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Abstract— In contrast to cameras, lidars, GPS, and proprio-
ceptive sensors, radars are affordable and efficient systems that
operate well under variable weather and lighting conditions, re-
quire no external infrastructure, and detect long-range objects.
In this paper, we present a reliable and accurate radar-only
motion estimation algorithm for mobile autonomous systems.
Using a frequency-modulated continuous-wave (FMCW) scan-
ning radar, we first extract landmarks with an algorithm that
accounts for unwanted effects in radar returns. To estimate
relative motion, we then perform scan matching by greedily
adding point correspondences based on unary descriptors and
pairwise compatibility scores. Our radar odometry results are
robust under a variety of conditions, including those under
which visual odometry and GPS/INS fail.

I. INTRODUCTION

In order to confidently travel through its environment,
an autonomous vehicle must achieve robust localization and
navigation despite changing conditions and moving objects.
Currently, most platforms employ lidar, vision, GPS, internal
sensors, or a combination of these systems to obtain informa-
tion about their surroundings and perform motion estimation.
While extremely fast and high-resolution, lidar is sensitive
to weather conditions, especially rain and fog, and cannot
see past the first surface encountered. Vision systems are
versatile and cheap but easily impaired by scene changes,
like poor lighting or the sudden presence of snow. Both
optical sensors only yield dependable results for short-range
measurements. A typical GPS on its own guarantees at best
3-m accuracy, experiences reception difficulties near obstruc-
tions, and relies on an external infrastructure. Additionally,
proprioceptive sensors, like wheel encoders and IMUs, suffer
from significant drift among other detrimental effects.

In contrast, radar is a long-range, on-board system that
performs well under a variety of lighting and atmospheric
conditions, and it is rapidly becoming more affordable and
efficient than lidar. Due to its long wavelength (which allows
it to penetrate certain materials) and beam spread, radar can
return multiple readings from the same transmission and
generate a grid representation of its world. As a result, radar
sensors detect stable, long-range features in the environment.

For these reasons, radar is a promising sensor for odome-
try, a task for which it is not typically utilized, and we seek to
explore its capabilities via a radar-only system. In this paper,
we demonstrate robust motion estimation using a frequency-
modulated continuous-wave (FMCW) scanning radar alone.
Our main contributions are two-fold: (1) a landmark extrac-
tion method that reliably identifies meaningful features while
avoiding false detections; and (2) a robust radar-only scan
matching algorithm that is effective under any rotations and

Fig. 1. A comparison of three odometry systems: radar (RO), vision
(VO), and GPS/INS (note: the curves are shifted in time for better visual
comparison). Only the radar is successful across all scenes, and its motion
estimates closely match those of the other sensors when they are available.
VO fails in poor lighting or rain, and GPS/INS is unavailable indoors.

large translations. While radar offers many benefits over the
alternatives, working with it is non-trivial as it operates more
slowly than lidar, generates noisy measurements, and often
returns “ghost” objects. We address these issues and show
that radar-only motion estimation succeeds across diverse
settings and conditions. Moreover, we show that radar does
well compared against vision and GPS even under conditions
that are ideal for the latter two sensors.

Sections II and III-A discuss the relevant literature on
radar and introduce the FMCW scanning radar, respectively.
Section III details our algorithms on landmark extraction and
data association. Section IV discusses our results, and Sec-
tion V summarizes our work and suggests future directions.

II. RELATED WORKS

The first step of most radar motion estimation approaches
is the extraction of important features from radar scans.
Some researchers [1], [2] draw from the literature on vision,
creating amplitude gridmaps that transform the radar scans
into grayscale images, then extracting features, such as SIFT



and FAST. Others [3] use the gridmaps to find continuous
areas that are deemed interesting using DBSCAN, MSER,
and Connected Components. In contrast, approaches devised
specifically for the radar acknowledge its high and irregular
noise floor. CFAR [4], [5], a common filtering algorithm,
adapts to the variable noise floor along the received sig-
nal. Another technique [6], [7] infers the appearance of
landmarks by estimating the radar’s noise characteristics
and exploiting temporal-spatial continuity. Marck et al. [8]
avoid the filtering process altogether by recording only the
range with the greatest power return per azimuth, but this
simplification discards potentially relevant information. As
expected, the landmark extractions tailored to radar produce
the most meaningful and robust detections.

The next step for motion estimation is the data association
of landmarks corresponding to the same object observed at
different times. These approaches assume that the majority
of the scene is static. Vision-inspired works [1], [2] pair radar
landmarks that have sufficiently similar feature descriptors.
Modifying this idea for radar occupancy grids, Schuster et al.
[9] identify and associate landmarks using the binary annular
statistic descriptor (BASD) [10] and Hamming distance.
Although feature descriptors work well for images, which
contain complex high-density information, they are unable to
produce consistent results with radar, for which the readings
are much noisier and less dense, and fail to consider the
advantages of analyzing the radar scan as a whole.

An alternative to feature-based radar odometry uses multi-
sensor fusion. These systems use the other sensors’ odometry
to transform the incoming radar landmark pointcloud and
compare it against an existing map of landmarks. Schuster
et al. [9] match each point to its nearest neighbor in the
map. Diessler et al. [11] use Monte Carlo methods to select
a solution from probabilistically assigned weights. The data
association between the radar pointcloud and map provides a
motion estimate that is then fused with the original odometry
readings. While these multi-sensor methods are promising,
none produce satisfactory results using only the radar, and
they thus rely on the availability of the other sensors. In
addition, they often require the integration of model-reliant
filters (e.g. Kalman and particle) and the creation of maps,
both of which introduce unnecessary complications.

On the other hand, scan matching, which aligns landmark
sets in order to minimize some cost function, accomplishes
data association by considering information captured across
the entire radar scan and does so without other sensors.
One widespread approach, called Iterative Closest Point
(ICP), iteratively matches and aligns the pointclouds until the
desired termination condition is met [8], [12], [13]. Chandran
and Newman [14] adopt a different strategy, developing a
function that quantifies the quality of a map created by
superimposing radar pointclouds according to the unknown
motion parameters; they then perform an exhaustive search
to optimize over the motion parameters. Both works assume
that the movement between scans is small, which imposes an
undesirable constraint on the algorithms and prevents them
from being applied to arbitrary inputs. Vivet et al. [5] design

Fig. 2. Visualization of the FMCW scanning radar viewed from above.
The radar (green circle), centered on the vehicle (black box), sequentially
gathers power-range spectra (dotted green rays) at each azimuth. A sample
signal is plotted. Variables a and r denote azimuth and range, respectively.

an innovative technique well suited for high velocities, using
the radar scan distortions, which are typically regarded as a
drawback of mobile radar systems, to backsolve for velocity
with the help of an extended Kalman filter. Rapp et al.
combine spatial scan matching with Doppler information for
a joint ego-motion estimate [15].

Other scan matching algorithms do not extract features
and operate directly on the radar outputs instead. Checchin
et al. [16] apply the Fourier-Mellin transform to efficiently
compute the vehicle’s rotation and translation from the entire
radar output. The Doppler radar used by Kellner et al. [17]
returns the position and speed of the surrounding objects,
from which the vehicle’s motion is easily computed with
enough detections. Both concepts are unencumbered by
heavy preprocessing. Yet feature extraction is often necessary
for other tasks, like object tracking, so forgoing this step
reduces the system’s overall versatility.

In this paper, we present robust radar-only motion esti-
mation using our own algorithms for landmark extraction
and scan matching. We adopt this approach in order to fully
utilize the information captured by the radar while providing
a method that identifies meaningful radar features that are
useful for other tasks. In contrast to the works above, we
accomplish these goals without other sensors, the creation
of maps, model-reliant filters, or outlier detection.

III. OUR APPROACH

A. FMCW Scanning Radar

We employ the FMCW scanning radar, which is visual-
ized in Figure 2. This radar rotates about its vertical axis
while continuously transmitting and receiving frequency-
modulated radio waves. The received power corresponding
to a position in the environment indicates the reflectivity,
size, and orientation of an object at that location. The radar
inspects one azimuth at a time. For each, it produces a
1D signal, called the power-range spectrum, that contains



Fig. 3. Procedure for landmark extraction from a power-range spectrum.
The input (raw signal) is processed from the top-left to produce the output on
the bottom-right, in which the landmarks are denoted with red asterisks. Box
6 in this example highlights the ability of our approach to remove detections
due to ghost objects and noise. Boxes 3 and 5 show the importance of
incorporating the high-frequency signals, as using the smooth ones in boxes
2 and 4 alone would discard the high range resolution of the FMCW radar.

the power readings for a series of range bins, and one full
rotation across all azimuths constitutes a scan. Let N be the
number of range bins in a power-range spectrum and M the
number of azimuths in one rotation.

The FMCW radar’s advantages are its range-measurement
accuracy, ability to gather readings at close range, and low
peak power. Its disadvantages include sidelobes—radiation
sent in unintended directions—and multipath reflections—
which result when a wave encounters additional surfaces
before returning to the receiver. These two effects cause the
scan to contain “ghost” objects at locations where in fact
none exist. Errors in range can also occur due to relative
motion (via the Doppler effect) and the compression of 3D
information into the 1D spectrum. Other issues include phase
jitter, saturation, and atmospheric attenuation.

B. Landmark Extraction

Our first objective is to accurately detect objects in the
radar’s environment with minimal false positives. Specifi-
cally, our detector should find all landmarks perceived by
the radar while minimizing the number of redundant returns
per landmark and avoiding the detection of nonexistent ones,
such as those due to noise, multipath reflections, harmonics,
and sidelobes. In this section, we present our method for
extracting landmarks while adhering to the aims above.

Our method accepts power-range spectra (i.e. 1D signals),
as inputs and returns a set of landmarks, each specified by its
range and azimuth. The core idea is to estimate the signal’s
noise statistics then scale the power value at each range
by the probability that it corresponds to a real detection.

Algorithm 1: Landmark Extraction Method

Input: Power-range spectra s ∈ RN×1 for azimuth a
Output: Set of landmark detections L(s)
Parameters: Median filter width wmedian; binomial filter

width wbinom; z-value zq to threshold
noise; boolean F and threshold dthresh
(optional) for multipath reflection removal.

1 q← s−medianFilter(s, wmedian)
2 p← binomialFilter(s, wbinom)
3 Q← {qi : qi ≤ 0}
4 N (µq, σ

2
q)← normalDistribution(Q ∪ −Q)

5 Initialize N × 1 vector ŷ to zeros.
6 for i← 1 to N do
7 if qi > 0 then
8 ŷi ← pi ·

(
1− f(pi|0,σ2

q)

f(0|0,σ2
q)

)
9 ŷi ← ŷi + (qi − pi) ·

(
1− f(qi−pi|0,σ2

q)

f(0|0,σ2
q)

)
10 Threshold ŷi values below zqσq.

11 L(s)← {(a, r(i)) : ŷi > 0 ∩ ŷi+1 > 0 ∩ ŷi−1 = 0}
12 If F , remove multipath reflections in L(s) using dthresh.

Continuous peaks in this reshaped signal are treated as
objects; per peak, only the range at the center of the peak is
added to the landmark set.

Let the vector s(t) ∈ RN×1 be the power-range spectrum
at time t such that the element si is the power return at the
i-th range bin, and a(t) is the associated azimuth. Let r(i) =
β(i − 0.5) give the range of bin i ∈ {1, 2, . . . , N}, where
β is the range resolution. Suppose that y(t) ∈ RN×1 is the
ideal signal if the environment was recorded perfectly. Then,
s(t) = y(t)+v(y(t)), where v represents unwanted effects,
like noise. Therefore, inferring y(t) from s(t) in order to
accurately isolate the landmarks requires an approximation
of v(y(t)) such that ŷ(t) = s(t) − v̂(s(t)). Removing v̂
from s is the aim of our method. The landmark detections
extracted from ŷ(t) are stored in the set L(s(t)).

The landmark extraction method, as described next, ref-
erences Figure 3 and Algorithm 1. To begin, an unbiased
signal q that preserves high-frequency information (box 2)
is acquired by subtracting the noise floor of v(s) from s (line
1). The result is then smoothed to obtain the underlying low-
frequency signal p (box 3), which better exposes obvious
landmark peaks (line 2). At this point, q is not discarded
for two reasons: radar landmarks often manifest as high
frequency peaks, so smoothing would dampen their presence;
and smoothing muddles the peaks of landmarks that are in
close proximity, making it difficult to distinguish between
them. Thus, we integrate the information of both q and p.

To estimate the noise characteristics, we treat the values of
q that fall below zero as Gaussian noise with mean µq = 0
and standard deviation σq (line 4). Let f(x|µ, σ2) be the
probability density at x for the normal distribution N (µ, σ2).
Then, for every range bin, the power values are scaled by



the probability that they do not correspond to noise in two
steps. First, each value of the smoothed signal pi is scaled by
f(pi|0, σ2

q) (box 4 and line 8). This process is repeated for
the high-frequency signal qi relative to the smoothed signal
pi such that the scaling factor is f(qi|pi, σ2

q) (box 5 and
line 9). The sum of both values is stored in ŷi. These steps
integrate high- and low-frequency information to preserve
range accuracy while suppressing signal corruptions due to
noise. Finally, the ŷi values that are below the upper zq-value
confidence bound of N (0, σ2

q) and therefore less likely to
represent real landmarks are set to zero (box 6 and line 10).

The method extracts landmarks from ŷi (the black signal
in box 6) as follows. All values of ŷ are now either zero or
belong to a peak. For each peak’s center located at range bin
i, the tuple (a, r(i)) is added to the landmark set L(s) (line
11). These landmarks are then tested, and those identified as
multipath reflections (MR) are removed (box 6 and line 12).
Since MRs cause peaks with similar wavelet transform (WT)
signatures to appear in the power-range spectrum at different
ranges with amplitudes that decrease with distance, this step
compares the continuous WTs wi,wj ∈ RH×1 for each set
of peaks Pi and Pj where j > i. If dij/H < dthresh and
the maximum power of Pi is greater than that for Pj , where
dij = | wi

max(wi)
− wj

max(wj)
| is a measure of dissimilarity, then

Pj is considered a MR, and (a, r(j)) is removed from L(s).
MR removal produces good results but requires significant
computation time, making it optional.

Our method requires three free parameters with an optional
fourth. In general, wmedian should represent a distance large
enough to span multiple landmarks, and wbinom should be
around the width of an average peak (∼ wmedian

2 ). A greater zq
value raises the standard for peaks to be chosen as landmarks
over noise, and dthresh is the minimum difference between
WTs for detections to be considered independent. For the
following analyses, let L =

⋃
t≤τ<t′ L(s(τ)) be the set of

all landmarks in one full scan from time t to t′.

C. Data Association

In this section, we present a scan matching algorithm
that achieves robust point correspondences using high-level
information in the radar scan. Intuitively, it seeks to find the
largest subsets of two pointclouds that share a similar shape.
Unlike ICP, this method functions without a priori knowledge
of the scans’ orientations or displacements relative to one
another. Thus, our algorithm is not constrained to have a
good initial estimate of the relative pose and can compare
pointclouds captured at arbitrary times without a map. The
only requirements are that the areas observed lie in the same
plane and contain sufficient overlap.

One of the key attributes of our approach is to perform data
association using not only individual landmark (i.e. unary)
descriptors, but also the relationships between landmarks.
For instance, imagine three landmarks that form the vertices
of a scalene triangle. Then, the set of distances from each
point to its neighbors is unique to that point regardless of
the overall pointcloud’s placement, allowing the landmark to
be straightforwardly matched to its counterpart in any other

Fig. 4. The core idea behind our data association algorithm that seeks to
find similar shapes within the two landmark pointclouds (in red) extracted
from radar scans. The unary candidate matches (dotted green lines) are
generated by comparing the points’ angular characteristics. The selected
matches (A,A′) and (B,B′

2) minimize the difference between pairwise
distances (|dAB−d′AB2| < |dAB−d′AB1|). In this way, we approximate
a shape matching by sequentially comparing angles and side lengths.

pointcloud acquired by applying a rigid body transformation
to the original triangle. The greater the number of points, the
less likely it is for an individual point to have the same set
of pairwise distances to its neighbors as another. Moreover,
the exact position and orientation of the pointcloud does
not influence the pairwise relationships within it, so great
disparities between the placements and orientations of the
pointclouds are inconsequential. We harness these observa-
tions to obtain reliable matches for our large landmark sets.
With real data, the main challenges are that the landmark
locations and detections are noisy, meaning that points do
not always survive the rigid body transformation and the
locations of those that do are affected by noise.

A simple example illustrating the concept behind our data
association algorithm is shown in Figure 4. The method is
given in Algorithm 2, which we reference in the following
explanation, and its helper functions appear in the Appendix.
As inputs, it accepts two pointclouds LO and LI for each
of the two radar scans. The first LO is the original set
of landmarks in Cartesian coordinates. Because landmarks
are detected in polar space, the resulting pointcloud will be
dense at low ranges and sparse at high ones. The second LI
compensates for this by generating a binary Cartesian grid of
resolution β that is interpolated from the binary polar grid of
landmarks. The latter pointcloud is less exact and only used
to sidestep the range-density bias when processing the layout
of the environment while data association is performed on
the former (i.e. the algorithm returns a set of matches M
that contains tuples (i, j) such that the landmark LO1 {i}
corresponds to LO2 {j}). This distinction is a key insight. It
preserves accuracy by operating on the landmarks detected in
polar space while correcting for a main difficulty of scanning
radars by interpreting the environment in Cartesian space.

The data association is then performed in four steps. First,
for every point in L′1, the unaryMatches function suggests a
potential point match in L′2 based on some unary comparison



Algorithm 2: Data Association Method

Input: Landmark sets for two scans LO1 , LI1, LO2 , and
LI2.

Output: Set of landmark matches M(LO1 ,LO2 ).
Parameters: Percentage α of landmarks that, if

matched, cause the algorithm to terminate.

1 B ← unaryMatches(LO1 ,LI1,LO2 ,LI2) and W ← |B|
2 CW×W ← pairwiseCompatibilities(B,LO1 ,LO2 )
3 u∗ ← normalizedMaxEigenvector(C)
4 Initialize the empty set M.
5 Initialize the W × 1 vector unsearched to all True.
6 while (any True in unsearched) ∩ (|M| < αW ) do
7 (max match,max reward)←

(i, u∗2i ) : u∗2i ≥ u∗2j ∀ i, j ∈ unsearched)
8 Terminate function if (max reward ·W < 1).
9 Add the match B{max ind}} to M.

10 searched ← {i : B{max match, 1} = B{i, 1} ∪
B{max match, 2} = B{i, 2}}

11 unsearchedi∈searched ← False

method (line 1). We discuss the unaryMatches function in
Section III-D. Next, the non-negative compatibility score for
each pair of proposed matches g = (i, i′) and h = (j, j′) is
computed and assigned to the elements (g, h) and (h, g) of
the W×W matrix C such that it is symmetric and diagonally
dominant (line 2). If the landmark matches g and h are
correct, then the relationship between i and j in the first
radar scan is similar to that between i′ and j′ in the second;
the compatibility score reflects this pairwise similarity. In our
method, the value is computed from the distances between
corresponding pairs of points in the two scans. It reflects the
understanding that real, correctly identified landmarks are the
same distance apart in any two radar scans.

The optimal set of matches M maximizes the overall
compatibility, or reward. Suppose that m ∈ {0, 1}W such
that (1) mi = 1 if the unary match B{i} is deemed plausible
and mi = 0 otherwise; and (2) the selected matches do not
conflict (i.e. a point in one pointcloud cannot correspond to
two in the other). Then, the optimal solution m∗ satisfies

m∗ = argmax
m∈{0,1}W

m>Cm.

Due to the discretization of m, this maximization is compu-
tationally difficult, so we relax the aforementioned constraint
to seek the continuously-valued u∗ such that

u∗ = argmax
u∈[0,1]W

u>Cu.

Under these conditions, u∗ is the normalized eigenvector of
the maximum eigenvalue of the positive semi-definite matrix
C. The optimal solution m∗ is then be approximated from
u∗ using the greedy approach shown in lines 3-11.

In short, the greedy method iteratively adds satisfactory
matches to the set M. On each iteration, the remaining
valid matches are evaluated (line 7), that which returns the

Fig. 5. The relative motion estimation pipeline.

maximum reward is accepted (line 9), and those that conflict
with it are removed from further consideration (lines 10 and
11). When the most recently selected match yields a reward
less than the that if all matches were valued equally (i.e. is
a weak match) or more than α percent of the landmarks in
either set are matched, the algorithm terminates (lines 6 and
8). Note that α is the only free parameter in this method,
and no outlier removal is required.

D. Relative Motion Estimation

Given two sets of corresponding points, Challis [18]
presents a method for finding the rigid body motion that
optimally aligns them in the least-squares sense using singu-
lar value decomposition (SVD). We apply this technique to
M to estimate the relative motion between two radar scans.

Our motion estimation algorithm, summarized in Figure
5, first performs a data association (step 1) that is capable of
aligning pointclouds separated by any distance and rotation.
The relative motion is then estimated with Challis’ method
(step 2). The second round of data association (step 3), which
serves only to refine the motion estimate, makes use of the
fact that the new pointclouds are now approximately aligned
when generating unary matches. The final motion calculation
is performed on the new set of dense point matches (step 4).
Two examples of this process are shown in Figure 7.

The only difference between steps 1 and 3 is the choice of
unary matching function. In step 1, each point is associated
with its closest match in the other pointcloud according to
what we term the Radial Statistics Descriptor (RSD). This
descriptor specifies each landmark ` by the radial statistics of
its neighboring points along every angular slice centered at
` (Algorithm 3 in the Appendix). In step 3, the unary match
of a point is its nearest neighbor in the other pointcloud.

Recall that the overarching intuition for our scan algorithm
is to find and match the largest subsets of points in two
pointclouds that share a similar shape. Generally, a shape is
uniquely defined by two characteristics: its side lengths and
angles. While shape matching is computationally demanding,
our algorithm efficiently approximates this operation by



Fig. 6. A comparison of our landmark extraction methods to 1D CFAR [4],
[5] and SURF [1], [2]. The raw radar images are at the top, and each table
column features a method. The first and second rows give the pointclouds
for lenient (i.e. more detections with the potential for more noise) and strict
parameters, respectively. The bottom row zooms in on the latter. Only our
method with multipath reflection removal (MRR) successfully disregards
MRs. 1D CFAR contains redundant returns (e.g. for the wall at the bottom
left), and SURF does not consistently find real objects.

capturing angular information in the RSD unary matches
and side lengths in the pairwise compatibility calculation,
and this combination ensures robust scan matching.

IV. RESULTS

We utilize the Navtech CTS350-X, a FMCW scanning
radar without Doppler information. For this radar, M = 399,
N = 2000, and β = 0.25 m. The beam spread is 2 degrees
in azimuth and 25 degrees in elevation. The radar operates
at 4 Hz, and our algorithm (not fully optimized) operates
at approximately 3 Hz. The radar is placed on the roof of
a ground vehicle with an axis of rotation perpendicular to
the driving plane. We adopt the usual odometry assumptions
that the environment is mostly static and non-deformable.
We also assume that the instantaneous motion of the vehicle
is planar. We utilize the following parameters, chosen empir-
ically: wmedian = 200, wbinom = 50, zq = 2.5, dthresh = 0.1,
and α = 0.5 with MR removal. When driving, the vehicle
typically travels between 5 and 10 m/s; when turning, up to
0.6 rad/s (see Figures 1 and 8). The vehicle is driven through
various parts of downtown Oxford, UK.

Fig. 7. Illustration of the data associations and pointcloud alignments
corresponding to steps 1 through 4 in Figure 5. The displacement between
the two pointclouds (purple and green) in step 3 is inserted to better visualize
the point matches (black lines). Note that step 1 operates on pointclouds
separated by any distance and rotation since it only uses the pointclouds’
shapes. Steps 2 and 4 show the alignments produced by the matches in steps
1 and 3, respectively. Step 3 refines the alignment of step 2, thus improving
the motion estimate, as evidenced by the denser matches.

Figure 6 compares our landmark extraction algorithm to
other common approaches. It examines the use of image
processing features for radar localization and mapping [1],
[2] via SURF. Designed to detect sharp gradients, SURF is
highly susceptible to unwanted radar artifacts. As shown, it
returns numerous false positives, and many landmarks do not
correspond to meaningful objects in the scene, demonstrating
the need for radar-specific landmark detection in order to per-
form robust motion estimation. In contrast, 1D CFAR yields
a better depiction of the surroundings, from which structures
(e.g. walls and buildings) are easily discernible. However, we
maintain that the landmark set produced by our algorithm
is preferable for the following reasons. Our pointclouds
are qualitiatively clean and crisp with few false detections,
especially with multipath reflection removal (MRR). The



Fig. 8. A comparison of odometry using the radar (RO), vision (VO),
and GPS/INS under favorable conditions for vision and GPS/INS (note: the
curves are slightly shifted in time for better visual comparison). This route
illustrates the success of RO (it closely matches the estimates of VO and
GPS/INS) while including portions of its worst performance. The images
and landmark sets when RO is noisiest show that this occurs in featureless
narrow environments where the pointclouds are underconstrained between
scans. The top and middle plots show the estimated translational and angular
velocities, respectively. The bottom plot tracks the portion of the landmark
pointcloud that is matched during the data association step using RSD. This
value appears to provide an uncertainty measure, as it is approximately
inversely correlated with RO performance, an added benefit of our approach.

landmarks accurately reflect the coherent structure of the
surroundings, and our approach avoids returning redundant
points corresponding to the same object. Finally, adjusting zq
in our algorithms tunes the leniency in an intuitive manner
(i.e. raising zq reduces the number of landmarks, beginning
with those that appear to be noise). Yet adjusting the pa-
rameters for 1D CFAR deteriorates the pointcloud quality in
some places and improves it in others. This property makes
the CFAR filter parameters difficult to tune.

Figure 7 displays the outcomes of our data association
algorithm through two scan matching examples. The steps
1 and 3 show point matches that are dense, accurate, and
consistent with one another without any outlier removal.
These correspondences provide the highly precise and clean
scan matches in the steps 2 and 4. Because step 1 can be
applied to pointclouds separated by any displacement as long
as they contain sufficient scene overlap, the matches in step
3, which exploit the approximate alignment from step 2, are
more dense, thus producing the refined alignment in step 4.

Figures 1 and 8 illustrate the odometry results across three

TABLE I
ERROR STATISTICS FOR RO COMPARED AGAINST VO

Translational Velocity Error (m/s)
Quantile Diverse setting Busy city center Narrow backstreets
0.25 0.0293 0.0420 0.0495
0.50 0.1057 0.1134 0.1218
0.75 0.2116 0.2094 0.2321

Rotational Velocity Error (deg/s)
Quantile Diverse setting Busy city center Narrow backstreets
0.25 0.0824 0.0801 0.2108
0.50 0.3210 0.3188 0.5165
0.75 0.7118 0.7017 0.9589

sensor systems. RO is robust across a variety of settings and
conditions. Importantly, even when visual odometry (VO)
[19] and GPS/INS are available, they are closely matched
by RO. In the dark and rain, VO periodically fails while
RO gives a clean and smooth result. The data for the bottom
example of Figure 1 was captured indoors in a dark, crowded,
and enclosed area. As a result, GPS/INS is unavailable and
VO is sporadic. Due to the presence of large nearby metallic
objects, which cause the scans to be noisy, the RO curves are
less smooth than the outdoor ones, but the radar still produces
the most reliable motion estimation. Figure 8 shows a route
chosen because it contains areas in which our RO performs
suboptimally. Our RO system experiences difficulties when
the landmark pointclouds contain insufficient information to
conclusively deduce the vehicle’s motion (i.e. are undercon-
strained). Specifically, narrow corridors appear as parallel
lines in consecutive radar scans; due to the lack of variability
in the scene, our algorithm generates visually satisfactory
alignments that do not reflect the actual movement between
the scans. We can evaluate the uncertainty of our motion es-
timate by examining the portion of the landmark pointcloud
that is matched using RSD during data association. Since
our approach seeks the largest number of matches that are
mutually consistent, a low number indicates either that the
two pointclouds are dissimilar or multiple solutions exist.

Table I confirms that the error for RO is greater when driv-
ing through narrow backstreets than in the busy city center.
Over a 10 km route through Oxford, UK (the diverse setting),
the median RO error is about 0.106 m/s in translation and
0.321 deg/s in rotation. We compare against VO because it
provides accurate and fine-grained odometry while that from
GPS/INS odometry is smoothed.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a robust radar-only motion
estimation system that rivals the performance of VO (even
under conditions optimal for vision) and demonstrates the
importance of radars for autonomous vehicles. As an on-
board sensor that operates under diverse conditions, the
successful implementation of RO improves the reliability and
versatility of mobile systems. Our method stands out because
it is not only dependable and accurate, but also straight-
forward and intuitive with few free parameters, no outlier-
detection methods, and no model-reliant filters. Although
multi-sensor fusion is beneficial, we show that RO can stand



alone if the other sensors drop out. Our landmark extraction
algorithm produces sparse yet meaningful detections with
minimal false positives. It feeds into our data association
algorithm, which performs scan matching using a greedy
approach that, intuitively, seeks to find the largest subsets of
the two pointclouds that share similar shapes. The resulting
radar-only motion estimation is accurate and robust under
conditions for which other common sensor systems fail.

In the future, we intend to address the scenarios in which
RO encounters difficulties and to develop a technique that
accurately quantifies the uncertainty of our component esti-
mates. We also aim to include comprehensive comparative
studies against other RO methods.
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APPENDIX

Algorithm 3: Compute RSD for Landmark

Input: Landmark sets LO and LI ; index i of landmark.
Output: The 3×M matrix RSD. Element (i, j) is the

i-th statistic of the points in j-th azimuth
slice, which are ordered CCW, starting with
the slice that contains the most points.

1 Initialize 3×M matrix RSD to zeros.
2 Separate space around LOi into M equal azimuth slices.
3 for azimuth slice j ← 1 to M do
4 Find set S of all points in LI that lie in slice j.
5 RSD[:, j]← [|S|, arithmMean(S), harmonMean(S)]

6 Normalize all rows in RSD.
7 Shift RSD columns s.t. highest-density slice is the first.

Algorithm 4: Generate Unary Matches based on RSD

Input: Landmark sets LO1 , LI1, LO2 , and LI2.
Output: Set of unary match indices B.

1 Initialize the empty set B.
2 RSD1← getAllPointsRSD(LO1 ,LI1)
3 RSD2← getAllPointsRSD(LO2 ,LI2)
4 for point i← 1 to |LO1 | do
5 Find point j in LO2 to minimize ||RSD2j − RSD1i||.
6 Add unary match (i, j) to set B.

Algorithm 5: Generate Unary Matches based on NN

Input: Landmark sets LO1 and LO2 .
Output: Set of unary match indices B.

1 Initialize the empty set B.
2 for point i← 1 to |LO1 | do
3 Find point j in LO2 to minimize ||LO2 {j} − LO1 {i}||.
4 Add unary match (i, j) to set B.

Algorithm 6: Compute Pairwise Compatibility

Input: Set of unary matches B; landmark sets LO1 and
LO2 ; indices of unary matches i and j.

Output: Pairwise compatibility score Cij for (i, j) pair.

1 if i equals j then
2 Cij ← |B| and return.

3 `1,i, `1,j ← LO1 {B{i, 1}},LO1 {B{j, 1}}
4 `2,i, `2,j ← LO2 {B{i, 2}},LO2 {B{j, 2}}
5 d1 ← ||`1,i − `1,j ||2 and d2 ← ||`2,i − `2,j ||2
6 Cij ← (1 + |d1 − d2|)−1


