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Abstract— This paper is about fast motion estimation with
scanning radar. We use weak supervision to train a focus of
attention policy which actively down-samples the measurement
stream before data association steps are undertaken. At train-
ing, we avoid laborious manual labelling by exploiting short-
term sensor coherence from multiple poses in the presence of an
external ego-motion estimator (for example, wheel odometry).
In this way, we generate copious annotated measurements
which can be used for training a learning algorithm in a
weakly-supervised fashion. We demonstrate the validity of the
approach in the context of a Radar Odometry (RO) task, pre-
filtering raw data with a popular image segmentation network
trained as presented. We evaluate our system against 26km of
data collected in Central Oxford and show consistent motion
estimation with greatly reduced radar processing times (by a
factor of 2.36).

Index Terms— radar, sensing, ego-motion estimation, field
robotics

I. INTRODUCTION

Radar is a sensor that continues to receive relatively little

attention as a source of pose information for field robots

in unstructured environments – typically being relegated to

collision avoidance systems in domains such as driving assist

systems. Frequency-Modulated Continuous-Wave (FMCW)

scanning radars, in contrast to more widely used cameras

and lidar sensors, operate well under variable weather and

lighting conditions. Due to the long wavelength of radio

waves and processing techniques, radar sensors receive mul-

tiple returns from a single azimuthal transmission and can

operate out to many hundreds of metres. In many ways this

sounds like the ideal sensor. However, radar measurements

are complex. The beam is not narrow and tightly focused,

returns are affected by various noise sources, and the in-

teraction of the electromagnetic wave in the environment is

far more complex than that of time-of-flight (TOF) lasers [1].

Consequently, comprehension of radar scans for precise ego-

motion estimation requires dealing with complex measure-

ment patterns which are not intuitive. In the end, as it often

does, this boils down to a data association problem: “what

detail in the last frame is relevant to the detail seen in this

frame?” This paper is about making that task simpler.

Figure 1 shows an example of the Cartesian projection

of a complete raw scan as collected by a FMCW scanning

radar, where the peaks of the indicated reflections cannot be

completely resolved into objects at those locations – even

by a human expert. Indeed, the energy reflected back to the

* The authors contributed equally to this work.

Fig. 1: An unfiltered radar scan: returns which are not

spatially coherent from multiple viewpoints have been high-

lighted by red arrows.

source sensor is a complex function of both geometry and

material properties. A small nail in a wall at 400m range

is an ideal natural feature, but may appear as “bright” and

as large as a car or be considered a nuisance glint – only

briefly visible.

This paper presents in Section IV a simple but effective

method for down-sampling the measurements in radar scans

to ease the computational complexity of data association

between two scans. As our goal is ego-motion estimation

or localisation, we leverage the straightforward point that

ideally we would only operate with returns from artefacts in

the scene that are visible from multiple views. Accordingly,

we set ourselves the task of building a filter that only

passes through measurements which, in the context of the

entire scene, appear to be visible across wide baselines. We

approach this task by building a classifier which marks indi-

vidual reflections as either suitable for the data association

stage or not.

The training of such a classifier may be challenging.

Certainly manual labelling is arduous, but even if that were

ignored, it is not a trivial task to decide what detail in one

scan is visible in another given the remarkable way radar

data is liable to change under small pose increments (totally

unlike first return lidars or cameras). We create annotations
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in a weakly-supervised fashion – simply accumulating radar

returns in consecutive scans and looking for spatial coinci-

dence. To do this, of course, one needs an external ego-

motion source at training time, for which we use Visual

Odometry (VO) [2].

Section V demonstrates the feasibility of the procedure

in training a segmentation network based on U-Net [3].

We present and analyse in Section VI the impact of this

approach upon the performance of a state-of-the-art Radar

Odometry (RO) algorithm [4], where we achieve consistent

motion estimation with radar processing times reduced from

168.12ms to 71.10ms as averaged over three representative

trials in an urban environment.

II. RELATED WORKS

Many techniques have been developed to extract land-

marks from radar data, mostly based on probabilistic dis-

tributions and integrated directly into landmark extraction

algorithms, e.g. in Constant False Alarm Rate (CFAR) pro-

cessor and derivates [5, 6, 7] or in [4]. Although Deep

Learning (DL) techniques have been proven to be effective

in many applications for noise filtering [8, 9, 10], there is

little or no work that exploits them in directly filtering range

measurements [11], although many can be found on end-

to-end classification, mostly concerning Automatic Target

Recognition (ATR) problems [12, 13, 14].

Indeed, the drawback of such techniques is the need for an

exhaustive set of annotated training examples in learning how

to perform a specific task. The data annotation procedure can

be a costly process in terms of both time and expertise since,

in many situations, ground truth annotation can not only take

much time, but it may require a specific knowledge of the

system that only an expert can provide. Thus, it is desirable

to build Machine Learning (ML) frameworks that can work

with weak supervision. In [15] three categories of Weakly-

Supervised Learning (WSL) are described – the proposed

method falling into the inaccurate supervision, i.e. where

information in the ground truth data presented to the model

may suffer from errors.

Similar approaches can be found in other domains, where

accurate human annotation has been replaced by less accu-

rate, but automatic, labelling procedures. Most closely related

to our method is the work of Barnes et al. [16] which

uses a learned model to mask sensor observations for the

purposes of improving a vision-based odometry system. As

in this work, the authors use automatic annotation from a

localisation system to generate ground truth pixel-wise mask

labels for training a CNN by analysing geometric consis-

tency. Additionally, the authors look at geometric consistency

over multiple traversals of the same route, whereas we look

only at consistency over a single traversal. However, we are

the first to apply this method to radar domain data.

In a similar fashion [17] use lidar records for training a DL

model to perform a road marking segmentation on images.

They exploit material reflectance to detect road markings

with a push-broom laser scanner and build the ground truth

(a) (b)

(c) (d)

Fig. 2: Examples of scans assembled from successive az-

imuth readings from a FMCW scanning radar before and

after the proposed annotation procedure. (a) and (c) show the

raw data in polar (range vs azimuth) and Cartesian space re-

spectively, whereas the corresponding annotated scans (green

labels indicative of class KEEP) are shown in (b) and (d)

respectively. For clarity, these examples have been cropped

to display 384 of the full 2000 bins available that are used

to train the network discussed in Section V.

images by projecting the results onto the video stream from

the camera as the vehicle moves using odometry information.

Finally, in [18], in the same spirit as us, the authors apply

a WSL approach to train a network for object detection

on dynamic grid maps. They exploit temporal and spatial

relationships to extract moving objects and their shapes using

a lidar sensor. Indeed, once an object is observed, it continues

being observed until it exits the field of view, updating

shape and trajectory information. Then, this information is

propagated backwards in time to refine the annotation for

more consistency in the labels.

III. PRELIMINARIES

The sensor we employ is a FMCW scanning radar which

rotates about its vertical axis while continuously sensing

the environment through the transmission and reception of

frequency-modulated radio waves. While rotating, the sensor

inspects one angular portion (azimuth, α) of space at a time

and receives a power signal that is a function of reflectivity,

size, and orientation of objects at that specific azimuth and at

a particular distance, ρ. The radar takes measurements along

an azimuth at one of M discrete intervals and returns N
power readings which we refer to as bins. One full rotation

across all M azimuths is called a scan, S . Furthermore, let

s(k) ∈ R
N×1 be the power-range readings at time step k,

where t(k) = tk is the time value at k and α(k) ∈ A is
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the azimuth associated with the measurement. The element

si(k) ∈ s(k) is the power return at the i-th range bin,

with i ∈ {1, . . . , N}. The measurement range is given by

ρi(k) = β(i − 0.5), where β is the range resolution of the

radar.

IV. METHODOLOGY

In RO tasks such as [4], data association involves corre-

lating the distance between pairs of landmarks identified in

subsequent frames. The aim of this work is to develop a front

end that simplifies this data association burden by focusing

its attention on a stream of raw azimuth messages that are a

filtered subset of reflections likely to be visible across wide

baselines.

To this end, we automatically annotate each portion of

the sensor’s polar space representation as belonging to the

class KEEP or not. Here KEEP is defined as a power

bin that contains an object which has been observed to be

wide baseline visible. This means that noise effects, dynamic

objects, and reflections from objects that are highly specular

or not visible from multiple views constitute the REJECT

class.

The details of the proposed pipeline will be described

in more detail from Section IV-A to Section IV-C, and are

summarised here as:

(A) collection of a whole-scan measurement and conversion

into Cartesian space;

(B) comparison of the spatially accumulated measurements

and annotation of the power bins by thresholding;

(C) updating the internal representation of the environment

and conversion of the current scan back to polar space.

A. Data Accumulation in Cartesian Space

The labelling process is carried out upon scans S(k̄, k̄ +
M). To this end, M azimuth measurements s(k), k ∈ (k̄, k̄+
M ] are collected and processed to represent the Cartesian

environment prior to annotation. From now on, we will

abbreviate S(k̄, k̄ +M) as Sk̄, where k̄ represents the time

step at the last azimuth reading of the previously assembled

scan, Sk̄−M .

Each measurement bin is processed separately to project

it into Cartesian space. Assuming that the vehicle is moving

on a flat ground plane, the Cartesian representation of the

i-th bin within an azimuth reading is given by

xi(k) =
[

ρi(k) cosα(k), ρi(k) sinα(k), 0, 1
]T

(1)

specified using a projective space, P
3, and the associated

homogeneous co-ordinate system.

The rigid-body transformation T (k̄, k) ∈ SE(3) between

the pose of the robot at time steps coinciding with the start

of the window and the current azimuth reading1 (k̄ and

k respectively) can be used to project this sensor-centric

1In practice, we find a single pose for an entire scan (and not for
every azimuth) to yield comparable performance in our weakly-supervised
approach at a much improved processing speed for label generation.

Cartesian point xi(k) into a common frame of reference as

x̄i(k) = T (k̄, k) · xi(k) where the transformation

T (k̄, k) =

[

R(k̄, k) t(k̄, k)
0 1

]

is obtained by exploiting any reliable external odometry

measurement, in our case Visual Odometry (VO) [2]. In

general, however, let h̄ and h be the closest time steps

of the external odometry source with respect to the radar

measurement samples such that th̄ ≤ tk̄ and th ≥ tk. Then,

the transformation T (k̄, k) can be calculated as

T (k̄, k) = T (k̄, h̄) · T (h̄, h) · T (h, k) (2)

and

T (h̄, h) =
h−1
∏

l=h̄

T (l, l + 1) (3)

The terms T (k̄, h̄) and T (h, k) are obtained by interpola-

tion in [h̄, h̄ + 1] and [h − 1, h], respectively: the rotational

component is obtained by Spherical Linear Interpolation

(SLERP) on a spherical surface traced by a unit quaternion,

as described in more detail in [19], and the translational

component is obtained by a constant velocity interpolation.

Since the time step k̄ defines the last time step of the

previous scan, the term T (h̄, k̄) is available from previous

computations.

Once the position of each bin is projected into Cartesian

space with a common reference frame, it is possible to build

the Cartesian representation of the current scan, Sk̄. The

chosen representation for the Cartesian space is a fixed size

2-dimensional grid, Gk̄, of size 2N × 2N , the values of

which are derived from the power readings from incoming

and projected bins. The two representations, Cartesian and

polar, do not match perfectly, since the sparsity of the

information in polar space depends on the distance from the

radar, requiring the interpolation of each cell power value

Gk̄(u, v), with u, v ∈ [−N,N ], among the four closest bin

measurements. For this task we employed a weighted polar

to Cartesian data conversion as described in [1]. Figures 2a

and 2c show the polar and Cartesian representations of a

whole scan respectively.

B. Labelling Bins in Cartesian Space

Let W(k) = {Gk−l∗M : l ∈ {1, . . . , w}} be a vector of

Cartesian grids each of size 2N × 2N . W contains, at the

time step k, the previous w scans represented as described

above. Moreover, the relative transformations between them

are recorded in T (k) by chaining transformations computed

by eq. (2).

At this point, we can construct a histogram Hk of size

2N×2N by projecting each grid in W(k) into a common

reference attached to the current grid, Gk, and by counting

the number of overlapping cells which have a power value

greater than some label threshold, τ . This count is assigned

to Hk(u, v), with u, v ∈ [−N,N ].
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(a)

(b)

(c)

Fig. 3: Visual comparison of a complete radar scan in polar coordinates (range vs azimuth): (a) shows the original data,

while (b) and (c) show classification masks from the labelling procedure and the U-Net network respectively.

If the number of occurrences in a single histogram cell

exceeds a given threshold, σ, the corresponding cell in Gk is

annotated as KEEP, otherwise it is assigned to the REJECT

class. Figure 2d shows the results of the labelling task

performed on the measurements. In addition to reflections

and noise, dynamic objects have not been labelled as KEEPs.

C. Updating the Environment’s Polar Space Representation

Once the histogram calculation is completed, it is possible

to update the internal representation of the environment; dis-

carding the oldest scan grid from W and transformation from

T and replacing them as more azimuth readings become

available. Since annotated bins in polar space are required,

the last step is to transform the annotated grid, Gk, back into

polar space. To do so, we exploit the weights derived by

the projection into Cartesian space and annotate as KEEP

each bin that most contributed to the power value in each

corresponding KEEP grid cell. Figure 2b shows the results

of the classification task on the polar measurements.

V. EXPERIMENTAL SETUP

We discuss in this section an integration of our pre-filtering

technique within a RO system as described in [4], leveraging

U-Net [3]. The raw scans (indicated in the results as ro),

scans with generated masks applied directly (labelled as gt),

scans filtered by the network output (unet), and outputs from

VO (vo) [2] are all compared with each other.

A. Hardware

The tests are performed using data collected from the

Oxford RobotCar platform [20]. We employ a CTS350-X

Navtech FMCW scanning radar without Doppler informa-

tion, mounted on top of the platform with an axis of rotation

perpendicular to the driving surface. It is characterised by

an operating frequency of 76GHz to 77GHz, yielding up to

2000 range readings with a resolution of 0.25m, each con-

stituting one of the 400 azimuth readings with a resolution

of 2◦ and a scan rotation rate of 4Hz.

Images (for VO) were gathered by a Point Grey Bumble-

bee XB3 camera, mounted on the front of the platform facing

towards the direction of motion. The camera is characterised

by 1280×960×3 resolution, 16Hz FPS, 1/3′′ Sony ICX445

CCD, global shutter, 3.8mm lens, 66◦ HFoV, 12/24 cm
baseline.

The training and the evaluation have been run on a Dell

PowerEdge machine with 3.33 GHz Intel Xeon processors,

192 GB RAM, 2666 MT/s DDR4.

B. Odometry

Our implementation of VO uses FAST [21] corners com-

bined with BRIEF [22] descriptors, RANSAC [23] for outlier
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Fig. 4: Profiles of translational (a) and rotational (b) velocities with computational time for odometry estimation (c), for a

9 km portion of a 10 km loop, corresponding to the Cloudy condition summarised in Table I.

rejection, and nonlinear least-squares refinement. In order to

verify the compatibility of the labelling method with existing

landmark extraction algorithms, we exploit the RO method

as described in [4], without any changes to the algorithm.

C. U-Net Training

The network is trained by providing it with whole-scan

images of raw data in polar space and the corresponding

annotated image obtained from the proposed method, where

each pixel row corresponds to a single azimuth measurement

and each pixel column corresponds to a bin, the value of

which is set to 255 if the bin belongs to the KEEP class

or 0 otherwise. As shown in Figure 3, each single-channel

grayscale image is of resolution M × N , where M = 400
and N = 2000 are the cardinalities of the azimuth set in a

single scan and of the bin set in a single azimuth reading

respectively, as described in Section IV.

The loss function we exploited is a sum of Dice coefficient

and cross-entropy loss and we apply early stopping at 5
epochs, obtaining a validation Dice coefficient of 64.32%
and a validation loss of 0.37.

The dataset employed consists of three trials, collected in

different weather conditions, one of which is used for training

the network. This trial consists of a single loop under sunny

weather conditions (favourable to VO). It has been divided

by a proportion of 90%-10% for training and validation sets

respectively, shuffled in order to avoid learning environment-

specific geometric features (such as street or building layout)

present within training data and absent from validation, or

vice versa. The remaining trials (Cloudy, Rainy, and Night)

are used for the evaluation of the proposed method, as

described below.

Augmentation on the dataset has been performed as ran-

dom noise on the input image to mimic speckle noise in

radar data and random flips on the horizontal axes. While

horizontal flips can be interpreted as a reverse in perspective,

vertical flips are not physically meaningful due to the polar

nature of the measurements.

Translational speed [mms
−1]

ro gt unet
Cloudy 103.86 110.75 110.87
Rainy 97.06 100.67 99.89
Night 198.23 208.51 206.79

Rotational speed [mrad s
−1]

ro gt unet
Cloudy 5.54 5.64 5.72
Rainy 4.94 5.25 5.36
Night 6.88 7.26 7.14

Estimation time [ms]

ro gt unet
Cloudy 232.17 107.92 99.05
Rainy 174.11 84.17 74.97
Night 98.08 36.02 39.27

TABLE I: Summary statistics for several sorties exhibit-

ing distinct environmental conditions. The vehicle drove

8834.44m, 8379.14m, and 8846.90m during the Cloudy,

Rainy, and Night outings, respectively. The median error

quantities are presented in millimetres and milliradians per

second to expose the significant digits. Estimation time is

summarised by a RMS value.

D. U-Net Inference

At run-time we produce filtering masks at an average

of 13.52Hz using a single GTX 1080 Ti GPU, which is

more rapid than the baseline RO performance (5.95Hz)

and our implementation which produces ground truth labels

(3.78Hz) and as such it does not need to be considered when

discussing timing results. The masks generated by unet and

gt are applied directly onto the landmark sets to KEEP bins

that are relevant between frames and REJECT those that are

not.

VI. RESULTS

This section presents metrics for the performance of our

approach when deployed as described above, summarised in

Table I.

Figure 4 shows a comparison of odometry estimation as

compared to the baseline ro discussed above. Here, the

vehicle has traversed approximately 9 km of a 10 km urban
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Fig. 5: Number of landmarks detected (a), number of matches between landmarks discovered (b), computational time for

odometry estimation (c), translational velocity (d), rotational velocity (e), and integrated pose (f) on a short portion of a

10 km loop, corresponding to the Cloudy condition summarised in Table I. In (f) the absolute pose with respect to the start

of the foray is shown, where it is clear that the drift experienced by the camera system is distinct from any of the radar

systems. Nevertheless, the shape of the recovered poses, and thus the inherent egomotion, is consistent. In (a) and (b) it

should be noted that by default the motion estimation algorithm attempts to match only half of the detected landmarks

between frames.

route in mixed traffic and consequently exhibits a range of

movement types (including regular stopping and starting at

traffic control points as well as accelerating and decelerating

along straight sections of road and around corners). As can

be seen in Figure 4, the translational and rotational velocities

recovered by using scans pre-filtered by our approach, unet,

is consistent with the baseline ro. The median estimation

time of 99.05ms for this trial, as read from Table I and

shown for the full trial in Figure 4, is a marked improvement

over the baseline of 232.17ms and approximates that of the

ground truth annotation (107.92ms).

In Figure 5 we consider a briefer portion of this same

trial in more detail. Figure 5a includes for comparison the

landmarks detected by applying the ground truth mask as

discussed in Section V above (gt). Additionally, Figure 5d

and Figure 5e include for comparison the translational and

angular velocities recovered by VO.

Table I presents some summary statistics over three forays

with distinct atmospheric conditions that do not correspond

to the (Sunny) condition of the training data. The perfor-

mance achieved by the baseline ro, unet, and gt is presented

in terms of the median translational and angular velocity

errors using vo as the benchmark signal. We observe in

Figure 5f the integrated pose of unet – our fully integrated

system – tracks visually that of the baseline ro faithfully.

VII. CONCLUSIONS

This paper demonstrates the feasibility of using a weakly-

supervised learning framework to pre-filter radar measure-

ments for use in radar-only navigation. By retaining only

the information that is wide-baseline visible, our approach

is able to reduce processing times (by a factor of 2.36 )
while maintaining the accuracy of the recovered motion.

We evaluate our system over 26 km of urban driving and

show that it rivals baseline RO despite having access to

significantly fewer features. This contribution is more than

a neat efficiency improvement – by focusing attention on

relevant landmarks, the task of motion estimation can now

be run in real-time on a robot using radar alone.
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