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Abstract— During localization and mapping the success of
point cloud registration can be compromised when there is
an absence of geometric features or constraints in corridors
or across doorways, or when the volumes scanned only partly
overlap, due to occlusions or constrictions between subsequent
observations. This work proposes a strategy to predict and
prevent laser-based localization failure. Our solution relies on
explicit analysis of the point cloud content prior to registration.
A model predicting the risk of a failed alignment is learned by
analysing the degree of spatial overlap between two input point
clouds and the geometric constraints available within the region
of overlap. We define a novel measure of alignability for these
constraints. The method is evaluated against three real-world
datasets and compared to baseline approaches. The experiments
demonstrate how our approach can help improve the reliability
of laser-based localization during exploration of unknown and
cluttered man-made environments.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) systems
need to be able to reliably operate with a low failure rate
for long periods of time and in a variety of environments.
These systems should include fail-safe operation modes and
auto-tuning capabilities so as to adapt to different challenges
and achieve the vision of robot perception described in [1].

The work presented in this paper is focused on guaran-
teeing fail-safe operation of laser-based localization systems
during exploration of cluttered man-made environments.

State-of-the-art laser-based localization systems have been
demonstrated to achieve low drift over long distances but can
also be easily induced to fail in many real-world scenarios.
A cause of failure is the absence of geometric features
which are necessary to constrain the alignment between two
point clouds. For example, long corridors are unconstrained
because of missing geometric features in one dimension.
Failures can also occur when passing through doorways,
or due to occlusions which cause large variations in the
volume scanned by consecutive sensor sweeps. We define
alignability as a measure of the capacity for two point clouds
to be aligned given their geometric constraints, e.g., mutually
visible planar surfaces.

In many cases sensors have a limited field-of-view (FOV)
because they are physically integrated within a vehicle’s
chassis. With an obscured FOV, the degree of overlap be-
tween consecutive scans made by the sensor is gradually
reduced. Occlusions and constrictions in cluttered environ-
ments also introduce a large degree of overlap variation. This
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Fig. 1: The side view of a robot crossing the doorway between rooms A
and B while capturing point clouds in poses i and j. According to our
metric the clouds overlap by as little as 15%, and alignabilty is low due to
the absence of matched planes in the direction of the reader. Top: The raw
point clouds from each location. Bottom: Our proposed method analyses
overlap and alignability, the latter derived when matching planes common
to each point clouds. These are used to infer the suitability for alignment.

is a major problem for point cloud registration algorithms,
as they are sensitive to the degree of overlap between input
clouds. We believe that there is a need for failure prediction
which is reliable to varying overlap.

The main contribution of this work is a method which
predicts the risk of failed alignment between two point
clouds, which is learned as a function of the overlap between
a reference and a reading cloud1 and the constraints available
in the region of overlap between them. An example of
unconstrained alignment is illustrated in Fig. 1. In contrast
to previous works, [3], [4], [5], our method accounts for the
degree of overlap between point clouds. It is also independent
of point-wise data association and the registration approach
used. The pipeline of our approach is shown in Fig. 2, which
assumes that an initial (drifting) estimate of the sensor’s pose
is available to initialize the alignment.

Our contribution is broken down as follows:
i) we define a novel overlap metric for 3D point clouds

which takes into account the relative poses from which
the clouds were captured, the structural features of the
clouds, as well as the free space information. The metric
gives improved performance with respect to previous
work, particularly when occlusions occur,

ii) we derive an alignability metric which quantifies the

1Using the notation from [2] we refer to the inputs to registration as a
reference and a reading cloud with the latter to be aligned to the former.
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Fig. 2: The proposed pipeline.

degree to which alignment is constrained by exploiting
the planar geometry commonly found in indoor envi-
ronments. Our data-driven approach achieves a higher
accuracy with respect to previous approaches,

iii) we learn a model which can predict alignment risk,
based on these overlap and alignability measures. The
model allows us to prevent registration failure when the
geometry is unstable and the overlap is not uniform.

The remainder of the paper is structured as follows: Sec. II
presents related approaches from the literature, Sec. III de-
scribes our algorithm in detail, Sec. IV presents an extensive
experimental evaluation.

II. RELATED WORK

Iterative Closest Point (ICP) is a very commonly used
method for 3D point cloud alignment. Its basic formulation
[6] estimates the relative alignment between two point clouds
iteratively, through four main steps: data filtering, data asso-
ciation, outlier rejection and minimization of a point-to-point
distance function. Several improvements to the algorithm
have been proposed over the past years which focus on
changing the minimized distance function to suit different
environments [7], [8], [9].

However, the optimal registration estimated by ICP is
not always a good solution. This can be because of an
unconstrained degree of freedom such as when crossing a
doorway (Fig. 1), or trying to align within a long corridor.

Previous works [3], [4], [5] have stated that the stability
of registration can be evaluated after the set of point matches
have been selected, by Principal Component Analysis (PCA)
on the covariance matrix used for error minimization. If
the covariance matrix is not full rank the registration is
underconstrained. However, this analysis depends on the
data association step of the registration algorithm. When the
overlap is low, the number of point matches available for data
association might be insufficient for the eigenvectors of the
covariance matrix to stabilize, thus leading to an unreliable
measure of the constraints. Motivated by this, in our work we
focus on analysis before the point-wise data association step
of the ICP algorithm, and we explicitly account for overlap
variation.

Zhen et al. [10] formulated a localizability measure for
a sensor with respect to a prior 3D map of a structure of
interest. It was computed offline by generating synthetic laser
data to simulate observations from within the map. They
used it to plan trajectories of a UAV so as to stay within
areas with high localizability. Having a different application
in mind, in our work we extend their formulation to a
measure of alignability between two subsequent clouds. This
is computed online to account for the current dynamics of
the scene.

Pathak et al. [11] recognized the sensitivity of registration
to low data overlap and formulated two overlap metrics
which can be used to study the reason of alignment failures.
The first metric used octrees to model occupied regions
and then derive an overlapping surface area between two
point clouds. The second measured the number of pixels on
range-images mutually visible from both scans. The metrics
were computed given the ground-truth alignment between
the clouds. Herein, we use octrees to model occupied and
free space and then derive an overlapping volume between
two point clouds. This makes the estimate more robust to
initial misalignment.

Pomerleau et al. [2] formulated an overlap measure using
the ratio of points from a first cloud for which there was a
corresponding point in the second cloud. This approach is
asymmetric, for example, when the reference cloud is larger
than the reading cloud. In contrast, we define overlap so as
to be resilient to this asymmetry.

Finally, in our previous work [12] we proposed a strategy
for non-incremental 3D scene registration, called Auto-tuned
ICP (AICP). AICP extended a baseline ICP implementation
[2] to more reliably register point clouds with reduced
overlap by automatically tuning an outlier-rejection filter to
account for the degree of overlap of the sensor’s footprint.
This framework allowed accurate registration to a single
reference point cloud despite significant motion by the robot.
In this work we extend AICP with a more robust overlap
parameter which corrects for some issues highlighted in
Sec. IV.

In summary, our work differs from the state-of-the-art in
that we learn a model for predicting alignment risk which is
based on both the overlap and alignability parameters. We
demonstrate the utility of our model in a general context,
where no prior map is available and overlap between the
input point clouds varies dramatically.

In a SLAM context, we address the problem of preventing
failures from within the front-end module of the system,
whereas other works focus on graph optimization strategies
to remove outliers at a back-end level [13], [1].

III. PREDICTING ALIGNMENT RISK

In this section, we derive a continuous variable quantifying
the risk of alignment failure when registering two point
clouds. We first define measures for overlap and alignability
of two point clouds. We then generate a meta-parameter
which can be used to predict the risk of alignment failure.

A. Measuring Overlap

We define the overlap, Ω ∈ [0, 1], between two point
clouds using the initial estimated alignment between them
(from odometry for example), their structural features and
information about free space which is directly available given
the sensor’s origin.

The reference cloud wCi and the reading cloud wCj are
captured from two sensor poses i and j, expressed in the
world coordinate frame w.



Using an octree structure [14], two corresponding octrees
are constructed, wOi and wOj . Each explicitly models both
free and occupied space. From wOi and wOj , another octree
containing the set of common voxels is constructed, Oij ,
which defines the volume of overlap between the clouds.

We define the overlap parameter as

Ω = min

(
|Oij |
|Oi|

,
|Oij |
|Oj |

)
(1)

where | • | indicates the cardinality of voxels in an octree.
Our volumetric representation of overlap is shown in Fig. 4
(right).

B. Measuring Alignability

We define alignability α as a measure of the geometric
constraints which can be used to constrain alignment between
a reference and a reading cloud. The alignment between a
pair of 3D point clouds is well-constrained if the transform
aligning them is constrained in all three dimensions. Intu-
itively, we envisage that at least three mutually visible non-
parallel planes should exist.

In the following we describe the two steps of our strategy:
(i) firstly, we match planes common to the input clouds
and compute a matrix N as the set of normal directions
extracted from these planes, (ii) secondly, we show how
N represents the set of available constraints between the
clouds. We compute α from PCA on the row vectors of N.

Matching Plane Patches: Having segmented the reference
point cloud into a set of plane patches2, we select only the
ones which belong to the volume of overlap between the
clouds, Oij . We consider the u−th patch Pu from this set.
Similarly, we define Pv from the set of patches extracted
from the reading cloud.

For each pair Pu and Pv , we compute a matching score Ωp

which is defined as the degree of spatial overlap between the
patches. We consider each patch as a set of points contained
within a bounding box in R3. We define the bounding boxes
as Vu and Vv .

Ωp is computed from the set of points P ij
u and P ij

v

belonging to the patches Pu and Pv and living in the volume
of intersection between Vu and Vv , as shown in Fig. 3,

Ωp =
|P ij

u |
|Pu|

· |P
ij
v |
|Pv|

. (2)

In Eq. (2) | • | indicates the cardinality of a set.
The best match for Pv between any plane Pu is the one

maximizing the overlap Ωp. For a match to be accepted,
both a condition on Ωp and on the maximum angle be-
tween the normals must hold. The normal directions nT

k =
[nkx , nky , nkz ] are extracted per point k ∈ [1 : M ] (where

2We refer to plane patches as locally planar distributions of points. We
adopt a region growing strategy for plane segmentation [15]. A patch is
accepted only if it satisfies criteria about its planarity and dimensions (e.g.,
larger than 0.30 × 0.30 m).

Fig. 3: Illustration of the plane matching strategy. A pair of plane patches
Pu (blue points) and Pv (green points) are shown within their bounding
boxes, Vu and Vv . The volume of intersection is shown in red. A score Ωp

for the match is computed from the percentage of points falling within this
volume.

M is the number of points from all matched patches in the
reading cloud), and N ∈ RM×3 is defined as:

N =

 n1x n1y n1z
...

...
...

nMx
nMy

nMz

 . (3)

One could argue that plane matching is a variant of
data association. The data association step of ICP typically
involves a local point search within each pair of patches.
Instead, we consider simple geometric models (the bounding
boxes) to match the plane patches directly, instead of their
points. This global search is easier to solve and does not
depend on local density of the points. This approach will
be further explored in future work by considering convex
hulls as in [11].

Computing Alignability: We consider the constraints im-
posed on the pose of the sensor by the current measurement
with respect to a previously captured point cloud. Using a
formulation similar to [10], we consider two point clouds
captured sequentially in time and the constraint between
a current measurement point pj and a measurement point
pi,t ∈ R3 at time t in the past, both lying on the same
plane:

nT
p (pj − pi,t) = 0 (4)

where np is the plane normal. Given the robot position x ∈
R3, we can formulate a second constraint:

x + rj = pj (5)

where rj is the ray vector from the current measurement.
Substituting Eq. (5) into Eq. (4) and combining the con-
straints imposed by all measurements in a sweep, we obtain
the system of equations

Nx = cj (6)

where cj is a constant vector [c1 . . . ck]T . The matrix N rep-
resents the constraints which exist between the reference and
reading cloud from the current sensor pose. We can identify
the unconstrained dimensions of the system in Eq. (6) by



Fig. 4: Left: FOV-based overlap parameter [12]. A reference (blue) and reading (green) cloud have been captured from the sensor poses i and j, the latter
after crossing a doorway. The region of overlap (red) is delimited by the sensor footprint. In this case the wall between room A and B occludes the
view between i and j and the region of overlap is over-estimated. Right: The proposed octree-based overlap parameter corrects for the issues occurring
in previous work, particularly when occlusions occur. Two octree structures are constructed to model free and occupied space from the two clouds. The
volume shown in red, identified by our parameter, reflects what we intuitively think of as volume of overlap.
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Fig. 5: Alignment risk model learned from overlap and alignability esti-
mates. The classifier has been trained on a set of 1200 binary labelled
samples (1:failure/0:success). We show the predictions on the test set,
where high risk of alignment failure (red) is expected for low overlap and
alignability values, following a polynomial relationship. We observe that
using only one parameter (overlap or alignability) is not sufficient, e.g., just
using a threshold at 5% on alignability would still accept all samples with
overlap below 30%, which would risk a faulty alignment.

performing PCA on the row vectors of N. The structure
tensor is of rank 3, hence it follows that the eigenvalues,
λ1 ≥ λ2 ≥ λ3 ≥ 0. In Eq. (7) we define alignability as the
scattering of N:

α =
λ3
λ1
. (7)

The scattering parameter is defined as the probability of a
set of points to be labelled as a 3D structure [16]. As α ∈
[0, 1], low values indicate poorly constrained corresponding
eigenvector in one of the dimensions.

C. Predicting Alignment Failure

Given these two individual metrics, overlap and alignabil-
ity, we wish to produce a single combined value which can
predict the risk of alignment failure ρ ∈ [0, 1] where a score

of zero corresponds to where an alignment will be reliable
while a score of one suggests an alignment which is ill-
conditioned and will likely fail.

We observed that individually Ω and α cannot predict
alignment failure, therefore we define ρ as a function

ρ = f(Ω, α). (8)

We learned a model (Fig. 5) for ρ using a third degree poly-
nomial Support Vector Classifier (SVC), which we found em-
pirically to capture the function. Particularly, the prediction
ρ is evaluated as the distance of a sample from the optimal
hyperplane. Depending on the navigation application, the
choice of ρ allows for operation at a preferred point on a
Receiver Operator Characteristic (ROC) curve.

The classifier is trained on 1200 real-data observations, as
described in Sec. IV. Each observation is registered using
AICP and each alignment is manually labelled as a success
or a failure.

IV. EXPERIMENTAL EVALUATION

So as to validate the study in this paper we carried out a
series of experiments using the datasets in Tab. I, as well as
a fourth dataset similar to Forum (IF) to train the classifier.
The proposed metrics are compared with two baseline terms:

- Inverse Condition Number (ICN): the Condition Num-
ber is used to determine whether a linear system
is ill-conditioned [17]. For the linearized system
arg minx ‖Ax − b‖, it is computed as the ratio of
the minimum and maximum eigenvalues of ATA. For
comparison purposes, we consider its inverse and denote
it as ICN.

- Degeneracy (D): for the linearized system above, the
degeneracy factor measures the stiffness of the solution
w.r.t. disturbances to the constraints [5]. It is computed
from the eigenvalues of ATA as D = λmin + 1.

Our evaluation consists of four experiments:



Stairs – ST Apartment – AP Forum – IF
Source Pomerleau et al. [18] Pomerleau et al. [18] Ours
Situation Indoors/Outdoors Indoors Indoors
Environment Structured Structured, variable Structured, variable

scanned volumes scanned volumes,
large occlusions

Dynamics None Furniture displaced Few moving people
Sensor FOV ∼ 270◦ × 270◦ ∼ 270◦ × 270◦ ∼ 200◦ × 200◦

Path 3D (up a staircase) 2D, small loops 2D, large loop
Scene Area (21 × 111 × 27) m (17 × 10 × 3) m ∼ (32 × 27 × 20) m
Scene 1 corridor, 1 staircase, 5 rooms, 1 corridor 2 rooms, 2 atria,
Sections 1 outdoor 1 corridor
# of Scans 31 45 117
# of Points ∼ 191000/scan ∼ 365000/scan ∼ 60000/scan
Ground Truth 3 3 7
Application Exp. C Exp. C Exp. D

TABLE I: Features of the datasets used for our experiments.

True Condition
Alignment Alignment

Fails Succeeds

Predicted
Condition

Failure True
Positive (TP)

False
Positive (FP)

Success False
Negative (FN)

True
Negative (TN)

TABLE II: Confusion map used for our
experiments.

Thresholds

ICN D AR

≤ 0.03 ≤ 0.06 ST
≤ 0.05 ≤ 0.03 ≥ 0.50 AP

– ≤ 0.05 IF

TABLE III: Fine-tuned (ICN,
D) and learned (AR – ours)
thresholds for each dataset.

A) An example comparison between the proposed point
cloud overlap parameter Ω and the parameter proposed
in our prior work [12]. We demonstrate that Ω is robust
in the presence of occlusions.

B) A validation of the alignability factor with simulated
data. We show that in our experiments alignability can
predict geometric instability more reliably than degener-
acy.

C) An evaluation of how the proposed measure of alignment
risk (AR) outperforms ICN and D using two standardised
datasets from [18]. The experiments created 2986 point
cloud alignments and demonstrate the accuracy of our
solution with respect to overlap variations.

D) A demonstration of the performance of our localization
system on a third dataset, where the proposed method
is essential when navigating along corridors and through
constrictions and environmental clutter. The system is
successful when travelling along a ∼ 180 m path. It
prevents a total of 21 failures and allows the robot to
return to the starting location with a final position error
of 0.41% of the trajectory length.

In all our experiments we utilised the thresholds shown
in Tab. III when predicting registration failure. We define a
failure as 3D pose translational error greater than 0.02 m or
rotational error greater than 1◦.

A video to accompany this paper is available online.

A. Example Illustrating Overlap

To demonstrate how the proposed octree-based formu-
lation of point cloud overlap better suits real-world sce-
narios we compared it to our previous FOV-based overlap
parameter [12], which was based only on the shape of the
sensor’s footprint. We now define overlap based on the actual
structure of the data rather than the simple sensor’s FOV, as
discussed in Sec. III-A. A graphical comparison between the
two metrics is shown in Fig. 4.

Consider the situation depicted in Fig. 6 (top). During
exploration of an indoor environment the robot moves from

one room to another through a doorway. At the start, the
robot captures a point cloud (shown in blue) which will
be used as the reference cloud. Thereafter the robot moves
further away from the starting pose (Cloud 2) and the
degree of overlap between the reference and the subsequent
point clouds decreases – particularly after passing through a
doorway.

The plot in Fig. 6 (bottom) shows that the FOV-based
parameter over-estimates what we intutively think of as
overlap. As the robot enters the new room and turns to the
left (Cloud 6), the overlap is clearly low. In contrast, the
proposed octree-based parameter successfully identifies this
decrease in overlap. Our subsequent experiments will solely
use the octree-based overlap parameter.
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Fig. 6: Exp. A. An example where the basic FOV-based overlap is over-
confident while the proposed octree-based parameter correctly estimates
overlap. Top: Top-down view of the scenario in Fig. 1. A reference and
a reading point cloud (blue and green) are captured from the first pose
(black) and the current one (red), after crossing a doorway. Bottom: Estimate
of overlap between the reference and a series of subsequent clouds. Due to
its formulation, the FOV-based overlap is overconfident in such a scenario.

B. Validating the Alignability Metric

In a second experiment we aim to show that the proposed
alignability metric can identify geometric instability in the
input point clouds.

We simulate reference and reading point clouds from
within a simple cube. We progressively remove surfaces from
the cubic reading cloud until the alignment problem becomes
unconstrained. We consider the following events, including
four constrained (1-4) and five unconstrained geometries (5-
9) of the reading cloud: 1) cube, 2) cube missing one surface,
3) cube missing two adjacent surfaces, 4) cube missing three
adjacent surfaces and one common corner, 5) cube missing
two opposite surfaces, 6) cube missing three surfaces (two
opposite), 7) two opposite surfaces, 8) two adjacent surfaces,
9) one surface.

We compare the degeneracy and alignability parameters
using this simulated dataset. For each event the task is to
identify geometric instability between the reference and read-
ing cloud. The task was run 100 times per event, with random
initial mis-alignment sampled from a zero-mean Gaussian
distribution with 0.10 m and 10◦ variance. The threshold
for the two parameters is set to 0.06 and 10 respectively,



and values below threshold indicate unconstrained geometry.
Fig. 7 illustrates the result of the experiment. The average
accuracy3 of the two parameters was 79.8% for degeneracy
and 97.7% for alignability. The degeneracy factor is com-
puted after the point-wise data association step of ICP, which
suffers from higher sensitivity to the initial perturbation. In
the case of alignability the estimates have lower variance and
the results show better separability between constrained and
unconstrained events. In our approach we analyse semantic
representations (the matched planes), rather than points. This
makes it less sensitive to the initial alignment error and more
stable overall.
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Fig. 7: Alignability validation on the simulated problem in Exp. B. The
green and red backgrounds show constrained and unconstrained geometries
respectively. The boxplots show the quantiles 5% and 95% (bottom and
top end of dashed lines), 25% and 75% (lower and higher end of blue
rectangles), 50% (red bars) of the distributions. Note that the boxes for
alignability are very narrow due to low variance.

C. Performance on Variable Overlap

In Sec. III we discussed the importance of accounting
for variations in spatial overlap when predicting point cloud
alignment failures in real-world scenarios. Here we evaluate
the sensitivity of failure predictions to variations in the
overlap between input clouds. We provide a comparison
between our alignment risk (AR) against ICN and D.

In this experiment we use two publicly available datasets –
Stairs (ST) and Apartment (AP), which consist of a Hokuyo
UTM-30LX-EW planar laser mounted on a tilting unit.
Ground-truth is available using an external tracking system.

For each dataset we perform a pair-wise alignment be-
tween the point clouds. We initialized the reading clouds with
random perturbations sampled from a zero-mean Gaussian
distribution with 0.10 m and 10◦ variance. We compute the
overlap and measure ICN, D, AR for each alignment. In
order to predict a registration failure, we selected a fixed
threshold for AR, which is the optimal one learned by our
model. In the case of ICN and D a threshold had to be fine-
tuned specifically for each dataset, as detailed in Tab. III.
The results are presented in Fig. 9.

Fig. 9a,e illustrate the matrix of overlap estimates using
our proposed Ω parameter for both datasets. The diagonal
elements show high overlap between each cloud with itself.
Note that our estimates are symmetric by formulation.

Fig. 9b-d and Fig. 9f-h present the confusion matrices for
ICN, D and AR, which are marked as illustrated in Tab. II.

Considering a localization task, we prefer predicting there
will be a failure where there is none (false positive – FP)
rather than the opposite (false negative – FN). In the regions
where overlap is low AR predicts fewer false negatives than

3Accuracy is given by the number of true positives and true negatives by
the total population.
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Fig. 8: Exp. C. Accuracy of failure predictions with respect to overlap
variation.

ICN and D. For ICN and D the number of point matches
is insufficient for the eigenvectors to stabilize. Our approach
which measures alignability and overlap, results in a robust
prediction.

ICN and D often predict false positives along the diag-
onal despite high overlap. This suggests sensitivity of the
parameters to initial perturbations. On the other hand, AR is
accurate both for low and high overlap.

Fig. 8 shows the accuracy of failure prediction as a
function of overlap for each of the three parameters. The
results indicate that AR has higher accuracy overall. As the
overlap reaches 30-40% we note that the success/failure of
the alignment becomes less predictable. Nevertheless, our
approach performs competitively.

D. Online Performance Analysis

AICP is used as the localization framework for this last
experiment, because of the increased robustness to initial
alignment error and variation in overlap. The approach
leverages a low drift proprioceptive-based state estimate
(for example we used the wheel odometry information) to
initialize the alignment. In [19], we extended the AICP
algorithm to trigger a reference point cloud update when
overlap decreases below an empirical threshold. In contrast,
in the system presented here, we aim for continuously
reliable localization by applying a registration correction to
the robot state estimate depending on the predicted risk
of alignment failure. When the risk is high, we query a
reference point cloud update and rely on proprioception until
the next laser measurement becomes available. Furthermore,
we replace the original FOV-based overlap parameter with
our octree-based one.

We test our localization system on the IF dataset. Our
dataset is collected by a Clearpath Husky mobile robot
equipped with a Carnegie Robotics Multisense SL. This
sensor is composed of a stereo camera and a Hokuyo UTM-
30LX-EW planar laser spinning about the forward-facing
axis. Every few seconds it spins half a revolution and a 3D
point cloud is accumulated. The speed of rotation of the
device is set to 15RPM as a compromise between density of
the clouds and accumulation time.

For this experiment we can align in three dimensions (x,
y and yaw) and use wheel odometry to estimate roll, pitch
and z. We predict registration failures using either D or
AR, for comparison purposes. The robot navigates along a
∼ 180 m path while exploring the area shown in Fig. 10,
which includes two cluttered rooms, two wide atria with
high ceilings and a corridor. The exploration involves passing
across constrictions such as doorways.
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Fig. 9: Exp. C. Left: Estimated octree-based overlap for ST and AP datasets. Arrays can be read as the volume of common space between Cloud A and
B. High overlap is marked in dark red, while low overlap in dark blue. From right to left: failure prediction results for AR, D, ICN on the ST (top) and
AP (bottom) datasets. The matrices follow the color-coding convention in Tab. II, i.e., TP, TN, FP, FN.

The localization results, qualitatively evaluated from care-
ful observation of the map built without loop closures in
Fig. 10, are such that the estimated trajectory is close to error
free when using AR. By aligning the last point cloud (red)
into the first one (black) we estimate a pose error at the end
of the run of 0.73 m in translation, corresponding to 0.41%
of the trajectory length, and 0.71◦ in rotation. This result
demonstrates improved localization reliability when using
AR for failure prediction. The parameter could predict and
prevent all failures during this experiment, while being robust
to geometric instability and overlap variation occurring in a
real-world scenario.

In Fig. 11 we show the registration failures identified by
D (top plot) and AR (bottom plot). D could not detect the
alignment failures at locations 1, 2, 3, 4 which caused the
system to lose track of the robot’s trajectory. As shown in
the images in Fig. 11 (right) the mis-predictions occurred in
situations where the overlap between the input clouds was
low, with a consequent instability of the D factor. Due to
these missed detections we could not complete the run on
this dataset when using D for failure prediction.

V. DISCUSSION

The proposed approach is able to reliably prevent localiza-
tion failures in real-world scenarios where geometric insta-
bility and overlap variations occur frequently and challenge
point cloud registration algorithms.

In our work we recognized some fundamental advantages
in using a learning based approach: i) during all experiments
on different datasets we selected a fixed threshold for AR.

Fig. 10: Top-view of the map reconstructed during Exp. D. No loop closures
have been performed. The trajectory estimated by our localization system
using the proposed AR for failure prediction is depicted in blue. Along the
path AR captured all 21 alignment failures. We indicate with numbers the
locations where only AR was successful (constrictions – 2, 3, atria with
occlusions – 1, 4), with correspondence in Fig. 11. The pose error at the
end is computed from the transform which aligns the last cloud (red) into
the first one (black) and results in 0.41% of the ∼ 180 m trajectory length.

This threshold is the optimal one learned by our model. ii)
depending on the application, we might want to be very
robust to false negatives, preventing localization failures and
hard recovery. The trade off for this scenario comes at the
cost of accepting more false positives and reference cloud
updates. In turn, each reference cloud update introduces
a small incremental error to our estimate. This is useful
when a low drift odometry prior is available, allowing us to
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Fig. 11: Left: Failure predictions during Exp. D. During navigation D could not detect 4 alignment failures, as highlighted by the red sections on the top
plot. We indicate each event with a number (1, 2, 3, 4). A top view of these events is shown on the right. The trajectory estimated using D for failure
prediction is depicted in green, whereas the one estimated using the proposed AR is blue. AR successfully predicted all 21 failures.

lower the AR threshold to accommodate more false positive
predictions.

Additionally, we believe that our model could facilitate the
search of loop closures in a SLAM system, by sorting the
candidates by AR score prior to data association.

VI. CONCLUSIONS

In this work we proposed a strategy for point cloud align-
ment failure prediction. We explored the degree to which
alignment failure is affected by geometric instability of the
input point clouds, as well as the spatial overlap between
them. We adopted a data-driven approach to evaluate the
geometric constraints available for alignment and the volume
of spatial overlap between the clouds. We used this data to
learn a model to predict the risk of a failed alignment.

This allows us to be independent of the adopted registra-
tion strategy and point-wise data association, as well as to
easily select the optimal threshold learned by our model in
order to predict a failure, which avoids manual fine-tuning.

We evaluated our approach on different datasets and
provided comparisons to existing techniques. Our algorithm
overcomes the weaknesses of the baseline techniques iden-
tified in the context of real-world scenarios, where con-
strictions and occlusions cause reduced overlap between
observations. We demonstrated how our approach can help
improve the reliability of laser-based localization systems
during exploration of unknown and cluttered man-made
environments. In a large indoor exploration demo the system
was able to reliably estimate the robot state with a final
pose error of 0.41% of the trajectory length, and to build
an accurate 3D representation of the environment.

Future work will focus on the extension of this approach
to a SLAM system with loop closure detection.
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