly exclude people and clutter, the algorithm automat-
ically tunes the standard ICP outlier filter at run-time using
the proposed overlap parameter to define the inlier matches
set for the reference and reading clouds1. We describe the

1Using the notation from [1], we refer to the ICP inputs as a reference
cloud and a reading cloud, the latter to be aligned to the reference.



methods in detail in Section IV.
The localization system is evaluated on two full-sized

humanoid robots, in Figure 1: the NASA Valkyrie in our
laboratory, and the Boston Dynamics Atlas, using a dataset
collected by the MIT team during the DARPA Robotics
Challenge (DRC) Finals. We present extensive experimental
results in Section V, which demonstrate the advantages of
flexible outlier-rejection depending on the proposed overlap
parameter.

II. RELATED WORK

A. Localization of Humanoid Robots

Proprioceptive state estimation for bipedal robots followed
from original advances in the field of multi-legged robotics
such as Roston and Krotkov [2]. For example, Bloesch et
al. [3] first introduced an EKF-based state estimator for a
quadruped which Rotella et al. [4] extended for bipedal state
estimation.

A major focus for humanoids is achieving accurate center
of mass (CoM) estimation relative to the supporting feet and
accounting for errors in the modeled CoM. Xinjilefu et al.
[5] directly estimated this offset using an inverted pendulum
model to infer modeling error and/or unexpected external
forces. Instead, the approach of Koolen et al. [6] modeled
the elasticity of their robot’s leg joints to better distribute
error. Our own prior work [7] utilized that elasticity model
within a EKF filter to achieve low drift proprioceptive state
estimation with the Boston Dynamics Atlas robot.

All of these approaches estimate the pelvis pose at high
frequency (∼ 500Hz) by combining legs kinematics with
IMU data. However these approaches, by their nature, will
accumulate incremental drift over time. External sensing is
often used to reduce or avoid this drift. Monocular cameras
are perhaps the most commonly used exteroceptive sensors,
with successful implementations of visual localization in-
cluding [8] and [9].

In this paper we will instead focus on localization using
scanning laser range finders (also known as LIDAR), as
vision systems are not as accurate as lasers at long ranges.
Hornung et al. [10] initially proposed a laser-based localiza-
tion method for a NAO robot in a miniature 3D world model
with extensions to include observation from a monocular
camera presented in [11].

During preparation for the DRC, teams explored using
LIDAR to reduce pelvis pose drift as it had a major impact
on task level autonomy. In our previous work [7], we
computed position measurements relative to a prior map
using a rotating 2D laser scan on the Atlas robot. These
measurements were integrated into our state estimate using a
Gaussian particle filter at the 40Hz frame rate of the LIDAR.
Koolen et al. [6] described their approach which instead used
lower frequency ICP registration of full 3D point clouds.

Both approaches were demonstrated in the laboratory but
unfortunately neither method could be used in the DRC
Finals due to a lack of field testing and because the arena’s
layout contained wide-open spaces with crowds of people.
We feel that what was missing was the adaption and tuning of

Fig. 2: The field of view of the Valkyrie’s sensor suite is heavily re-
duced (180◦×120◦) meaning point clouds are not omni-directional.
Most of the LIDAR returns fall on the robot’s head cover. The FOV
of Atlas is about 220◦ × 180◦.

the baseline registration algorithms to these kinds of issues,
as well as introspection to detect failures of the registration
system.

B. Scene Registration

The Iterative Closest Point is one of the most commonly
used techniques for point cloud registration. Its basic imple-
mentation involves the iterative minimization of the point-
to-point distances between two point clouds to estimate the
relative alignment [12]. Notable improvements to the original
algorithm have been introduced in [13] with a point-to-plane
error metric better suited for structured environments, and
subsequently in [14] and [15].

Alternatively, the Normal Distributions Transform (NDT),
introduced in [16], uses standard optimization methods (e.g.
Newton’s algorithm) for the alignment. In [17] the authors
analyzed the performances of ICP and NDT: although NDT
was demonstrated to have a larger valley of convergence, it
was found to be less predictable than ICP.

ICP makes the implicit assumption that the input point
clouds are fully overlapping. This is violated in reality and is
typically managed by defining a criteria to identify outliers in
the correspondence set (e.g. [18]). Nevertheless, tuning this
outlier filter is a critical task for the success of the alignment.

III. SYSTEM OVERVIEW AND REQUIREMENTS

The system with the modular configuration of AICP
(Section IV) is shown in Figure 3. We present a localization
strategy made up of two main components.

Firstly, a kinematic-inertial state estimator is used within
the closed-loop locomotion controller (either [6] or [7]) and
computes a stable but drifting estimate of the robot’s pelvis
pose at high frequency (∼ 500Hz). Typical estimation drift is
presented in Figure 9 for the continuous walking experiment.
Over 200 secs of walking accumulated drift of 10 cm in
translation and 5◦ in yaw. Error about the pitch and roll
axes is negligible due to the IMU.



Fig. 3: The proposed localization system using AICP. The unfilled
arrows indicate the flow of point clouds. We indicate with T the
relative transform at each iteration and Ω the overlap parameter.

Secondly, the proposed AICP algorithm leverages the low
drift state estimator to initialize the alignment to a common
reference and properly filter the current point cloud. It
updates the state estimate with a correction computed with
respect to the global coordinate frame. This assumes that a
reference cloud was first captured at the start of operation
with the robot observing most of the scene in which we want
to localize.

Both of the robots involved in our experiments use the
Carnegie Robotics Multisense SL as their primary sensing
unit, composed of a stereo camera and a Hokuyo UTM-
30LX-EW planar laser — 40 scans per second with 30 m
range — spinning about the forward-facing axis. Every 6 secs
the laser spins half a revolution and a 3D point cloud is
accumulated. The FOV is however occluded by a protective
cover over the robot’s head meaning that a single point cloud
typically comprises approximately 100,000 points from the
forward facing hemisphere. The speed of rotation of the
device (5RPM) is chosen so as to densely sample the
terrain when walking. On a parallel thread, the correction
is produced with a computation time of about 1 sec.

The proprioceptive estimator produces a high rate, low la-
tency estimate without discontinuities while the exteroceptive
registration can allow discontinuities (at a low rate) but aims
to avoid global drift.

The main requirements we identify for such a localization
system are (1) accuracy close to 1 − 2 cm on average in
position and below 1◦ in orientation, (2) reliability in real
semi-structured environments, and (3) registration to a single
reference point cloud2 while supporting large translation
offsets of as much as 14 m (∼ half the sensor range) and
the resulting decrease in overlap, as in Figure 10.

IV. ROBUST LOCALIZATION

The ICP algorithm has 4 main phases: pre-filtering, data
association, outlier filtering and error minimization (Fig-
ure 3). Pomerleau et al. [1] proposed a modular implementa-
tion of the ICP chain to provide the user with a protocol for

2For operational simplicity we do not consider building a continuously
expanding map using SLAM in this work.

the comparison of state of the art ICP variants. Their software
is publicly available under the name of libpointmatcher3 and
will be used as the registration framework in this work.

The authors identified two classical ICP variants based
on [13] and [19] and use these as their baseline ICP
configurations. Their results suggest that the point-to-plane
variant, achieves better overall performance than point-to-
point. Stable performance can be achieved if the alignment
is initialized within a constrained basin of convergence, i.e.
10 cm and 10◦ initial error in 3D translation and rotation,
and secondly if the overlap is constantly high while the robot
moves in a structured environment.

In the following, we discuss the implementation of the
AICP algorithm, which overcomes the limitations of the
baseline ICP strategies in our real application.

A. Pre-filtering

We observe that the alignment of non-uniform point clouds
is mainly influenced by denser regions (usually in proximity
of the sensor). However, for the alignment to be successful
surfaces at different distances should give a balanced contri-
bution to the optimization process. Our pre-filtering approach
is divided in two main phases. First, the two input point
clouds are uniformly downsampled using a voxel filter [21]
(the leaves size is set to 8 cm in our case). Second, we
extract planar macro-features such as walls and large surfaces
because:
• Planar surfaces are represented by a locally regular distri-

bution of points, therefore in the case of slightly incorrect
matching, the wrongly associated points still have a good
chance of behaving like the correct ones.

• People and clutter are implicitly filtered-out.
We adopt a region growing strategy for plane segmentation
[21]. A region is accepted only if it satisfies criteria about
its planarity and dimensions (e.g. larger than 0.30×0.30 m).
This makes the filtering suitable for man-made environments
at least. Figure 4 shows an input cloud before and after the
pre-filtering phases. At this stage the remaining point cloud is
uniform and has been filtered of clutter points, people in the
environment, as well as small and irrelevant regions of the
cloud, which as a result do not contribute to the alignment.

A comparison between our filter chain and the baseline
ICP is presented in Table I.

B. Auto-tuned ICP

Including false data association matches is a common
cause of ICP registration failure. Where points fall on people
moving in the scene, on objects outside of the reading cloud’s
FOV or which are occluded by other parts of the scene, no
successful correspondence can be found and these points will
then generate false matches.

The standard outlier filter is intended to reject false
matches according to a criteria such as a maximum allowed
distance or a fixed quantile of the distribution of closest
points. For example [19] retains 70% of closest points in

3https://github.com/ethz-asl/libpointmatcher



Step Baseline ICP Description AICP Description
Reference pre-filtering MinDist keep points beyond 1m Down-sampling uniform down-sampling

RandomSampling random down-sampling, keep 10% RegionExtraction region growing plane segment.
SurfaceNormal normals extraction SurfaceNormal normals extraction

Reading pre-filtering MinDist keep points beyond 1m Down-sampling uniform down-sampling
RandomSampling random down-sampling, keep 5% RegionExtraction region growing plane segment.

OverlapParam compute Ω
Data association KDTree matching with approximation KDTree matching with approximation

factor ε = 3.16 (from [20], [1]) factor ε = 3.16 (from [20], [1])
Outlier filtering TrimmedDist keep 70% closest points AutoTrimmedDist keep auto-tuned percentage of

(fixed ratio = 0.7) closest points (ratio depends on Ω)
Error minimization PointToPlane point-to-plane PointToPlane point-to-plane

TABLE I: Comparison between the baseline ICP and the proposed AICP configuration.

Fig. 4: Pre-filtering. Top: raw point cloud from Valkyrie’s dataset,
people are circled in red. Bottom: after pre-filtering. People and
small irrelevant features have been filtered-out.

its trimmed outlier filter. We believe that these approaches
are too general and produce unsatisfactory performance in
practice. Using a fixed parameter assumes constant overlap
and this assumption is violated in real scenarios. This is a
critical limitation of the baseline ICP solution.

Instead we propose to dynamically vary the outlier filter
ratio through analysis of the input clouds before registration.
Crucially we take advantage of the low drift rate of the
kinematic-inertial state estimator. In the following section
we define a metric, Ω, to quantitatively represent the overlap
between the input clouds.

Intuitively, we envisage that the proportion of true matches
after data association can be correlated with this overlap
metric. In other words:
• If overlap is high, the proportion of true matches will be

high and could reasonably be approximated by Ω.
• If overlap is low, the proportion of true matches will be

lower, therefore we need a conservative ratio for the outlier
filter, with Ω again being a reasonable approximation.

C. Overlap Filter

We define Ω by taking into account the initial estimated
alignment, range r and field of view θ of the sensor. Being:
• wP and wQ the reference and reading clouds respectively,

expressed in the world coordinate frame, denoted w. Each
cloud is a set of points contained within a subspace of
R3 delimited by the sensor range and FOV. We name
these subspaces Vi and Vj respectively. Each subspace is
a portion of a sphere centered in the sensor pose, with
radius r, sectioned by two vertical planes defined by the

horizontal FOV θ. In the case of Valkyrie in Figure 2,
r = 30 m and θ = 180◦. We neglect the reduction in the
vertical FOV.

• i and j the coordinate frames representing the sensor poses
from which wP and wQ have been captured respectively.
These frames are defined by the transformations iTw and
jTw.

Consider the set jP of points belonging to the reference
cloud P , expressed in the coordinate frame of the reading
cloud j, as well as the set iQ of points belonging to Q
expressed in i, as:

jP = jTw
w
P iQ = iTw

w
Q

With each point cloud represented in the coordinate frame of
the counterpart, we can determine the subset of these points
which lie within the counterpart sensor’s FOV. Sj and Si

are then defined as the sets of points living in the volume of
intersection between Vi and Vj :

Sj =

{
∀p ∈ jP : ‖p‖ ≤ r ∧

∣∣∣∣∣ arctan
py
px

∣∣∣∣∣ ≤ θ

2
∧ px > 0

}

Si =

{
∀q ∈ iQ : ‖q‖ ≤ r ∧

∣∣∣∣∣ arctan
qy
qx

∣∣∣∣∣ ≤ θ

2
∧ qx > 0

}
where p = [px, py, pz]T and q = [qx, qy, qz]T represent
an individual point from each cloud. We define the overlap
parameter as

Ω =
|Sj |
|P |
· |Si|
|Q|

.

where | • | indicates the cardinality of a set. This metric is
so defined under the assumptions that:
1) The pre-filtering strategy described in Section IV-A has

removed points belonging to small elements and people
in the original point clouds.

2) The initial alignment is within the basin of convergence.
In our case, this assumption is satisfied as the drift rate of
the state estimator is 1−2 cm per step and the correction
is computed regularly (every 6 secs).

We use Ω to set the outlier filter ratio, with special care
for extreme overlap cases:

• Where 20% < Ω < 70%, the inlier ratio is set to Ω.
• Where Ω < 20%, the inlier ratio is set to 0.20.

Generally, at least 20% closest matches are required for
alignment optimization.



Fig. 5: Outlier Filtering. In each image, white points belong to the
reference cloud, captured from the blue pose. The red points are
accepted inlier matches and the green points are rejected outliers,
all belonging to the reading cloud, captured from the yellow pose.
Top: ratio = 0.20, Ω = 10%. Bottom: ratio = 0.70, Ω = 10%.

• Where Ω > 70%, the inlier ratio is limited to 0.70.
Overlap is very high and 70% of the closest points are
sufficient for the alignment.

This simple relationship between the overlap metric and
the outlier ratio results in satisfactory performance in our
experiments (Section V). As an illustrative example, Figure
5 (top image) shows the matches preserved in case of low
overlap, filtered using a ratio of 0.20, given Ω = 10%.
The accepted matches are true matches and as a result the
alignment is successful. In contrast, in the lower image an
inlier ratio of 0.70 was used and as a result many accepted
matches are false and the alignment diverges.

V. EXPERIMENTAL RESULTS

So as to demonstrate the proposed approach we carried out
a series of experiments with the Valkyrie and Atlas robots
which correspond to over 60 mins of operation time in total:

a) Evaluation of how the proposed approach increases the
basin of convergence relative to the baseline ICP approach.

b) Exploration of the effect of reducing the overlap be-
tween the model and reference point clouds showing that
using our prior knowledge of the overlap increases the region
of attraction of the core error minimization routine.

c) Demonstration of the algorithm running online on the
robot where precise localization is essential to approach a
target and to climb a set of stairs.

d) Finally, a demonstration of performance of the al-
gorithm using a dataset collected at the DARPA Robotics
Challenge Finals with the Atlas robot. The algorithm is
successful in a semi-structured and crowded environment.
The failure of the baseline ICP algorithm in this experiment
motivated our work4.

A view of the operation environments is in Figure 1. The
relevant features of each dataset are presented in Table II.

4Additional demonstrations can be viewed at:
robotperception.inf.ed.ac.uk/humanoid_estimation

Features Valkyrie Datasets Atlas Dataset
FOV Reduced (180◦ × 120◦) Reduced (220◦ × 180◦)
Dynamism None People, left side
Overlap Exp.A,C: always � 50% Exp.D:

Exp.B: from 9% to 100% decreasing to 10%
Structure Structured Semi-structured, right side
Duration Exp.A.2: 786 s Exp.D: 1236 s

Exp.B: 1237 s
Exp.C.1,C.2: 341 s, 50 s

Scene Area (5.7× 13.7× 3.9) m ∼ (14× 11×∞) m
Start Pose Shown in Figure 1 Shown in Figure 10
K-I SE∗ SE from [6] SE from [7]
Vicon X X

TABLE II: Features of the Valkyrie and Atlas datasets. Cells are
colored red if the feature reduces the basin of convergence for
alignment and green otherwise.
*Kinematic-Inertial State Estimator used in the control loop.

Evaluation Protocol

The Valkyrie experiments were carried out in a laboratory
with a Vicon motion capture system, used to generate ground
truth. For a fair validation of our approach we analyze the
performance of the AICP algorithm using the evaluation
protocol proposed in [1], namely:
1) AICP is compared to a commonly accepted ICP baseline,

which we denote BICP.
2) AICP and BICP are compared on large real world datasets

from different environments.
3) Robust statistics are used to produce comparative error

metrics.
In each case, we compare the estimated pose Pc to the

ground-truth robot pose Pg . Being the error ∆P computed
as

∆P =

[
∆R ∆t
0 1

]
= PcP

−1
g

the 3D translation error et is defined as the Euclidean
distance given the translation vector ∆t:

et = ‖∆t‖ =
√

∆x2 + ∆y2 + ∆z2

and the 3D rotation error er is defined as the Geodesic
distance given the rotation matrix ∆R:

er = arccos

(
trace(∆R)− 1

2

)
We compare the error distributions using robust statistics
(i.e. the quantiles for probabilities 0.50, 0.75, 0.95, which
we indicate with Q50, Q75, Q95), which are indicative of
accuracy and precision: results are accurate if these quantiles
are close to zero, and precise if their difference is small. The
choice of error metrics and statistics follows the evaluation
convention in [1].

A. Sensitivity to Initial Perturbations

As mentioned in Section I, the baseline ICP algorithm
is sensitive to initial perturbations (errors in the initial
alignment). Here we demonstrate that our proposed pre-
filtering strategy increases the basin of convergence for AICP,
with respect to BICP.

robotperception.inf.ed.ac.uk/humanoid_estimation


Fig. 6: Basin of convergence. An overhead view of the reference
cloud is shown at the reference pose (top). Yellow boxes indicate
sparse planes in the y direction. We performed tests in a 2 × 2 m
basin, with yaw perturbations varying from 0◦ to 90◦ (color scale).

Exp. 1: We select two highly overlapping input clouds
(Ω � 70%) and initialize their respective poses with a
uniform-grid distribution of perturbations over 3 dimensions,
i.e. x, y, yaw as shown in Figure 6.

We see that the baseline ICP has a small area of con-
vergence with perturbations of 0.2 m or 10◦ causing the
algorithm to fail to properly converge. By comparison, the
AICP algorithm is much more robust to perturbations in
x and y and rotation in yaw. Successful alignment can be
achieved with translation offsets of more than 0.8 m and up
to 80◦ in yaw rotation. In particular the pre-filtering strategy
enlarges the valley of convergence along the y direction
in this case. The main surfaces in this direction are only
sampled sparsely due to the range and the axis of rotation
of the sensor. In this situation the baseline ICP suffers from
a weak contribution to the alignment along this axis.

Exp. 2: In their paper Pomerleau et al [1] proposed
an experiment in which perturbations are randomly sampled
from Gaussian distributions with increasing complexity. In
this experiment we present results from such an analysis
using 131 samples drawn from each of the following standard
deviations:

• easy perturbation, EP - 0.1 m and 10◦

• medium perturbation, MP - 0.5 m and 20◦

• hard perturbation, HP - 1.0 m and 45◦

In this experiment the robot continuously walked forward
and back. Each new alignment is initialized with a sampled
error and the result compared to ground truth.

In Figure 7 we show the cumulative distribution of errors
for Valkyrie. Not only does AICP outperform the baseline
ICP, but it produces reliable alignments in the easy and
medium difficulty cases for all the runs.

B. Sensitivity to Point Cloud Overlap

In Section IV we discussed the importance of properly
tuning outlier filtering to account for variations in the point
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Fig. 7: Cumulative distribution of translation errors for Valkyrie,
given easy, medium and hard levels of initial perturbation. The
dotted black lines correspond to the quantiles Q50, Q75 and Q95.

cloud overlap — particularly for sensors with limited FOV.
Here we evaluate the sensitivity of AICP to variations in the
overlap between the inputs.

Valkyrie walks and turns in place by approximately 130◦

degrees in each direction. As a result the reading point clouds
captured during this run have a large variation in overlap rel-
ative to the reference point cloud — between 9% and 100%
(top plot, Figure 8) — making the alignment challenging. As
mentioned in Section III, corrections from registration are fed
back to the state estimate to initialize the next alignment. As
a result the initial perturbation is negligible in each alignment
and the result is mainly influenced by the current degree of
overlap.

For the baseline ICP we see that when the overlap
falls below 50%, alignment in both rotation and translation
fails. In contrast the proposed AICP algorithm is successful
throughout by selectively tuning the outlier filter to match
the degree of overlap. Robust statistics are provided to
demonstrate the distribution of errors (Figure 8).

The results show that AICP has the capacity to support
non-incremental registration in spite of considerable overlap
variations. In turn, non-incremental registration allows recov-
ery from the less accurate alignments (e.g. between seconds
600− 800).

C. Online Integration of AICP

In our final Valkyrie experiments we demonstrate in-
tegration of the AICP algorithm within our closed loop
walking system. These experiments are captured in the video
accompanying this paper.

Exp. 1: Valkyrie walks repeatedly forward and back-
ward towards a fixed target identified at the beginning of
the run. Over the course of the experiment, the median error
in translation and rotation estimated by our algorithm are
1.6 cm and 0.4◦ respectively (Figure 9). This satisfies the
requirements about expected localization accuracy (require-
ment 1, Section III). Thanks to this localization performance,
the robot reaches the target and maintains a precise pose
estimate during the entire run. In contrast, in the case of
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Fig. 9: System integration. The blue line shows the kinematic-
inertial typical estimation drift while in red we see the corrected
estimate from the AICP algorithm.

proprioceptive state estimation only, the robot fails to reach
the target repeatedly due to continuous drift.

Exp. 2: Valkyrie is placed at 1 m distance from a
staircase. The task is to walk towards it and climb up the
steps. Planning is performed only once from the starting
pose. Over the course of this 50 secs experiment, the median
errors in translation and rotation are comparable to Exp. 1.
This level of accuracy allows the robot to safely perform
the task without needing to re-plan. In contrast, during the
DRC robots typically took a few steps at a time to climb
stairs or transverse uneven terrain, being paused periodically
to manually re-localize and re-plan. In this context, our
system was demonstrated to enable greater autonomy in task
execution.

D. Localization during the DRC Finals

In this final experiment we test our algorithm against a
dataset collected during a run by the MIT team at the DRC
Finals (Pomona, CA, 2015) with the Boston Dynamics Atlas
robot. The environment was a semi-structured area of about
14 × 11 m with walls on the right side of the robot and
an open-space populated by a crowd of people (walking and
sitting) on the left. The robot walks through the test scenario
along a 16 m path while passing over uneven terrain and
manipulating objects. The scene from Atlas’s point of view

Fig. 10: Sequence of (colored) reading clouds from Atlas dataset
aligned to the same reference cloud (white). Overlap is not ho-
mogeneous, in order Ω = 60%, 15%, 23%, 10%. Red semi-circles
represent the FOV of the robot at each point-of-view.

Fig. 11: AICP performance on the DRC Finals dataset with Atlas.
Top: a top view of the alignment of 206 point clouds during the
run — left: raw clouds with people, right: filtered clouds. Bottom
left: state estimation without applying correction, valve perceived
in different locations by successive clouds. Bottom right: with
successful localization, consistent estimate of the affordance.

at the beginning of the dataset is shown in Figure 1. The
presence of many people on the left side of the scenario is
a challenge for registration and made localization difficult
during the DRC.

Corrections from registration are used to update the state
estimate and to initialize the next alignment — simulating
closed loop integration. The performance of AICP, qualita-
tively evaluated from careful observation of the map after
the run (Figure 11), is such that the computed trajectory is
close to error free. People have been filtered-out and do not
contribute to the alignment (top right), such that the system
satisfies requirement 2. The algorithm is stable and robust
enough to compute successful non-incremental alignments
during the entire run (with more than 14 m displacement
and overlap decreasing to just 10% — as shown in Figure
10), satisfying requirement 3. This experiment is captured in
the video accompanying the paper.

Figure 12 shows the kinematic-inertial state estimator [7]
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Fig. 12: Atlas at the DRC. The blue line shows the kinematic-
inertial estimation drift while in black we see the corrected estimate
from the baseline ICP algorithm, which diverges at about 400 secs.
Note that the SE errors are computed against AICP.

and the baseline ICP with errors computed against AICP-
based localization. The baseline ICP fails for overlap less
than 50% and demonstrates to be unreliable for complex
scene registration. Its strategy is unsatisfactory as it adopts
no specific measures to deal with the presence of people and
to explicitly take advantage of the few structures available
in the scene.

VI. CONCLUSIONS

In this paper, we proposed an algorithm for robust and
accurate scene registration, which we name Auto-tuned ICP.
We explored the degree to which the performance of the ICP
algorithm is affected by the overlap between the input point
clouds, as well as by the magnitude of initial perturbation
between them.

We leverage the drifting state estimate derived from our
humanoid state estimator [6]-[7] and develop a registration
strategy based on careful pre-filtering, adjustment to overlap
variation and non-incremental alignment. The proposed ap-
proach increases the basin of attraction of the error minimiza-
tion step of ICP, allowing us to align to a single reference
cloud. Consequently our approach avoids incremental error
and recovers from failures.

Our algorithm overcomes the weaknesses of the baseline
ICP identified in [1] in the context of humanoid localization.
AICP satisfies all requirements identified in Section III.

Extensive experiments were demonstrated on two full-
sized humanoid robots. Future work will focus on the
extension of this solution to a SLAM system with failure
recognition.
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