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Abstract— Active inference is a general framework for
decision-making prominent neuroscience that utilizes varia-
tional inference. Recent work in robotics adopted this frame-
work for control and state-estimation; however, these ap-
proaches provide a form of ‘reactive’ control which fails to track
fast-moving reference trajectories. In this work, we present a
variational inference predictive controller. Given a reference
trajectory, the controller uses its forward dynamic model to
predict future states and chooses appropriate actions. Further-
more, we highlight the limitation of the reactive controller such
as the dependency between estimation and control.

I. INTRODUCTION

Recent approaches in robotics have taken inspiration from
active inference [1], a theory of the brain prominent in
neuroscience. Active inference provides a framework for
understanding decision-making of biological agents. Under
the active inference framework, optimal behavior arises from
minimising variational free-energy: a measure of the fit be-
tween an internal model and (past) sensory observations [2].
Additionally, agents act to fulfill prior beliefs about preferred
future observations. This framework has been employed to
explain and simulate a wide range of complex behaviors,
including planning, abstract rule learning, reading, and social
conformity (see Table 1 of [3] for references).

A handful of approaches have used active inference to
control robotic systems. For example, in [4] an implemen-
tation of an active inference controller is presented for a 3
DoF humanoid robot. It was capable of performing reaching
behaviors in the visual field under noisy observation. How-
ever, the control was performed using velocity commands
rather than torque commands. Second, in [5], a method for
joint space control of robotic manipulators is presented and
compared to the state-of-the-art Model Reference Adaptive
Control in adaptability. In [6], [7] this approach is extended
to included hyperparameter learning.

In this work, we show how the approach in [4], [5]
provides a form of ‘reactive’ control (the error occurs first,
then the controller reacts to it). It can only track slow
references and has a a significant time-delay.

Our main contribution is to present a predictive controller
based on variational inference. Given a reference trajectory,
the controller uses its forward dynamic model to predict
future states and choose appropriate actions to reach the
desired trajectory. Additionally, unlike the reactive approach,
the state-estimation and control steps are separated which
allows for faster response of the controller.
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II. REACTIVE CONTROLLER BASED ON ACTIVE
INFERENCE

Active Inference considers an agent in a dynamic environ-
ment that receives observations o about states s. The agent
then infers the posterior p(s|o) given a model of the agent’s
world. Instead of exactly calculating p(s|o), which could be
computationally expensive, the agents approximates p(s|o)
with a ‘variational distribution’ Q(s) which we can define
to have a standard form (Gaussian for instance). The goal is
then to minimize the difference between the two distributions
which computed by the KL-divergence [8]:

KL(Q(s)||p(s|o)) =

∫
Q(s) ln

Q(s)

p(s,o)
ds + ln p(o)

= F + ln p(o).

(1)

The quantity F is referred to as the (variational) free-
energy -or Evidence lower bound- and minimizing F mini-
mizes the KL-divergence. If we choose Q(s) to be a Gaussian
distribution with mean µµµ, and utilize the Laplace approxima-
tion [9], the free-energy expression simplifies to:

F ≈− ln p(µµµ,o). (2)

Now the expression for variational free-energy is solely
dependent on one parameter, µµµ, which is referred to as the
‘belief state’. The objective is to find µµµ which minimizes F ;
this results in the agent finding the best estimate of its state.

Generalised motions (GM) [10] are used to represent the
(belief) states of a dynamical system, using increasingly
higher order derivatives of the system state. This means that
the n-dimensional state µµµ and its higher order derivatives are
combined in µ̃̃µ̃µ (µ̃̃µ̃µ = [µµµ,µ′µ′µ′...]). The same can be done for
the observations (õ = [o,o′ ...]).

For instance, in the context of a robotic manipulator, o
represents the sensory observation of a joint position, while
o′ represents the joint’s velocity observation. We consider
GM up to the second order.

A. Observation model and state transition model

Taking generalized motions into account, the joint proba-
bility from Equation (2) can be written as:

p(õ, µ̃̃µ̃µ) = p(õ|µ̃̃µ̃µ)p(µ̃̃µ̃µ) = p(o|µµµ)p(o′|µ′µ′µ′)︸ ︷︷ ︸
Observation model

p(µ′µ′µ′|µµµ)p(µ′′µ′′µ′′|µ′µ′µ′)︸ ︷︷ ︸
Transition model

,

(3)

where p(o|µµµ) is the probability of receiving an observation
o while in (belief) state µµµ, and p(µ′µ′µ′|µµµ) is the state transi-
tion model (also referred to as the dynamic model or the



generative model). The state transition model predicts the
state evolution given the current state. These distributions
are assumed Gaussian according to:

p(o|µµµ) = N (o; g(µµµ),Σo), p(o
′|µ′µ′µ′) = N (o′; g′(µ′µ′µ′),Σo′),

p(µ′µ′µ′|µµµ) = N (µ′µ′µ′; f(µµµ),Σµ), p(µ′′µ′′µ′′|µ′µ′µ′) = N (µ′′µ′′µ′′; f ′(µ′µ′µ′),Σµ′),
(4)

where the functions g(µµµ) and g′(µ′µ′µ′) represent a mapping
between observations and states. For many application the
state is directly observable, thus g(µµµ) = µµµ and g′(µ′µ′µ′) = µ′µ′µ′.

The functions f(µµµ) and f(µ′µ′µ′) represent the evolution of
the belief state over time. This encodes the agent’s preference
over future states (in this case the preferred future state is the
reference trajectory, µdµdµd). We assume: f(µµµ) = (µdµdµd − µµµ)τ−1

and f ′(µ′µ′µ′) = (µ′dµ
′
dµ
′
d−µµµ′)τ−1, where µdµdµd is the desired trajectory

and τ is a temporal parameter.
Given that all distributions are Gaussian, the expression

for F become a sum of quadratic terms and the natural
logarithms as:

F =
1

2
(
∑
i

εεε>i Σ−1i εεεi + ln |Σi|) + C, (5)

where i ∈ {o,o′,µµµ,µµµ′} and εµεµεµ = µ′µ′µ′ − (µdµdµd − µµµ)τ−1, εµ′εµ′εµ′ =
µ′′µ′′µ′′ − (µ′dµ

′
dµ
′
d − µµµ′)τ−1, εoεoεo = o − µµµ and εo′εo′εo′ = o′ − µ′µ′µ′ and C

refers to constant terms.

B. Estimation and control

To achieve state estimation, we perform gradient descent
on F using the following update rules:

˙̃µ̃̇µ̃̇µ = Dµ̃̃µ̃µ− κµ
∂F

∂µ̃̃µ̃µ
, (6)

where κµ is the gradient descent step size and D is a
temporal derivative operator.

We thus perform one gradient descent step for each
iteration. To find suitable control actions, we would also also
use one-step gradient descent; however, the expression for
F does not include any actions and thus we resort to using
the chain rule, assuming an implicit dependence between
the actions performed by the agent and the measurements it
acquires.

ȧ = −κa
∂F

∂a
= −κa

∂F

∂õ

∂õ

∂a
, (7)

where κa is the gradient descent step size. The term ∂õ
∂a is

assumed linear, and equal to the identity matrix (multiplied
by a constant) similar to existing work [5], [4].

C. Simultaneous state-estimation and control

Under this formulation, estimation and control are solved
simultaneously and both processes are dependent. The obser-
vation terms (such as εoεoεo) refine the current belief µµµ, whereas
the reference terms εµεµεµ bias the estimated state towards the
target µdµdµd. In addition, if the parameters τ−1 and Σ−1µ are
larger, the estimate µµµ is biased more towards the target µdµdµd.
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Fig. 1: State-estimation for different values of τ−1. Higher
values of τ−1 give more bias towards the target.

0 2 4 6 8 10 12 14
Time (s)

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

Po
sit

io
n 

(m
)

Control behaviour for different values of τ−1

Reference
x(τ−1 = 0.1)
x(τ−1 = 1.2)
x(τ−1 = 2.4)

Fig. 2: Control behaviour for different values of τ−1. Higher
values of τ−1 potentially introduce overshoot oscillations.

To illustrate this, consider the mass damper system given
by the equation: ẍ = a(t)−k1x−k2ẋ, where x is the position
of the mass, a(t) the control action, k1 the spring constant
(set to 1N/m), k2 the damper coefficient (set to 0.1Ns/m)
and the system has unit mass. We simulated it with initial
conditions x(0) = −0.5m, ẋ(0) = −1m/s and a(t) = 0N .
Figure 1 shows the results for the simulation when solving
Equation 6 for different values of τ−1.

It is clear that higher values of τ−1 give more bias towards
the target. For τ−1 = 8 (green line), the estimate is close to
the target (black dashed line) and far away form the actual
position (blue dashed line) as opposed to setting τ−1 = 0.1
(red line). If τ−1 → 0, the estimation step reduces to a pure
estimator, which would follow the trajectory without any bias
towards the target.

The controller steers the system based on the observation
error terms (εoεoεo and εo′εo′εo′ ). Since larger values of τ−1 move
the estimate more towards the target, the difference given by
o−µµµ is larger and thus the controller is more aggressive. An
illustration for the control behaviour given different values
of τ−1 is shown in Figure 2.

D. Limitations of the reactive formulation

As explained in [6], the presented formulation has two
extremes depending on the value of τ−1. If τ−1 → 0,
the estimation step has zero bias towards the target. As



Figure 1 has shown, for very small values of τ−1, the
estimator follows the real position without bias and thus
only performing state estimation. The control action in this
case will never steer the system towards the target. On the
other hand, if If τ−1 →∞ the system is completely biased
towards the target. In this formulation the approach performs
no state-estimation at all and the controller is equivalent to
a PID controller. For any other value for τ−1, there is a
compromise between estimation and control.

Additionally, we also recognize that it is not intuitive to
have an implicit notion of actions in the model. Recall that
F does not include actions a, but its relationships is inferred
from observations through the chain rule (Equation 7).

III. PREDICTIVE CONTROLLER

Given the previous limitations, we present a predictive
controller which explicitly models actions and transitions to
future states.

A. Predictive generative model

The model for the predictive controller includes the current
state st, the future state st+1, the control action a and the ob-
servation o. The aim is to compute p(st, st+1,a|o). Similarly
to the reactive case we approximate this distribution with a
variational distribution, use the mean-field assumption and
utilize the Laplace approximation. The posteriors over states
st and st+1 would have the means, µ̃̃µ̃µs and µ̃̃µ̃µs+1 respectively.
The distribution over actions is also assumed Gaussian with
a mean of µµµa. This results in the following model:

pt(µ̃̃µ̃µs, µ̃̃µ̃µs+1, õ,µµµa) ∝ p(õ|µ̃̃µ̃µs)p(µ̃̃µ̃µs)p(µµµa)

p(µ̃̃µ̃µs+1|f(µ̃̃µ̃µs,µµµa))p(µ̃̃µ̃µs+1),
(8)

where p(õ|µ̃̃µ̃µs) is the observation model, similar to the
reactive controller. The term p(µ̃̃µ̃µs) is a prior on the current
state µ̃̃µ̃µs given the result from the previous time step. The
last term, p(µ̃̃µ̃µs+1), is a prior on the next state which
sets it to the desired target (from the reference trajectory).
p(µ̃̃µ̃µs+1|f(µ̃̃µ̃µs,µµµa)), where f(µ̃̃µ̃µs,µµµa) is a forward dynamic
model that predicts future states. Finally, the prior over ac-
tions p(µµµa) can embed any information about the dynamics,
but set to a Gaussian with mean zero and a large variance
(Σ−1 → 0) otherwise.

Intuitively, we are not only using past information and
current measurements to obtain a current state estimate µ̃̃µ̃µs,
but also using information from dynamic models f(µ̃̃µ̃µs,µµµa)
to compute an action µµµa that will enforce the next state µ̃̃µ̃µs+1

to be closer to the desired reference. This contrasts with
a filtering scheme in which we are only concerned about
the current state estimate, and also with a classic predictive
controller in which we assume the current state is given.

B. Free-energy for a predictive controller

Again, given that all distributions are Gaussian, the ex-
pression for F becomes a sum of quadratic terms and the
natural logarithm of the covariances as:

F =
1

2
(
∑
i

εεε>i Σ−1i εεεi + ln |Σi|) + C, (9)

where i ∈
{
o,o′,µµµ,µµµ′,p,p′,d,d′, a

}
. There errors terms are

defined as:

εoεoεo = o−µµµs, εo′εo′εo′ = o′ −µµµ′s,

εµεµεµ = µµµs+1 − f(o,µµµs), εµ′εµ′εµ′ = µµµ′s+1 − f(o′,µµµ′s),

εpεpεp = µµµs −µµµp, εp′εp′εp′ = µµµ′s −µµµ′p,

εdεdεd = µµµs+1 −µµµd, εd′εd′εd′ = µµµ′t+1 −µµµ′d.

Finally, if we consider a feedforward signal (s(t)),

εaεaεa = µµµa − s(t),

otherwise εaεaεa is set to zero. The feedforward function is only
dependant on time. This function has to be based on an
accurate dynamic model since it does not account for any
disturbances or imperfections in the model. Even when the
feedforward function s(t) is used, it should have a higher
uncertainty in the optimization compared to the forward
dynamic model f(µ̃̃µ̃µs,µµµa).

C. Estimation and control

For the reactive case, every optimization was done by
taking one step of gradient descent separately. The same is
done in the predictive case. For every time-step t we run the
following update rules:

µ̃̃µ̃µs ← µ̃̃µ̃µs − kµ
∂F

∂µ̃̃µ̃µs

µ̃̃µ̃µs+1 ← µ̃̃µ̃µs+1 − kµ
∂F

∂µ̃̃µ̃µs+1

µµµa ← µµµa − ka
∂F

∂µµµa
,

(10)

where ka is the gradient descent step for actions and is set
to a much larger value that kµ. Subsequently , we move to
the next time-step and µ̃̃µ̃µs is set to the prior for the next time
step µ̃̃µ̃µp.

IV. RESULTS

In the results section, we evaluate the the reactive and
predictive approaches on a slow trajectory (µd = sin(0.3t))
and a faster trajectory (µd = sin(t)).

A. Tracking a slow trajectory

The response to tracking µd = sin(0.3t) is given in
Figure 3. The reactive controller can successfully track
the reference; however, with a time delay. The predictive
controller does not suffer from the time delay. In Table
I and Fig. 4 the error is given. The error of the reactive
controller is very large; however, this is partially due to the
time delay. It is also shown how including the (accurate)
feedforward signal s(t) improves the performance of the
predictive controller.
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Fig. 3: Response given a slow trajectory µd = sin(0.3t).
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Fig. 4: Error given a slow trajectory µd = sin(0.3t).

Reactive Predictive Predictive + s(t)
sin(0.3t) 1.75× 10−1 5.34× 10−2 9.89× 10−5

sin(t) 4.52× 10−1 1.21× 10−2 4.78× 10−3

TABLE I: The Mean Absolute Error (MAE) values associ-
ated with figures 3 and 5 are shown. As evident, the reactive
controller has the highest error.

B. Tracking a fast trajectory

The response for tracking sin(t) is given in Figure 5.
The reactive controller in this case struggles to track the
reference. By re-tuning the reactive controller, the response
time can be decreased; however, this introduces oscillations
which get amplified over time. The predictive controller does
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Fig. 5: Response given a fast trajectory µd = sin(t).

not suffer from the time delay and has no issue tracking the
fast trajectory. Again, in Table I the error is shown. For both
trajectories, the predictive controller along with an accurate
feedforward signal performs best.

V. CONCLUSIONS AND FUTURE WORK

In this work we presented a predictive controller based
on variational inference. Given a reference trajectory, the
controller uses its forward dynamic model to predict future
states and choose appropriate actions to reach the desired
trajectory. This overcomes the shortcomings of the reactive
controller such as the compromise between estimation and
control. For the predictive controller the actions are explicit
in the free-energy expression.

In [6] the covariance and the temporal parameter τ (used
in the reactive controller) were estimated during execution.
Future work will focus on learning appropriate variances for
the predictive controller. Additionally, model parameters can
be estimated during the optimization process as well (the
spring constant for instance).

Furthermore, the predictive model can be extended to
include future H time-steps which would allow the agent
to plan ahead. This is intimately related to work on planning
as inference [11]. This extensions could be efficiently imple-
mented using Probabilistic Graphical Models such as factor
graphs [12].
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