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Abstract— It has been demonstrated that the performance of
an object detector degrades when it is used outside the domain
of the data used to train it. However, obtaining training data for
a new domain can be time consuming and expensive. In this
work we demonstrate how a radar can be used to generate
plentiful (but noisy) training data for image-based vehicle
detection. We then show that the performance of a detector
trained using the noisy labels can be considerably improved
through a combination of noise-aware training techniques and
relabelling of the training data using a second viewpoint. In
our experiments, using our proposed process improves average
precision by more than 17 percentage points when training from
scratch and 10 percentage points when fine-tuning a pre-trained
model.

I. INTRODUCTION

Supervised learning methods have achieved ever-higher
levels of performance in recent years. However, the require-
ment for large amounts of hand-labelled training data makes
it labour intensive to deploy them in new domains. While
much research effort has been devoted to improving the
generalisation of models between domains, there is still a
significant gap in performance if no labelled data from the
new domain is available [1]. An alternative is to generate
labels for a new domain using an automated method which
takes advantage of circumstances that are not available at
runtime (for example, additional sensors or running time
backwards on recorded data). In this work we use a radar to
automatically generate noisy labels for the task of detecting
vehicles in images. We show how we can clean these labels
to give good detector performance without the need for hand-
labelling.

Radar is an appealing sensor to work with as it has a
number of characteristics that are complementary to more
commonly used sensors. For example, it is robust to most
forms of environmental conditions (such as rain or fog). In
this work we leverage its long range and the direct radial
velocity measurements provided by the Doppler effect. We
make the naïve assumption that radar targets with velocities
that could not be caused by the motion of the data collection
vehicle are generated by other vehicles moving nearby. This
allows us to inexpensively generate copious amounts of
training data without any hand-labelling effort.

Unlike LIDAR, radar provides velocity information with-
out any need to associate between consecutive timestamps.
This velocity information is the distinguishing characteristic
that we use to identify what to label. As a result, labels are
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Fig. 1. Using only radar targets as labels we are able to train an effective
vehicle detector using a noise-aware training process. We automatically
generate the initial labels from radar data (top) then train a model using a
modified version of the co-teaching process [2][3] to handle the noise. The
training data is then relabelled using the first model, incorporating detections
from a zoom image of the same scene to mitigate overfitting (middle). The
new labels are used to train an improved model which provides effective
vehicle detection from images alone (bottom).

only created for moving vehicles. However, as the velocity
information is not required at inference time (only images
are used), the detector can be deployed on platforms without
radar fitted and is free to generalise to stationary vehicles
which would not be identified by the radar.

As the labels we generate are noisy we use two processes
to mitigate the effect of this noise. Firstly, we train our
network using a modified version of the co-teaching process
[2][3] which attempts to prevent erroneous labels from being
used for parameter updates. Secondly, we use a relabelling
process exploiting cameras of different focal lengths to both
clean the labels and mitigate the degree of over-fitting that
would occur if only a single image was used. An overview
of the process is shown in Fig 1.

In a range of experiments presented below we show
the benefit provided by each element of the process and
demonstrate that good performance can be achieved despite
the high level of noise in the labels.

II. RELATED WORK

Supervised learning methods are the best performing ma-
chine learning techniques for many computer vision tasks.
However, it is well known that the simplest way to achieve
good performance is to increase the amount of available



training data. Given the cost of creating labelled datasets,
there is a huge amount of research devoted to reducing
manual labelling effort, thereby allowing bigger training sets
without the additional cost. Some work focuses on "domain
adaptation" - the practice of training a model using an
existing labelled dataset in such a way that when the model
is used in a new domain (for which no labels exist) any
reduction in performance is minimised. While this problem
is often studied in the context of semantic segmentation [4],
some methods are applicable regardless of the task [5][6].
In [7] the particular case of domain adaptation for object
detection is addressed by introducing losses to encourage the
features generated to be agnostic to the domain of the image.
Object detection is also targeted in [8] by incorporating
elements of adversarial training, a common thread in much of
the recent domain adaptation work. One particularly popular
application is domain adaptation for models trained using
synthetically generated data [9].

A second approach is to make do with data that is labelled
in a cheaper fashion. In object detection this so-called weakly
supervised task often takes the form of image level text
labels. It was noted in [10] that methods for tackling this
problem can fail by detecting only the most salient part
of an object. This has led to efforts to counteract this
failure mode [11][12][13]. The weakly supervised detection
problem is tackled in [14] with the benefit of full labels in
a neighbouring domain. This is exploited by using domain
adaptation techniques to generate "pseudo labels" in the
target domain. Many weakly supervised methods work from
a set of object proposals (such as those generated by [15] or
[16]) attempting to determine which proposal corresponds to
the image-level label. The system of [17] aims to improve
that process by using a model trained on motion cues to
help rank the proposals. Regardless of the efficacy of these
methods, some labelling effort is still required to generate
the image-level labels.

When using alternative labelling techniques (for example,
so-called "webly" supervised learning where labels are har-
vested from the internet) it is highly likely that the labels
will contain some mistakes. This noise in the labels has
a detrimental effect on the learning process, reducing the
final performance of the trained detector. There has been a
significant amount of effort devoted to methods that aim to
reduce the effect of noisy labels. A number of these works
focus on classification tasks such as [18]. In [19], Sukhbaatar
et al. aim to learn the class noise transition matrix from the
data by inserting an additional linear layer. Recently, [20]
proposed a meta-learning objective to increase robustness to
noisy labels. It also includes an iterative training process in
which those examples for which the previous model gives
a low score to the supposed ground-truth are excluded from
the re-training.

A different approach to reducing labelling effort is to use
unsupervised representation learning to train a model that
generates a representation of the input from which the final
task (in our case object detection) can be learned using a
much smaller quantity of labelled data than would otherwise

Fig. 2. The good (top), the bad (middle) and the ugly (bottom) of using
radar for labelling. We leverage a forward facing cruise control radar and
use a fixed size prior to initially label those targets that do not match the
platform’s ego-motion. It can be seen that the labelling method, though
crude, is remarkably accurate in many cases. However, it can also be seen
that there is label noise, such as multiple bounding boxes for a single
vehicle (middle) and ego-motion estimation errors leading to the inclusion
of stationary targets (bottom). This noise necessitates the use of the training
process that we propose.

be the case. The current state-of-the-art in these approaches is
[21] which learns a representation that maximises the mutual
information between the latent space and future samples
in a sequence — for images a sequence is generated by
predicting patches below the current patch. An extension of
this approach that may be applicable in multi-sensor settings
(such as ours) is introduced in [22] where contrasts are made
between different views rather than different elements of
a sequence. Another method of learning representations is
introduced in [23], where motion cues are used to segment
moving objects as training data.

Our work is poised between the weakly supervised meth-
ods, where the labels are known to be incomplete, and
methods related to training models from noisy labels.

III. GENERATING LABELS FROM RADAR

The radar that we use, a Delphi ESR 2.5 pulsed Doppler
ADAS radar, does not provide access to the raw radar signal.
Instead, it provides variable length lists of targets where each
target consists of range, bearing, amplitude and range rate
(radial velocity). With the assumption that each target occurs
in the plane of the radar (an assumption that does not always
hold, see Fig 4) this allows the SE3 position of each target
relative to the radar to be calculated.

Targets may represent returns from stationary or moving
objects. As radar provides a clear velocity signal, we use
that to distinguish moving vehicles from background (on the
assumption that all moving objects are vehicles). We first
subtract the ego-motion of the data collection vehicle, then
take the subset of targets for which the resulting velocity is
above a set threshold. Given the set of targets that correspond
to moving vehicles these can then be approximately labelled



in image space by proposing a fixed size cuboid at the
location of the radar target and projecting that cuboid into
the image. Although crude, this yields plausible bounding
boxes in a high proportion of cases (see Fig 2).

The obvious failure cases for this labelling method are
stationary vehicles or vehicles whose primary motion is
tangential rather than radial relative to the ego-vehicle (even
if those cases where motion is entirely tangential are quite
limited and brief). As a result of these failure cases and the
assumptions made (for example the fixed size vehicle prior)
the labels are sufficiently noisy that steps have to be taken
to reduce the effect of this label noise.

IV. CO-TEACHING

To improve trained detector performance when learning
from noisy labels, we make use of a modified version of
the co-teaching framework [2]. Co-teaching aims to exclude
gradients originating from examples that are mislabelled. It
is based on the observation that simpler patterns are more
easily learned during training [24] and that in these terms the
objects that we aim to detect form a simpler pattern than any
noise present in the labels. The implication of this is that,
at intermediate points during the training, the losses of the
two types of examples will diverge (i.e. clean label examples
will be learned more quickly and so will have lower losses
than examples with noisy labels).

To exploit this effect, co-teaching operates by training two
identical but differently initialised networks in parallel. For
each batch, each network informs the other which examples
have the lowest loss and hence are the ones that should
be used to provide gradients for parameter updates. The
proportion of the batch used for updates reduces over time
from the full batch at the start of training (when no learning
has taken place so there is nothing to differentiate between
examples) down to a subset that excludes a proportion equal
to the estimated fraction of labels that are noisy.

The modifications introduced in [3] are shown to im-
prove performance in an object detection setting. This is
done by adapting the framework to exclude updates on
an object-by-object basis (which is more suitable to object
detection) rather than an image-by-image basis (as used for
classification in the original paper), as shown in Figure 3.
In addition to the modifications of [3], instead of setting
a hyper-parameter to control the rate at which examples
are excluded from training, we make use of the percentile
moving average. Inspired by self-paced curriculum learning
from [25] and [26], after a burn-in period we exclude losses
above the percentile moving average (where the percentile is
set according to the expected noise fraction). This also helps
when batch sizes are small as the high/low loss distinction
is then more consistent between each batch regardless of the
composition of a specific batch.

V. RELABELLING

Having trained an initial model in our domain using the
labels derived from radar we then use that model to relabel
our examples to give a cleaner label set (the process is

shown in Fig. 4). Ordinarily, using a model to relabel its
own training data would lead to considerable over-fitting.
To reduce this effect we make use of a second camera
with a zoom lens, capturing the scene concurrently with the
wide-angle camera (note that only the wide-angle camera
is required at test time). We run our trained model over
the training set images of both cameras and combine the
detections from both cameras. Using this method, the labels
are refined using the more detailed zoom lens images. In
addition, it also acts to perturb the new labels (away from the
wide-angle only predictions) reducing overfitting (see results
in Table I).

More specifically, we first train a model using the wide-
angle images of the training set using the labels derived
from radar. That model is then used to make predictions
on every image of the training set from both the wide-angle
images and the matching zoom lens images. The predictions
from each wide-angle image and its matching zoom lens
image are then thresholded based on the confidence of each
prediction and combined. This combination is performed
using the procedure described in [27]. In brief, the zoom
lens predictions are reprojected into the wide-angle image by
assuming the two cameras are coincident (in practice they
are ≈ 30mm apart) which allows the image points to be
transferred without knowledge of distance. The combined
label set is formed by using the zoom lens predictions in
the overlapping region subject to an intersection metric [27]
at the boundary and the wide-angle labels elsewhere. In the
case where co-teaching is used, two functional networks are
trained simultaneously. Consequently, we optionally use both
networks to make predictions on the zoom lens images. We
then combine these two zoom lens sets by concatenating the
predictions and using non-maxima suppression to remove
highly overlapping predictions.

VI. NETWORK DETAILS

We use a network based on SSD [28], a single-stage object
detection network. SSD operates by making predictions of
class and bounding box offset for each one of a set of anchor
boxes of different sizes and aspect ratios. These anchor boxes
are repeated at each grid cell of a number of feature maps
of different sizes. The dense predictions are then filtered
based on class probability (the class prediction includes a
"no object" option) and non-maxima suppression. We use
a relatively small ResNet18 backbone [29] extended with
an additional block that provides input to a larger scale
feature map. In the case of single GPU training we are
constrained in the size of network that can be used by the co-
teaching procedure that requires two networks to be trained
simultaneously. We use a batch size of 8 and the Adam
optimiser [30] with an initial learning rate of 1e−4 reduced
to 1e−5 after 55k iterations. We use L2 weight decay of 1e−3

as well as standard image augmentation processes including
horizontal flips, random crops and colour perturbations.

As the number of labelled images decreases after rela-
belling we train for a fixed number of iterations (rather



Fig. 3. The modified co-teaching process introduced in [3]. The indices of the lowest loss elements from ordered lists of the three types of object detector
loss (losses relating to positives, hard-negatives and bounding box regression) are exchanged between two identical networks and only those lower loss
elements are used to provide parameter updates.

Fig. 4. The relabelling process. The image crops show examples of the labels at the different stages of the process. Note how the original radar labelling
process does not account for the slope of the road which results in the bounding boxes being placed above the vehicles. During relabelling this is corrected
by detections in the zoom lens image that are combined with the wide image detections to form the final combined label set.

than a number of epochs) for each model (pre- and post-
relabelling).

A. Co-teaching Loss Function

When co-teaching is enabled, the overall loss function that
is optimised is calculated as

L = LP + LH + LB (1)

where LP , LH and LB are the losses relating to the pos-
itive, hard-negative and bounding box elements respectively.
They are defined as

Li =

1∑
j=0

Ni∑
k=1

Li
j,k (2)

where
Li
j,k = lij,kI(li1−j,k < Ai

1−j,t) (3)

and i ∈ {P,H,B}. The loss for a specific instance k of
type i for model j is lij,k and I is the indicator function.
The number of instances Ni varies between types (more
hard-negatives than positives, for example). The losses lij,k
are calculated in accordance with [28] with lP being cross-
entropy losses for the positive instances (those anchor boxes

matched with ground truth labels) and lH being cross-entropy
losses for hard-negative instances. The bounding box losses
lB are calculated using a smooth L1 loss.
Ai

1−j,t is the percentile exponential moving average up-
dated at each step of training and calculated as

At+1 =

{
E(V, ε), t = 0

λE(V, ε) + (1− λ)At, t > 0
(4)

where t is the training step, λ is the moving average rate
(we use λ = 0.9) and the i and 1 − j have been left off
for readability. E(V, ε) is the loss value corresponding to
a given percentile where V is the vector of all loss values
li1−j,k for a specific i and ε is the required percentile (we
use ε = 1− η where η is the expected error fraction).

VII. DATASET

To examine the performance of our method we conduct
tests on a dataset comprising over three hours of driving
near Oxford, UK, covering urban, sub-urban, highway and
rural roads. The dataset includes six individual drives, four
used for training and one each for validation and testing.
The validation and testing drives follow different routes to
any of the drives used in training. In total, after sub-sampling,
the dataset includes 8415 examples for training where each



example contains a wide-angle image, a zoom image (which
covers the central portion of the wide-angle image), a set
of radar targets and an ego-motion estimate. In our case
this estimate was obtained using stereo visual odometry [31]
(utilising an extra camera not used for network training),
although other ego-motion estimation methods could be used.
In addition, in order to enable clear evaluation of the learning
method, from the separate validation and test drives, 181
validation images and 228 test images have been hand-
labelled with 2D bounding boxes around all vehicles. Wide-
angle images are 512x1280 pixels in size, zoom images are
960x1280.

VIII. EXPERIMENTAL RESULTS

To examine the performance of our method we perform
a range of experiments on our dataset. For all experiments
we evaluate using the hand-labelled test set. We use average
precision with an IOU threshold of 0.5 and, in line with
the KITTI evaluation procedure [32], we exclude labels (and
related detections) of vehicles less than 25 pixels high.

In the first set of experiments we show the effect of each
part of our relabelling process. We start by simply training a
model without any additional processes which demonstrates
the issues caused by the noisy radar labels. We then add
relabelling but use only the wide-angle images to generate
the labels for the second training run. In the next experiment
we again use relabelling but generate the labels for the
second run by combining labels from both the wide-angle
and zoom images. We then run the same experiments again
but this time using the co-teaching process in each training
loop. Finally, as co-teaching produces two usable models
on each training run, in the relabelling process we use both
models to contribute zoom labels to the relabelled data. The
results of these experiments are shown in Table I and in
Figure 5 with some sample detections shown in Figure 6. All
results are the average of two runs with those experiments
that make use of co-teaching presented as the average over
both runs and both models (for a total of four). It can be seen
that the combination of co-teaching and relabelling provides
a large increase in detector performance. It can also be
seen that the use of labels from the zoom image contributes
significantly. Our full process yields an improvement of 17
points over the standard training process.

In a further set of experiments, we evaluate the benefit of
our method in a scenario where a network has already been
trained for the task on a different domain. In this case we
pre-train our network on the KITTI object detection dataset.
The pre-trained network is then used as the initialisation for
both stages of training (i.e. when using only the original radar
labels and additionally when using the cleaned labels in the
second training run). The results are shown in Table II. It
can be seen that while the results in general are higher than
those when training from scratch, the relabelling process is
still highly beneficial. The effect of the second zoom model
is limited to a tightening of the standard deviation rather than
an increase in performance.

TABLE I
VEHICLE DETECTION PERFORMANCE USING DIFFERENT ELEMENTS OF

THE RELABELLING PIPELINE

Relabelling configuration
Co-
teaching

Re-
label

Wide-
angle
labels

Zoom
labels

Both
zoom
models

AP (±1SD)

No No N/A N/A N/A 0.203 (±0.0177)
No Yes Yes No N/A 0.236 (±0.0085)
No Yes Yes Yes N/A 0.264 (±0.0042)

Yes No N/A N/A N/A 0.247 (±0.0431)
Yes Yes Yes No No 0.280 (±0.0168)
Yes Yes Yes Yes No 0.363 (±0.0378)
Yes Yes Yes Yes Yes 0.377 (±0.0240)

Fig. 5. Average precision curves showing the performance of a model
trained using the standard training process against one trained using our
full relabelling process.

IX. CONCLUSIONS AND FURTHER WORK

In this paper we have proposed a method for improving the
performance of an object detector when using automatically
labelled data. The combination of a modified version of co-
teaching (introduced in [3]) with the relabelling process using
two cameras introduced in this work has been shown to be
effective. This allows the use of labelling methods that would
previously have been thought to be far too unreliable.

Nevertheless, there are downsides to this method: having
to train two models effectively doubles training time. In
addition, as is the case with our radar labelling method,
biases in the original labels cannot be fully overcome — as
the radar cannot determine the tangential velocity of crossing
vehicles they are rarely included in the label set which
correspondingly reduces the overall detector performance.
Similarly, the fixed-size vehicle prior is not suitable for
larger vehicles such as buses — we find that while the
detector may detect the vehicles, the proposed bounding
boxes are too small (and are consequently evaluated as
incorrect detections). It is possible that an improvement to
our method would be to base the initial boxes on proposals
such as those provided by [15].

One facet that we have yet to explore is the effect of



TABLE II
VEHICLE DETECTION PERFORMANCE USING CO-TEACHING AND A

PRE-TRAINED MODEL FOR INITIALISATION

Relabelling configuration
Relabel Wide-

angle
labels

Zoom
labels

Both
zoom
models

AP (±1SD

No N/A N/A N/A 0.321 (±0.0168)
Yes Yes No N/A 0.344 (±0.0107)
Yes Yes Yes No 0.427 (±0.0388)
Yes Yes Yes Yes 0.422 (±0.0192)

training data quantity on the efficacy of our method. It
could be that large amounts of additional data provide
further performance improvements, or alternatively, in the
experiments above our method may be purely compensating
for a paucity of data. This could be potentially be explored
using the nuScenes dataset [33] which also includes radar
data although it does not include zoom lens images which
our results indicate contribute considerably to the final per-
formance.

Fig. 6. Example detections from the test set using the model trained with
the full relabelling process.
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