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Abstract—1In this paper, we present a novel factor graph
formulation to estimate the pose and velocity of a quadruped
robot on slippery and deformable terrain. The factor graph
introduces a preintegrated velocity factor that incorporates
velocity inputs from leg odometry and also estimates related
biases. From our experimentation we have seen that it is difficult
to model uncertainties at the contact point such as slip or
deforming terrain, as well as leg flexibility. To accommodate
for these effects and to minimize leg odometry drift, we extend
the robot’s state vector with a bias term for this preintegrated
velocity factor. The bias term can be accurately estimated
thanks to the tight fusion of the preintegrated velocity factor
with stereo vision and IMU factors, without which it would
be unobservable. The system has been validated on several
scenarios that involve dynamic motions of the ANYmal robot on
loose rocks, slopes and muddy ground. We demonstrate a 26 %
improvement of relative pose error compared to our previous
work and 52% compared to a state-of-the-art proprioceptive
state estimator.

I. INTRODUCTION

The increased maturity of legged robotics has been demon-
strated by the initial industrial deployments of quadruped
robots, as well as impressive results achieved by academic
research. State estimation plays a key role in field deploy-
ment of legged machines: without an accurate estimate of
its location and velocity, the robot cannot build a useful
representation of its environment or plan/execute trajectories
to reach goal positions.

Most legged robots are equipped with a high frequency
(>250Hz) proprioceptive state estimator for control and
local mapping purposes. These are typically implemented
as nonlinear filters fusing high frequency signals such as
kinematics and IMU [1]. In ideal conditions (i.e. high friction,
rigid terrain), these estimators have a limited (yet unavoidable)
drift that is acceptable for local mapping and control.

However, deformable terrains, leg flexibility and slippage
can degrade the estimation performance up to a point
where local terrain reconstruction is unusable and multi-step
trajectories cannot be executed, even over short ranges. This
problem is more evident when a robot is moving dynamically.

Recent works have attempted to improve kinematic-inertial
estimation accuracy by detecting unstable contacts and
reducing their influence on the overall estimation [2], [3].
Alternatively, some works have focused on incorporating
additional exteroceptive sensing modalities into the estimator
to help reduce the pose error [4].
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Fig. 1. ANYmal trotting over a field of small rocks at the Swiss Military
Rescue Centre in Wangen an der Aare (Switzerland). The ground truth was
collected using a Leica TS16 laser tracker (visible in the background).
Video: http://youtu.be/wlSx6dIggQo

These approaches model the contact locations as being
fixed and affected only by Gaussian noise. Both assumptions
fail in conditions such as non-rigid terrain, kinematic chain
flexibility, and foot slippage.

A. Motivation

Our work is motivated by the observation that there is
an approximately constant velocity bias from the kinematic-
inertial state estimator on the ANYmal robot during dynamic
locomotion. An example is shown in Fig. 2, where the robot’s
estimated altitude grows linearly as the robot moves. We
attribute this behavior to the compression of legs and the
ground during the contact events.

One approach would be to further model the dynamic
properties of the robot [5] or the terrain directly within the
estimator. However, this is likely to be robot specific and
terrain dependent: improving performance in one situation
but degrading it elsewhere. Instead, we propose to extend
the state of the estimator with a velocity bias term which is
estimated using vision and then to reject all such effects.

Inspired by the IMU bias estimation and preintegration
methods from [6], we propose a novel leg odometry factor that
performs online velocity preintegration and bias estimation
to compensate for characteristic drift in leg odometry.

This factor was implemented as a concurrent thread within
our VILENS framework [7], a visual-inertial-legged estimator
which uses GTSAM for optimization [8]. Thanks to forward
propagation, the thread can output the best pose and velocity
estimates at 400 Hz directly, or just update the bias terms
of the estimator running inside the robot’s control loop. The
optimized estimate is available from the optimizer thread at
at 30 Hz for effective local mapping.
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Fig. 2. Comparison between estimated robot altitude by Pronto [2] (blue)
and TSIF [9] (magenta) kinematic-inertial state estimators, against ground
truth (green) on the SMR1 dataset. Despite local fluctuations, the drift has a
characteristic linear growth.

B. Contribution

This paper builds upon state-of-the-art methods for online
IMU bias estimation [6] and the authors’ previous work [7]
to improve state estimation performance of legged robots
in a variety of difficult scenarios where kinematic-inertial
estimates would drift significantly. Compared to previous
research, we present the following contributions:

o We present a novel factor graph approach that tightly
fuses leg odometry as velocity constraints (as opposed
to position constraints), with stereo vision and IMU
measurements;

e« We present the first visual-inertial-legged odometry
solution that explicitly accounts for error in leg odometry
(that can be caused by terrain/leg deformation and
slippage) by extending the state with a velocity bias
term;

o We show that estimating leg odometry error can reduce
RPE by 26% in extensive outdoor experiments on muddy
ground, slopes, and rockbeds with the ANYmal robot
(Fig. 1).

The remainder of this article is presented as follows: in
Section II we review the literature on mobile state estimation
with a focus on challenging, outdoor conditions; Section
IIT formally defines the problem addressed by the paper
and provides the required mathematical background; Section
IV describes the factors used in our proposed formulation;
Section V presents the implementation details of our physical
system; Section VI presents the experimental results and their
interpretation; Section VII concludes with final remarks.

II. RELATED WORK

In legged robotics, slippage and/or deformation have been
typically addressed by assuming the contact location of a
stance foot is always static throughout the stance period
(yet affected by Gaussian noise). Thus, the main focus has
been on detecting and ignoring the feet that are not in fixed
contact with the ground. These methods would typically
perform filtering using only proprioceptive sensing, with a
few exceptions.

Bloesch et al. [1] proposed an Unscented Kalman Filter
design that fuses IMU and differential kinematics. The
approach used a threshold on the Mahalanobis distance of the
filter innovation to infer outliers which were then ignored.

Sensor Model Hz  Specs

. Init Bias: 0.2° /s | 5mg
IMU Xsens MTi-100 400 Bias Stab: 10°/h | 15 mg
Sterco Resolution: 848 x 480 px
Camera RealSense D435i 30  FoV: 91.2° x 65.5°

Imager: IR global shutter
Encoder ANYdrive 400  Resolution: <0.025°
Torque ANYdrive 400  Resolution: <0.1 Nm
TABLE I

Ma et al. [10] proposed an Extended Kalman Filter
(EKF) design that was Visual Odometry (VO) driven. They
incorporated kinematics only when VO failed or a simple
heuristic criteria was met (e.g., when roll or pitch are greater
than 45° slippage was assumed and leg odometry ignored).
Using high-grade sensors, they were able to achieve 1% error
over several kilometers of experiments.

Camurri et al. [2] proposed an EKF fusing IMU and differ-
ential kinematics similar to [1]. Instead of the Mahalanobis
distance on the filter innovation, they developed probabilistic
contact and impact detectors. The contact detector learns the
optimal force threshold to detect a foot in contact for a specific
gait, while the impact detector adapts the measurement
covariance to reject unreliable measurements. We used this
approach to fuse each leg’s kinematic measurements into a
single velocity measurement for our proposed factor graph
method.

Recently, Jenelten et al. [3] presented a probabilistic contact
and slip detector which used a Hidden Markov Model for
the ANYmal quadruped robot. Using differential kinematics,
the authors were able to successfully detect slippage events
and robustify locomotion on slippery surfaces. However, they
did not address pose estimate drift.

III. PROBLEM STATEMENT

Our quadruped robot has 12 active Degrees-of-Freedom
(DoF) and is equipped with a stereo camera, an IMU,
joint encoders and torque sensors (see Table I for the
specifications). We aim to estimate the history of the robot’s
base link pose and its velocity (linear and angular) over
time. In contrast to previous works, we propose to estimate
velocity biases (in addition to IMU biases) to compensate
for leg odometry drift, as detailed in the following section.

The relevant reference frames are specified in Fig. 3 and
include: the left camera frame C, the IMU frame I, the fixed-
world frame W, and the base frame B. When a foot is in
contact with the ground, a contact frame K is also defined.

Unless otherwise specified, position ,;p,z and orientation
R,;s of the base are expressed in world coordinates, velocities
of the base yv5, gwyp are in base coordinates (see [11]), IMU
biases ;b?, ;b® are expressed in the IMU frame, and the
velocity biases zb*, ;b” are expressed in the base frame.

A. State Definition

The robot state at time t; is defined as follows:

Z; é [Rivpi7v’iabi] (1)



Fig. 3. Reference frames conventions. The world frame W is fixed to earth,
while the base frame B, the camera’s optical frame C, and the IMU frame, I
are rigidly attached to the robot’s chassis. When a foot touches the ground
(e.g., the Right Front, RF), a contact frame K (perpendicular to the ground
and parallel to W’s y-axis) is defined. The projection of a landmark point m
onto the image plane is 7(m).

where: R; € SO(3) is the orientation, p; € R? is the position,
v; € R3 is the linear velocity. The bias vector b; is composed
as follows:

b, = [b{ bf, b¥, b¥] € R™? )

where the first two elements are the usual IMU gyro and
accelerometer biases, and the last two [bY, bY] = b? are our
proposed angular/linear velocity biases from leg odometry.

This builds upon the formulation from our previous work
[7], by incorporating a preintegrated velocity factor (as
opposed to a relative pose factor where the integration was
operated by an external filter).

In addition to the robot state, we estimate the position
of all observed visual landmarks m,. The objective of our
estimation problem is then the union of all the robot states
and landmarks visible up to the current time t:

X2

VieKy

{z:}, |J {m} 3)
VLEM;

where Kj, M, are the lists of all the keyframe indices up

to time ¢; and all landmark indices visible at time ¢;,

respectively.

B. Measurements Definition

For each new stereo camera frame C;, collected at time
t;, we receive a number of IMU measurements Z;; collected
between t; and t;. We also define V;; as the angular and
linear velocity measurements from an external source of
leg odometry (Pronto or TSIF). This source would account
for the fusion of multiple legs in contact into one velocity
measurement per joint state measurement. The set of all
measurements up to time ¢, is therefore defined as:

ze 2 | (6T, Vi )
VieKy,
C. Maximum-a-Posteriori Estimation
We wish to maximize the likelihood of the measurements
Zy, given the history of states Xj:

Xy = arngaXp(XHZk) o p(Xo)p(Zk|Xk)  (S)
&
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Fig. 4. VILENS factor graph structure, showing initial prior, visual, IMU,
and preintegrated velocity factors. When a zero velocity state is detected
(e.g. between z2 and x3) then the velocity bias is not used and is kept
constant (we assume the bias is only present when the robot is moving).

As the measurements are formulated as conditionally inde-
pendent and corrupted by white Gaussian noise, Eq. (5) can
be formulated as a least squares minimization problem:

p = argmin [rol3, + Y ez, 12, + D llew, I3,
X €Ky €Ky
) e, 13+ D D Irim |3, (6)

€Ky i€Ky £eM;

where each term is the residual associated to a factor type,
weighted by its covariance matrix; specifically the residuals
are: state prior, IMU, velocity, biases and landmarks.

IV. FACTOR GRAPH FORMULATION

In the following sections we describe the measurements,
residuals and covariances of the factors which compose the
factor graph shown in Fig. 4. For convenience, we summarize
the IMU factors from [6] in Section IV-A; our novel velocity
factor is detailed in Section IV-B; Sections IV-C and IV-
D describe the bias and stereo visual residuals, which are
adapted from [6], [7] to include the velocity bias term and
stereo cameras, respectively.

A. Preintegrated IMU Factors

In the standard manner, the IMU measurements are
preintegrated to constrain the pose and velocity between two
consecutive nodes of the graph, and provide high frequency
state updates between them. This uses a residual of the form:

_ T T T
rIij - |:rARij ) rAvij ) rApij:| (7)

where Z;; are the IMU measurements between ¢; and ¢;. The
individual elements of the residual are defined as:

rar,, = Log (AR (b{)) RR, ®)

rav, =R} (v; —vi — gAti;) — Avi;(b?,bY)  (9)

1
rap, =R} (Pj — Pi — Vildty; — ngt?j>
— Apy;(b?,b%) (10)

for the definition of the preintegrated IMU measurements
AR;j, Ap;j, Av;;, the noise terms d¢,0v,dp, and the
covariance matrix Xz,,, the reader is invited to consult [6].



B. Preintegrated Velocity Factors

1) Leg Odometry: When a leg is in rigid, non-slipping
contact with the ground, the robot’s linear velocity can be
computed from the foot velocity and position in base frame:

(1)

From the sensed joint positions and velocities d,q and
noise N?,1¢ we can rewrite Eq. (11) as a linear velocity
measurement [1]:

BVw = —BVBk — B%wB X BPBk

v=—J@q-n")-(@-n") —wxfl@a-n") 12
where f(-) and J(-) are the forward kinematics function and
its Jacobian, respectively.

Eq. (12) is valid only when the corresponding leg is in
contact with the ground. However, this happens intermittently
while the robot moves. Since multiple legs can be in contact
simultaneously, measurement fusion is necessary. To do this
we take advantage of the contact detection and sensor fusion
features of the EKF filter in [2] and use it as an independent
source of unified velocity measurements v, w.

2) Velocity Bias: On slippery/deformable terrains, the
constraint from Eq. (11) might not be respected, leading
to leg odometry drift and inconsistency with visual odometry.
In our experience this drift is constant and gait dependent.

For these reasons, we relax Eq. (11) by adding a slowly
varying bias term b" to Eq. (12). As in [1], we also collect
all the effects of encoder noise into a single term, leading to:

13)
(14)

v =—-J(@)dq-wx1f@+b’+n
w=w+bY+n*

where the parameters for n¥, n“ are provided by the source
of velocity measurements.

3) Preintegrated Measurements: In the following, we
derive the the preintegrated position and noise only. For
the respective rotational quantities AR and d¢, we refer to
[6], as they have the same form as for IMU measurements.

Assuming constant velocity between ¢; and ¢;, we can
iteratively calculate the position at time ¢; as:

-1
P; =Ppi+ Z Ry (Vi — b — m) At]
k=i

5)
From Eq. (15) a relative measurement can be obtained:

j—1
Api; = R]( Z [AR;i, (Vi — by, — np) At)]
k=1

16

With the substitution AR;; = AR;,Exp (—5¢ik)( t(z

include the preintegrated rotation measurement, and the

approximation Exp (¢) ~ I+ ¢”, Eq. (16) becomes:

j—1

Apy; = Y [ARw(I = 6¢)(% by = mp)At| (17
k=i

By separating the measurement and noise components of

Eq. (17) and ignoring the higher order terms, we can define

the preintegrated position measurement Ap and noise dp as:
j—1

Aby 2 3 [ARu (% — bY)Al] (18)
k=i
j—1
ooy 23 [Aﬁikngm ~ ARy (Vs — bg)AaqﬁijAt]
k=1
(19)

Note that both quantities still depend on the bias states b =
[b“, b"]; when these change, we would like to avoid the
recomputation of Eq. (18). Given a small change §b® such
that b9 = b? + 6b®?, we approximate the measurement as:

- - T O0Ap; 8Ap

(BR) ~ N Ne 2P oy w YUabij v
Ap;;(b%) ~ Ap;;(b¥) + Ibe ob Ibv b’ (20)
4) Residuals: the velocity residual can be expressed as:

ry, = HRH : rgp”} 1)

where raR,; has the same form as Eq. (8) and rap,; is:
=R (p; —pi) — APy(bY,bY)  (22)

5) Covariance: After simple manipulation of Eq. 19, the
covariance of the residual rap,, can be expressed as a linear
combination of the preintegrated and current sensor noise:

Sy =A%y, AT+ B Y] BT (23)

Yy,, evolves over time while Y7, is fixed and depends sensor
specifications. The multiplicative terms are:
AR], 0 JEAt 0
Ale (V]C — bv)/\At I:| |: 0 ARzkAt]
(24)
where J, is the right Jacobian of SO(3) and the other terms
are manipulations of d¢ and dp from [6] and Eq. (19).

C. Bias Residuals

The biases from Eq. (2) are intended to change slowly
and are therefore modeled as a Gaussian random walk. The
residual term for the cost function is therefore:

rApij

ik+1

A=

5, 2 [16f = b, + b - b7, +
+ b7 = b5, + Ibj — b3, (25
where the covariance matrices are determined by the expected

rate of change of these quantities, depending on the IMU
specifications or the drift rate of the leg odometry.

||rb1,_7‘

D. Stereo Visual Factors

Given a stereo pair of rectified images, the stereo vi-
sual odometry residual is the difference between the mea-
sured landmark pixel locations (u”,v), (u%,v), and the re-
projection of the estimated landmark location into image
coordinates, (7%, 7,),(nE m,) using the standard radial-
tangential distortion model. The residual at pose ¢ for

landmark my is:
Tl (R, pi,my) — ul,
Tim, = | m (Rips,my) — Ufe
T (Rs, Piymy) — v 0
where ¥, is computed using an uncertainty of 0.5 pixels.

L
X (26)
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Fig. 5. The VILENS architecture with preintegrated velocity bias estimation.

V. IMPLEMENTATION

The state estimation architecture is shown in Fig. 5.
Four parallel threads execute the following operations:
preintegration of the IMU factor, preintegration of the
velocity factor, stereo feature tracking, and optimization.
This approach outputs 400 Hz velocity and pose estimates
from the preintegration thread for use by the robot’s control
system, and a 30 Hz output from the factor-graph optimization
thread for use by local mapping. When a new keyframe
is processed, the preintegrated measurements and tracked
landmarks are collected by the optimization thread, while
the other threads process the next set of measurements. The
factor graph optimization is implemented using the efficient
incremental optimization solver iISAM?2 [12], which is part
of the GTSAM library [13]. We limit the number of states in
the graph to 500 to keep the optimization time approximately
constant.

A. Visual Feature Tracking

We detect features using the FAST corner detector, and
track them between successive frames using the KLT feature
tracker. Outliers are rejected using a RANSAC-based rejection
method. Thanks to the parallel architecture and incremental
optimization, all frames are used as keyframes, achieving
30 Hz nominal output. In contrast to [7], we use the Dynamic
Covariance Scaling (DCS) [14] robust cost function to
reduce the effect of landmark correspondence outliers on
the optimization.

B. Zero Velocity Update Factors

To limit drift and factor graph growth when the robot is
stationary, we enforce zero velocity updates on the different
sensor modalities (camera, IMU, and leg odometry). If two out
of three modalities report no motion, a zero velocity constraint
factor is added to the graph. The IMU and leg odometry
threads report zero velocity when position (rotation) is less
than 0.1 mm (0.5°) between two keyframes. The image thread
reports zero velocity when less than 0.5 pixels displacement
of all the features is detected over the same period.

VI. EXPERIMENTAL RESULTS

We have tested our proposed algorithm on a variety of
terrain types for a total time of 53 min and 403 m traveled
distance. The datasets consist of four scenarios (Fig. 6):

Fig. 6. Onboard camera feed from the four scenarios evaluated. Top left: wet
concrete (FSC); Top right: gravel and grass (SMR1); Bottom left: rockbeds
(SMR2); Bottom right: muddy grass uphill (SMR3).

10 m Relative Pose Error (RPE) (o) [m]

Data | TSIF[9] V-VI V-RP[7] V-VB

FSC | 049 (036) 042 (0.32) 0.47 (0.40)  0.36 (0.30)

SMRI | 0.96 (0.44) 0.36 (0.29) 0.36 (0.32)  0.36 (0.33)

SMR2 | 0.69 (0.23) 0.24 (0.16)  0.45 (0.10)  0.24 (0.16)

SMR3 | 0.87 (0.42) 043 (0.48) 0.53 (0.46)  0.39 (0.48)
TABLE II

o FSC a 240 m long trajectory consisting of three loops
on wet concrete, standing water/oil, gravel and mud;

« SMR1 a 106 m straight trot over concrete, gravel and
high grass, followed by two loops on short grass
alternating between dynamic and static gaits;

o« SMR2 a 22m straight trot on rockbeds;

e SMR3 a 35m trot in a loop uphill with grass, mud
and external disturbances applied to the robot to cause
slippage events.

The first dataset was collected at Fire Service College (FSC),
Moreton-on-Marsh, UK; the other three at the Swiss Military
Rescue Center (SMR), Wangen an der Aare, Switzerland.
Different copies of the ANYmal robot were used in the ex-
periments. The attached video gives a sense of the conditions.

To generate ground truth, we tracked the robot using the
Leica TS16 laser tracker (shown in Fig. 1), which provides
millimeter accurate position measurements at 5Hz. The
orientation was reconstructed with an optimization method
similar to that used by the EuRoC dataset [15].

We have evaluated the Relative Pose Error (RPE) over a
distance of 10 m for the following algorithms:

e V-VB: VILENS with our proposed velocity bias factors;

o V-RP: VILENS with leg odometry integrated as relative
pose factors, as used in our previous work [7];

e V-VI: a pure visual inertial navigation system (i.e.,
VILENS without leg odometry factors);

o TSIF: default ANYmal state estimator [9], our baseline.

Note that the same IMU and camera settings have been used
for all configurations and datasets. Also, in comparison to our
previous work [7], the robustness of visual feature tracking
has been improved due to the introduction of stereo factors,
higher framerates and robust cost functions.

The results are summarized in Table II. In three of the
four datasets (FSC, SMR2 and SMR3), V-VI is able to
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Fig. 7. Aerial view of the trajectories for method V-VB and the ground truth
on the FSC dataset (240 m traveled). The common start point is indicated
with a circle and the two endpoints with a cross. The lower part of the
trajectory has no ground truth. Note that V-VB has no loop-closure system.

T ) —GT —V-VB —V-vi

Fig. 8. Left: Onboard image of a visually challenging scene containing
reflections from a large, oily puddle. Right: Top-down comparison of V-VB
and V-VI trajectories aligned with ground truth while crossing the puddle.

outperform V-RP. This is because the datasets are designed to
be particularly challenging for leg odometry. Therefore, the
inclusion of relative pose factors without compensating for leg
odometry drift actually degrades the performance compared to
a visual-inertial only system. With the preintegrated velocity
bias estimation, leg odometry improves the estimate up to
14 % compared to V-VI and 26 % compared to V-RP.

The global performance is shown in Fig. 7, which depicts
the estimated and ground truth trajectories on the 240 m FSC
dataset. By incorporating visual information to reject drift,
the final z position of V-VB is 8.6 cm above ground truth,
compared to a drift of 4.02m from the TSIF kinematic-
inertial estimator. Note that since VILENS is an odometry
system, no loop closures have been performed.

A. Analysis of Visually Challenging Episodes

Most of the datasets presented favorable conditions for VO
(well lit static scenes with texture). However, there were also
certain locations where feature tracking struggled.

Fig. 8 shows a situation from FSC dataset where the robot
traverses a large puddle. V-VI tracks the features on the water,
causing drift in the lateral direction. Instead, V-VB maintains
a better pose estimate by relying on leg odometry, whose
drift is suppressed using the estimated velocity bias.

B. Velocity Bias Evolution

We have compared the estimated online bias in the z-axis
to a lowpass filtered version of the same signal from the
Pronto EKF [2] (Fig. 9). The sequence analyzed is the same
as the one shown in Fig. 2. Since the z-axis position and
average velocity of the robot are zero, the high correlation
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Fig. 9. Using visual information, VILENS is able to accurately and stably
estimate the bias of the kinematic-inertial estimate. Experiment: SMR1.

Fig. 10. Terrain reconstruction comparison between TSIF [9] (left) and
VILENS (right). The robot walks from the bottom right corner to the center
of the image and turns 90° right. VILENS eliminates the 15 cm drift and
drastically reduces the number of artifacts on the elevation map.

between the two signals demonstrates the effectiveness of leg
odometry drift rejection.

C. Terrain Reconstruction Assessment

We have evaluated the quality of local terrain mapping
during a sequence of walking and turning on flat ground
from the FSC dataset (Fig. 10). Due to drift in the ANYmal’s
internal filter [9], the elevation map contains a phantom
discontinuity in front of the robot (encircled in black). With
VILENS, the drift is reduced for effective footstep planning.

VII. CONCLUSION

We have presented a novel factor graph formulation for
state estimation that estimates preintegrated velocity factors
for leg odometry and velocity bias estimation to accommodate
for leg odometry drift. These bias effects are difficult to
directly model, we instead infer them from vision. The
redundancy of our approach is also demonstrated in visual
impoverished situations which vision along would struggle. In
these situations, our system gracefully relies on leg odometry
and the velocity bias estimation compensates for its drift.
We have demonstrated the robustness of our method with
outdoor experiments which include conditions such as slippery
and deformable terrain, reflections, and external disturbances
applied to the robot.
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