
Online LiDAR-SLAM for Legged Robots
with Robust Registration and Deep-Learned Loop Closure

Milad Ramezani, Georgi Tinchev, Egor Iuganov and Maurice Fallon

Abstract— In this paper, we present a 3D factor-graph
LiDAR-SLAM system which incorporates a state-of-the-art
deeply learned feature-based loop closure detector to enable
a legged robot to localize and map in industrial environments.
Point clouds are accumulated using an inertial-kinematic state
estimator before being aligned using ICP registration. To close
loops we use a loop proposal mechanism which matches individ-
ual segments between clouds. We trained a descriptor offline to
match these segments. The efficiency of our method comes from
carefully designing the network architecture to minimize the
number of parameters such that this deep learning method can
be deployed in real-time using only the CPU of a legged robot,
a major contribution of this work. The set of odometry and
loop closure factors are updated using pose graph optimization.
Finally we present an efficient risk alignment prediction method
which verifies the reliability of the registrations. Experimental
results at an industrial facility demonstrated the robustness and
flexibility of our system, including autonomous following paths
derived from the SLAM map.

I. INTRODUCTION

Robotic mapping and localization have been heavily stud-
ied over the last two decades and provide the perceptual basis
for many different tasks such as motion planning, control and
manipulation. A vast body of research has been carried out to
allow a robot to determine where it is located in an unknown
environment, to navigate and to accomplish tasks robustly
online. Despite substantial progress, enabling an autonomous
mobile robot to operate robustly for long time periods in
complex environments, is still an active research area.

Visual SLAM has shown substantial progress [1], [2],
with much work focusing on overcoming the challenge of
changing lighting variations [3]. Instead, in this work we
focus on LiDAR as our primary sensor modality. Laser mea-
surements are actively illuminated and precisely sense the
environment at long ranges which is attractive for accurate
motion estimation and mapping. Hence, we focus on the
LiDAR-SLAM specifically for legged robots.

The core odometry of our SLAM system is based on
Iterative Closest Point (ICP), a well-known method for 3D
shape registration [13], to align clouds from a 3D LiDAR
sensor (Velodyne). Our approach builds upon our previous
work of Autotuned ICP (AICP), originally proposed in [4],
which analyzes the content of incoming clouds to robustify
registration. Initialization of AICP is provided by the robot’s
state estimator [5], which estimates the robot pose by fus-
ing the inertial measurements with the robot’s kinematics

The authors are with the Oxford Robotics Insti-
tute (ORI), University of Oxford, UK. {milad,
gtinchev, mfallon}@robots.ox.ac.uk,
egor.iuganov@wadham.ox.ac.uk

5 m

Fig. 1: Bird’s-eye view of a map constructed by the ANYmal
exploring an unlit, windowless, industrial facility with our proposed
3D SLAM system. The approach can rapidly detect and verify loop-
closures (red lines) so as to construct an accurate map.
and joint information in a recursive approach. Our LiDAR
odometry has drift below 1.5% of distance traveled.

The contributions of our paper are summarized as follows:
1) An online 3D LiDAR-SLAM system for legged robots

based on ICP registration.
2) A verification metric which quantifies the reliability of

point cloud registration.
3) A demonstration of learned loop-closure detection de-

signed to be deployable on a mobile CPU during run
time.

4) A real-time demonstration of the algorithm on the
ANYmal quadruped robot.

The remainder of this paper is structured as follows: Sec. II
presents related works. Sec. III details different components
of our SLAM system. Sec. IV presents evaluation studies
before a conclusion and future works are drawn in Sec. V.

II. RELATED WORKS

This section provides a literature review of perception in
walking robots and LiDAR-SLAM systems in general.

A. Perception systems on walking robots

Simultaneous Localization and Mapping (SLAM) is a
key capability for walking robots and consequently their
autonomy. Example systems include, the mono visual SLAM
system of [6] which ran on the HRP-2 humanoid robot and
is based on an Extended Kalman Filter (EKF) framework.
In contrast, [7] leveraged a particle filter to estimate the
posterior of their SLAM method, again on HRP-2. Oriolo et
al. [8] demonstrated visual odometry on the Nano bipedal
robot by tightly coupling visual information with the robot’s
kinematics and inertial sensing within an EKF. However,
these approaches acquired only a sparse map of the environ-
ment on the fly, substantially limiting the robot’s perception.

Works such as [9] and [10] leveraged the frame-to-model
visual tracking of KinectFusion [11] or ElasticFusion [12],
which use a coarse-to-fine ICP algorithm. Nevertheless,
vision-based SLAM techniques struggle in varying illumi-
nation conditions. While robustness to illumination change
has been explored, for example [14] and [3], it remains a
major challenge to any visual navigation system.

Compared to bipedal robots, quadrupedal robots have
better versatility and resilience when navigating challenging
terrain. Thus, they are more suited to long-term tasks such
as inspection of industrial sites. In an extreme case, a robot
might need to jump over a terrain hurdle. Park et al., in [15],
used a Hokuyo laser range finder to detect 40 cm hurdles,
which then allowed the MIT Cheetah-2’s controller to jump
over the obstacles, though the LiDAR measurements were
not used for localization.

Nobili et al. [16] presented a state estimator for the
Hydraulic Quadruped robot (HyQ) which was based on a
modular inertial-driven EKF. The robot’s base link velocity
and position was propagated using IMU measurements with
corrections from modules including leg odometry, visual
odometry and LiDAR odometry. The system is prone to drift
because the navigation system did not include a mechanism
to detect loop-closures.

B. LiDAR-SLAM Systems

An effective LiDAR-based approach is LiDAR Odome-
try and Mapping (LOAM) [17]. LOAM extracts edge and
surface point features in a LiDAR cloud by evaluating the
roughness of the local surface. The features are reprojected to
the start of the next scan based on a motion model, with point
correspondences found within this next scan. Finally, the 3D
motion is estimated recursively by minimizing the overall
distances between point correspondences. LOAM achieves
high accuracy with a low cost of computation.

Similar to LOAM, Deschaud in [18] developed a LiDAR
odometry, IMLS-LiDAR, with similar accuracy by leverag-
ing scan-to-model matching.

Shan et al. in [19] extended LOAM with Lightweight and
Ground-Optimized LiDAR Odometry and Mapping (LeGO-
LOAM) which added latitudinal and longitudinal parameters
separately in a two-phase optimization. In addition, LeGO-
LOAM detected loop-closures using an ICP algorithm to

Map

LiDAR Point

Base

LiDAR

IMU

Contact

RF Joint1

RF Joint2

RF Joint3

Fig. 2: Axis conventions of various frames used in the LiDAR-
SLAM system and their relationship with respect to the base frame.
As an example, we show only the Right Front (RF) leg.

create a globally consistent pose graph using iSAM2 [20]
(as part of the GTSAM library).

Behley et al. in [21] proposed a surfel-based LiDAR-
SLAM system by leveraging the projective data association
between the current scan and a rendered model view from
the surfel map.

Dubé et al. in [22] developed an online cooperative
LiDAR-SLAM system. Using two and three robots, each
equipped with 3D LiDAR, an incremental sparse pose-graph
is populated by successive place recognition constraints.
The place recognition constraints are identified utilizing the
SegMatch algorithm [23], which represents LiDAR clouds as
a set of compact yet discriminative features. The descriptors
were used in a matching process to determine loop closures.

III. APPROACH

Our goal is to provide the ANYmal with a drift-free
localization estimate over a very long mission, as well as to
enable the robot to accurately map its surroundings. Fig. 2
and Fig. 3 elucidate the different components of our system
from a hardware and a software perspective.

A. Kinematic-Inertial Odometry

We use the default state estimator for the robot to estimate
incremental motion using proprioceptive sensing. This is the
Two-State Implicit Filter (TSIF) [24]. The position of the
contact feet in the inertial frame {I}, obtained from forward
kinematics, is treated as a temporal measurement to estimate
the robot’s pose in the fixed odometry frame, {O}:

TOB =

[
ROB pOB
0 1

]
, (1)

where TOB ∈ SE(3) is the transformation from the base
frame {B} to the odometry frame {O}.

This estimate of the base frame drifts over time as it does
not use any exteroceptive sensors and the position of the
quadruped and its rotation around z-axis are not observable.
In the following, we define our LiDAR-SLAM system for
estimation of the robot’s pose with respect to the map frame
{M} which is our goal. It is worth noting that the TSIF
framework estimates the covariance of the state [24] which
we employ during our geometric loop-closure detection.

Kinematic - Inertial Odometry
Inertial

Measurements
(400 Hz)

Accumulation

AICP

Localisation
and

Mapping

LiDAR
Scans

(10 Hz)

State Estimator (400 Hz)

Initialisation

Sparse
Factor Graph

Loop Closure

1 Hz

1 Hz

Joint
Encoders
(400 Hz)

~1 Hz

Fig. 3: Block diagram of the LiDAR-SLAM system.

B. LiDAR-SLAM System

Our LiDAR-SLAM system is a pose graph SLAM system
built upon our ICP registration approach called Autotuned-
ICP (AICP) [4]. AICP automatically adjusts the outlier filter
of ICP by computing an overlap parameter, Ω ∈ [0, 1] since
the assumption of a constant overlap, which is conventional
in the standard outlier filters, violates the registration in real
scenarios.

Given the initial estimated pose from the kinematic-inertial
odometry, we obtain a reference cloud to which we align
each consecutive reading1 point cloud.

In this manner the successive reading clouds are precisely
aligned with the reference clouds with greatly reduced drift.
The robot’s pose, corresponding to each reading cloud is
obtained as follows:

TMB = ∆aicpTOB , (2)

where TMB is the robot’s pose in the map frame {M} and
∆aicp is the alignment transformation calculated by AICP.

Calculating the corrected poses, corresponding to the point
clouds, we compute the relative transformation between the
successive reference clouds to create the odometry factors of
the factor graph which we introduce in Eq. (3).

The odometry factor, φi(Xi−1,Xi), is defined as:

φi(Xi−1,Xi) = (TM
−1

Bi−1
TMBi

)−1T̃
M−1

Bi−1
T̃
M
Bi
, (3)

where T̃
M
Bi−1

and T̃
M
Bi

are the AICP estimated poses of the
robot for the node Xi−1 and Xi, respectively, and TMBi−1

and
TMBi

are the noise-free transformations.
A prior factor, φ0(X0), which is taken from the pose

estimate of the kinematic-inertial odometry, is initially added
to the factor graph to set an origin and a heading for the robot
within the map frame {M}.

To correct for odometric drift, loop-closure factors are
added to the factor graph once the robot revisits an area of the
environment. We implemented two approaches for proposing
loop-closures: a) geometric proposal based on the distance
between the current pose and poses already in the factor
graph which is useful for smaller environments, and b) a
learning approach for global loop-closure proposal, detailed
in Sec III-C.1, which scales to large environments. Each
proposal provides an initial guess, which is refined with ICP.

1Borrowing the notation from [25], the reference and reading clouds
correspond to the robot’s poses at the start and end of each edge in the
factor graph and AICP registers the latter to the former.

Each individual loop closure becomes a factor and is added
to the factor graph. The loop-closure factor, in this work, is a
factor whose end is the current pose of the robot and whose
start is one of the reference clouds, stored in the history of the
robot’s excursion. The nominated reference cloud must meet
two criteria of nearest neighbourhood and sufficient overlap
with the current reference cloud. An accepted loop-closure
factor, φj(XM ,XN), is defined as:

φj(XM ,XN) = (TM
−1

BM
TMBN

)−1(∆j,aicpT̃
M
BM

)−1T̃
M
BN
, (4)

where T̃
M
BM

and T̃
M
BN

are the robot’s poses in the map frame
{M} corrected by AICP with respect to the reference cloud
(M − 1) and the reference cloud (N − 1), respectively. The
∆j,aicp is the AICP correction between the current reference
cloud M and the nominated reference cloud N .

Once all the factors, including odometry and loop-closure
factors, have been added to the factor graph, we optimize
the graph so that we find the Maximum A Posteriori (MAP)
estimate for the robot poses corresponding to the reference
clouds. To carry out this inference over the variables Xi,
where i is the number of the robot’s pose in the factor graph,
the product of all the factors, must be maximized:

XMAP = argmax
X

∏
i

φi(Xi−1,Xi)
∏
j

φj(XM ,XN). (5)

Assuming that factors follow a Gaussian distribution and
all measurements are only corrupted with white noise, i.e.
noise with normal distribution and zero mean, the optimiza-
tion problem in Eq. (5) is equivalent to minimizing a sum
of nonlinear least squares:

XMAP = argmin
X

∑
i

||yi(Xi,Xi−1)−mi||2Σi

+
∑
j

||yj(XM ,XN)−mj ||2Σj
,

(6)

where m, y and Σ denote the measurements, their mathe-
matical model and the covariance matrices, respectively.

As noted, the MAP estimate is only reliable when the
residuals in Eq. (6) follow the normal distribution. However,
ICP is susceptible to failure in the absence of geomet-
ric features, e.g. in corridors or door entries, which can
have a detrimental effect when optimizing the pose graph.
In Sec. III-D, we propose a fast verification technique for
point cloud registration to detect possible failure of the AICP
registration.

C. Loop Proposal Methods

This section introduces our learned loop-closure proposal
and geometric loop-closure detection.

1) Deeply-learned Loop Closure Proposal: We use the
method of Tinchev et al. [26], which is based on matching
individual segments in pairs of point clouds using a deeply-
learned feature descriptor. Its specific design uses a shallow
network such that it does not require a GPU during run-
time inference on the robot. We present a summary of the
method called Efficient Segment Matching (ESM), but refer
the reader to [26].

Algorithm 1: Improved Risk Alignment Prediction.

1 input: point clouds CS , CT ; estimated poses XS , XT

2 output: alignment risk ρ = f(Ω, α)
3 begin
4 Segment CS and CT into a set of planes: PSi and PTj ,
5 Compute centroid of each plane: KSi, KTj ,
6 Transform query keypoints KTj into the space of CS ,
7 Search the nearest neighbour of each query plane PTj ,
8 for plane PT do
9 Find match PS amongst candidates in the k-d tree,

10 Compute the matching score Ωp,
11 if Ωp is max then
12 Determine the normal of plane PT ,
13 Push back the normal into the matrix N ,
14 end
15 end
16 Compute alignability α = λmax / λmin;
17 Learn ρ = f(Ω, α);
18 Return ρ;
19 end

First, a neural network is trained offline using individual
LiDAR observations (segments). By leveraging odometry in
the process, we can match segment instances without manual
intervention. The input to the network is a batch of triplets
- anchor, positive and negative segments. The anchor and
positive samples are the same object from two successive
Velodyne scans, while the negative segment is a segment
chosen ≈ 20 m apart. The method then performs a series of
X-conv operators directly on raw point cloud data, based
on PointCNN [27], followed by three fully connected layers,
where the last layer is used as the descriptor for the segments.

During our trials, when the SLAM system receives a new
reference cloud, it is preprocessed and then segmented into
a collection of point cloud clusters. For each segment in
the reference cloud, a descriptor vector is computed with
an efficient TensorFlow C++ implementation by performing
a forward pass using the weights from the already trained
model. This allows a batch of segments to be preprocessed
simultaneously with zero-meaning and normalized variance
and then forward passed through the trained model. We use a
three dimensional tensor as input to the network - the length
is the number of segments in the current point cloud, the
width represents a fixed-length down-sampled vector of all
the points in an individual segment, and the height contains
the x, y and z values. Due to the efficiency of the method,
we need not split the tensor into mini-batches, allowing us
to process the full reference cloud in a single forward pass.

Once the descriptors for the reference cloud are computed,
they are compared to the map of previous reference clouds.
ESM uses an l2 distance in feature space to detect matching
segments and a robust estimator to retrieve a 6DoF pose.
This produces a transformation of the current reference
cloud with respect to the previous reference clouds. The
transformation is then used in AICP to add a loop-closure
as a constraint to the graph-based optimization. Finally,
ESM’s map representation is updated, when the optimization
concludes.

2) Geometric Loop-Closure Detection: To geometrically
detect loop-closures, we use the covariance of the legged

state estimator (TSIF) to define a dynamic search window
around the current pose of the robot. Then the previous
robot’s poses, which reside within the search window, are
examined based on two criteria: nearest neighbourhood and
verification of cloud registration (described in Sec. III-D).
Finally, the geometric loop closure is computed between the
current cloud and the cloud corresponding to the nominated
pose using AICP.

D. Fast Verification of Point Cloud Registration
This section details a verification approach for ICP point

cloud registration to determine if two point clouds can be
safely registered. We improve upon our previously proposed
alignability metric in [28] with a much faster method.

Method from [28]: First, the point clouds are segmented
into a set of planar surfaces. Second, a matrix N ∈ RM×3

is computed, where each row corresponds to the normal of
the planes ordered by overlap. M is the number of matching
planes in the overlap region between the two clouds. Finally,
the alignability metric, α is defined as the ratio between the
smallest and largest eigenvalues of N .

The matching score, Ωp, is computed as the overlap
between two planes, PTj and PSi where i ∈ NS and
j ∈ NT . NS and NT are the number of planes in the
input clouds. In addition, in order to find the highest pos-
sible overlap, the algorithm iterates over all possible planes
from two point clouds. This results in overall complexity
O(NSNT (NPS

NPT
)), where NPS

and NPT
are the average

number of points in planes of the two clouds.
Proposed Improvement: To reduce the pointwise compu-

tation, we first compute the centroids of each plane KSi

and KTj and align them from point cloud CT to CS given
the computed transformation. We then store the centroids in
a k-d tree and for each query plane PT ∈ CT we find the
K nearest neighbours. We compute the overlap for the K
nearest neighbours, and use the one with the highest overlap.
This results in O(NTK(NPS

NPT
)), where K << Ns.

In practice, we found that K = 1 is sufficient for our
experiments. Furthermore, we only store the centroids in a
k-d tree, reducing the space complexity.

We discuss the performance of this algorithm, as well
as its computational complexity in the experiment section
of this paper. Pseudo code of the algorithm is available in
Algorithm 1.

IV. EXPERIMENTAL EVALUATION

We employ a state-of-the-art quadruped, ANYmal (version
B) [29], as our experimental platform. Fig. 4 shows a view
of the ANYmal robot. The robot weighs about 33 kg without

Sensor Model Frequency Specifications
Bias Repeatability: < 0.5◦/s; 5 mgIMU Xsens

400MTi-100 Bias Stability: 10◦/h; 40 µg

Velodyne
10

Resolution in Azimuth: < 0.4◦

LiDAR
VLP-16

Resolution in Zenith: 2.0◦
Unit Range < 100 m

Accuracy: ± 3 cm
Encoder ANYdrive 400 Resolution < 0.025◦

Torque ANYdrive 400 Resolution < 0.1 Nm

TABLE I: Specifications of the sensors installed on the ANYmal.

Fig. 4: Our experiments were carried out with the ANYmal, in the
Oil Rig training site. To determine ground truth robot poses, we
used a Leica TS16 laser tracker to track a 360◦ prism on the robot.

any external perception modules and can carry a maximum
payload of 10 kg and trot at a maximum speed of 1.0 m/s.
As shown in Fig. 2, each leg contains 3 actuated joints
which altogether gives 18 degrees of freedom, 12 actuated
joints and the 6 DoF robot base, which the robot uses to
dynamically navigate challenging terrain. Tab. I summarizes
the specifications of the robot’s sensors used in this paper.
The proposed LiDAR-SLAM system is evaluated using the
datasets collected by our ANYmal quadruped robot.

We first analyze the verification method. Second, we
investigate the learned loop-closure detection in terms of
speed and reliability (Sec. IV-B). We then demonstrate the
performance or our SLAM system on two large-scale exper-
iments, one indoor and one outdoor (Sec. IV-C) including
an online demonstration where the map is used for route
following (Sec. IV-D). A demonstration video can be found
at: https://ori.ox.ac.uk/lidar-slam.

A. Verification Performance

We focus on the alignability metric α of the alignment
risk prediction since it is our primary contribution. We
computed α between consecutive point clouds of our out-
door experiment, which we discuss later in Sec. IV-C. As
seen in Fig. 6 (Left), the alignability filter based on a
k-d tree is substantially faster than the original filter. As
noted in Sec. III-D, our approach is less dependent on the
point cloud size, due to only using the plane centroids.
Whereas, the original alignability filter fully depends on all
the points of the segments, resulting in higher computation
time. Having tested our alignability filter for the datasets
taken from Velodyne VLP-16, the average computation time
is less than 0.5 seconds (almost 15x improvement) which is
suitable for real-time operation.

30 m

Fig. 5: Demonstration of the learning-based loop closure in the
outdoor experiment. See Sec. IV-B for more details.

Fig. 6 (Right) shows that our approach highly correlates
with the result from the original approach. Finally, we refer
the reader to the original work that provided a thorough com-
parison of alignment risk against Inverse Condition Number
(ICN) [30] and Degeneracy parameter [31] in ill-conditioned
scenarios. The former mathematically assessed the condition
of the optimization, whereas the latter determines the degen-
erate dimension of the optimization.

B. Evaluation of Learned Loop Closure Detector

In the next experiment we explore the performance of
the different loop closure methods using a dataset collected
outdoors at the Fire Service College, Moreton-in-Marsh, UK.

1) Robustness to viewpoint variation: Fig. 5 shows a
preview of our SLAM system with the learned loop closure
method. We selected just two point clouds to create the map,
with their positions indicated by the blue arrows in Fig. 5.

The robot executed two runs in the environment, which
comprised 249 point clouds. We deliberately chose to tra-
verse an offset path (red) the second time so as to determine
how robust our algorithm is to translation and viewpoint
variation. In total 50 loop closures were detected (green
arrows) around the two map point clouds. Interestingly, the
approach not only detected loop closures from both trajec-
tories, with translational offsets up to 6.5 m, but also with
orientation variation up to 180◦- something not achievable
by standard visual localization - a primary motivation for
using LiDAR. Across the 50 loop closures an average of 5.24
segments were recognised per point cloud. The computed
transformation had an Root Mean Square Error (RMSE) of
0.08 ± 0.02 m from the ground truth alignment. This was
achieved in approximately 486 ms per query point cloud.

2) Computation Time: Fig. 8 shows a graph of the
computation time. The computation time for the geometric
loop closure method depends on the number of traversals

20 40 60 80 100 120 140 160 180

Registration number

10
-1

10
0

10
1

T
im

e
 (

se
c)

Alignability Filter

Alignability Filter Based on k-d Tree
mean ~ 5.15 sec

mean ~ 0.33 sec

Fig. 6: Comparison of our proposed verification method with the original in terms of computation time (left) and performance (right).

5 10 15 20 25 30 35 40

X (m)

-16

-14

-12

-10

-8

-6

-4

-2

0

2

Y
 (

m
)

Ground truth

AICP

SLAM without Verification

SLAM with Verification

Fig. 7: Result of SLAM system with verification enabled (left). Estimated trajectories of algorithm variants versus ground truth (right).

around the same area. The geometric loop closures iterated
over the nearest N clouds, based on a radius; the covariance
and distance travelled caused it to slow down. Similarly, the
verification method needs to iterate over large proportion of
the point clouds in the same area, affecting the real time
operation.

Instead, the learning loop closure proposal scales better
with map size. It compares low dimensional feature descrip-
tor vectors, which is much faster than the thousands of data
points in Euclidean space.

C. Indoor and Outdoor Experiments
To evaluate the complete SLAM system, the robot walked

indoor and outdoor along trajectories with the length of
about 100 m and 250 m, respectively. Each experiment lasted
about 45 minutes. Fig. 1 (Bottom) and Fig. 4 illustrate
the test locations: industrial buildings. To evaluate mapping
accuracy, we compared our SLAM system, AICP, and the
baseline legged odometry (TSIF) using ground truth. As
shown in Fig. 4, we used a Leica TS16 to automatically
track a 360◦ prism rigidly mounted on top of the robot. This
way, we could record the robot’s position with millimeter
accuracy at about 7 Hz (when in line of sight).

For evaluation metrics, we use Relative Pose Error (RPE)
and Absolute Trajectory Error (ATE) [32]. RPE determines
the local accuracy of the trajectory over time. ATE is the
RMSE of the Euclidean distance between the estimated
trajectory and the ground truth.

As seen in Fig. 7 (right), our SLAM system with verifi-
cation is almost completely consistent with the ground truth.
The verification algorithm approved 27 true-positive loop-
closure factors (indicated in red in Fig. 7 (Left)) which were
added to the factor graph. Without this verification 38 loop-
closures were created, some in error, resulting in an inferior
map. Fig. 1 (Top) also evidences the global consistency of
the map. However, there is no ground truth available for our
indoor experiment for evaluation of the trajectory.

50 100 150 200

Registration number

0

2

4

6

8

10

T
im

e
 (

s
e

c
)

 Geometric Loop Closure with verification
 Geometric Loop Closure without verification
 Learned Loop Closure

Fig. 8: Computation times of the considered loop closure methods.

Translational Heading Relative PoseMethod Error (RMSE) (m) Error (RMSE) (deg) Error (m)
SLAM with Verification 0.06 N/A 0.090
SLAM without Verification 0.23 1.6840 0.640
AICP (LiDAR odometry) 0.62 3.1950 1.310
TSIF (legged odometry) 5.40 36.799 13.64

TABLE II: Comparison of the localization accuracy for the
different approaches.

Tab. II reports SLAM results with and without verification
compared to the AICP LiDAR odometry and the TSIF legged
state estimator. As the Leica TS16 does not provide rotational
estimates, we took the best performing method - SLAM with
verification - and compared the rest of the trajectories to it
with the ATE metric. Based on this experiment, the drift of
SLAM with verification is less than 0.07%, satisfying many
location-based tasks of the robot.

D. Experiments on the ANYmal

In a final experiment, we tested the SLAM system online
on the ANYmal. After building a map with several loops
(while teleoperated), we queried a path back to the operator
station. Using the Dijkstra’s algorithm [33], the shortest
path was created using the factor graph. As each edge
has previously been traverse, following the return trajectory
returned the robot to the starting location. The supplementary
video demonstrates the experiment.

V. CONCLUSION AND FUTURE WORK

This paper presented an accurate and robust LiDAR-
SLAM system on a resource constrained legged robot using a
factor graph-based optimization. We introduced an improved
registration verification algorithm capable of running in real
time. In addition, we leveraged a state-of-the-art learned loop
closure detector which is sufficiently efficient to run online
and had significant viewpoint robustness. We examined our
system in indoor and outdoor industrial environments with a
final demonstration showing online operation of the system
on our robot. In future work, we will speed up our ICP
registration to increase the update frequency of our SLAM
system and examine our system in more varied scenarios.

VI. ACKNOWLEDGEMENT

We would like to thank our colleagues in ORI, in particular
Simona Nobili, for their help in this work. This research was
supported by the Innovate UK-funded ORCA Robotics Hub
(EP/R026173/1) and the EU H2020 Project MEMMO. M.
Fallon is supported by a Royal Society University Research
Fellowship.

REFERENCES

[1] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a
versatile and accurate monocular SLAM system,” TRO, 2015.

[2] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct
monocular SLAM,” in ECCV, 2014.

[3] H. Porav, W. Maddern, and P. Newman, “Adversarial training for
adverse conditions: Robust metric localisation using appearance trans-
fer,” in ICRA, 2018.

[4] S. Nobili, R. Scona, M. Caravagna, and M. Fallon, “Overlap-based
ICP tuning for robust localization of a humanoid robot,” in ICRA,
2017.

[5] M. Bloesch, M. Hutter, M. A. Hoepflinger, S. Leutenegger, C. Gehring,
C. D. Remy, and R. Siegwart, “State estimation for legged robots-
consistent fusion of leg kinematics and IMU,” in RSS, 2013.

[6] O. Stasse, A. Davison, R. Sellaouti, and K. Yokoi, “Real-time 3D
slam for humanoid robot considering pattern generator information,”
in IROS, 2006.

[7] N. Kwak, O. Stasse, T. Foissotte, and K. Yokoi, “3D grid and particle
based slam for a humanoid robot,” in Humanoids, 2009.

[8] G. Oriolo, A. Paolillo, L. Rosa, and M. Vendittelli, “Vision-based
odometric localization for humanoids using a kinematic EKF,” in
Humanoids, 2012.

[9] R. Wagner, U. Frese, and B. Bäuml, “Graph SLAM with signed
distance function maps on a humanoid robot,” in IROS, 2014.

[10] R. Scona, S. Nobili, Y. R. Petillot, and M. Fallon, “Direct visual SLAM
fusing proprioception for a humanoid robot,” in IROS, 2017.

[11] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davi-
son, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon, “KinectFusion:
Real-time dense surface mapping and tracking.” in ISMAR, 2011.

[12] T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker, and A. Davi-
son, “ElasticFusion: Dense SLAM without a pose graph.” RSS, 2015.

[13] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,”
in Sensor fusion IV: control paradigms and data structures, vol. 1611.
International Society for Optics and Photonics, 1992, pp. 586–606.

[14] M. Milford and G. Wyeth, “SeqSLAM: Visual route-based navigation
for sunny summer days and stormy winter nights,” in ICRA, 2012.

[15] H.-W. Park, P. Wensing, and S. Kim, “Online planning for autonomous
running jumps over obstacles in high-speed quadrupeds,” in RSS, 2015.

[16] S. Nobili, M. Camurri, V. Barasuol, M. Focchi, D. Caldwell, C. Sem-
ini, and M. Fallon, “Heterogeneous sensor fusion for accurate state
estimation of dynamic legged robots,” in RSS, 2017.

[17] J. Zhang and S. Singh, “LOAM: Lidar Odometry and Mapping in
real-time.” in RSS, 2014.

[18] J.-E. Deschaud, “Imls-slam: scan-to-model matching based on 3d
data,” in 2018 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE, 2018, pp. 2480–2485.

[19] T. Shan and B. Englot, “LeGO-LOAM: Lightweight and ground-
optimized LiDAR odometry and mapping on variable terrain,” in IROS,
2018.

[20] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Del-
laert, “iSAM2: Incremental smoothing and mapping using the bayes
tree,” IJRR, 2012.

[21] J. Behley and C. Stachniss, “Efficient surfel-based slam using 3d laser
range data in urban environments.” in Robotics: Science and Systems,
2018.

[22] R. Dubé, A. Gawel, H. Sommer, J. Nieto, R. Siegwart, and C. Cadena,
“An online multi-robot SLAM system for 3D LiDARS,” in IROS,
2017.

[23] R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena,
“Segmatch: Segment based place recognition in 3D point clouds,” in
ICRA, 2017.

[24] M. Bloesch, M. Burri, H. Sommer, R. Siegwart, and M. Hutter, “The
two-state implicit filter recursive estimation for mobile robots,” RAL,
2017.

[25] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing
icp variants on real-world data sets,” Autonomous Robots, 2013.

[26] G. Tinchev, A. Penate-Sanchez, and M. Fallon, “Learning to see
the wood for the trees: Deep laser localization in urban and natural
environments on a CPU,” RAL, 2019.

[27] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “PointCNN:
Convolution on X-transformed points,” in NIPS, 2018.

[28] S. Nobili, G. Tinchev, and M. Fallon, “Predicting alignment risk to
prevent localization failure,” in ICRA, 2018.

[29] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis,
J. Hwangbo, K. Bodie, P. Fankhauser, and M. Bloesch, “Anymal - a
highly mobile and dynamic quadrupedal robot,” in IROS, 2016.

[30] E. Cheney and D. Kincaid, Numerical mathematics and computing.
Cengage Learning, 2012.

[31] J. Zhang, M. Kaess, and S. Singh, “On degeneracy of optimization-
based state estimation problems,” in ICRA, 2016.

[32] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” in IROS,
2012.

[33] E. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, 1959.

