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Abstract— Harvesting valuable ocean data, ranging from
climate and marine life analysis to industrial equipment
monitoring, is an extremely challenging real-world problem.
Sparse underwater sensor networks are a promising approach to
scale to larger and deeper environments, but these have difficulty
offloading their data without external assistance. Traditionally,
offloading data has been achieved by costly, fixed communication
infrastructure. In this paper, we propose a planning under
uncertainty method that enables an autonomous underwater
vehicle (AUV) to adaptively collect data from smart sensor
networks in underwater environments. Our novel solution
exploits the ability of sensor nodes to provide the AUV with time-
of-flight acoustic localisation, and is able to prioritise nodes with
the most valuable data. In both simulated experiments and a real-
world field trial, we demonstrate that our method outperforms
the type of hand-designed behaviours that has previously been
used in the context of underwater data harvesting.

I. INTRODUCTION

Underwater acoustic sensor networks (UWASNs) are
collections of spatially distributed underwater sensor nodes
that measure environmental phenomena. These networks can
bring substantial value, since it is difficult to collect ocean
data manually, and applications have included monitoring
of climate, wildlife and infrastructure. However, underwater
acoustic communications have limited range and low through-
put; acoustic modems with cost and power requirements
suited to UWASNs are generally limited to ∼2km range
and in the order of 100s of bits per second bandwidth [1].
Thus, unlike their land-based counterparts, UWASNs do not
have the luxury of a reliable, high bandwidth, low latency
connection to the internet.

Traditionally, UWASNs would transmit their data to a
gateway node situated on a surface buoy or ship [1], [2],
which then relays the data onwards. Across larger distances,
multi-hop networks transfer data between nodes to the
gateway. However, to ensure all data can reach the gateway,
such network architectures rely on relatively dense node
distributions or many surface gateways. Gateway buoys far
out to sea must rely on expensive and low throughput satellite
communications, and can be completely impractical for
sparse or deep sensor networks. Furthermore, communication
power usage significantly increases on nodes close to the
gateway when they must relay other nodes’ messages. This
shortens their lifespan and therefore that of the network. As a
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motivating example, consider the remote large-scale RAPID
array [3] in the north Atlantic ocean. Climate data must be
harvested from this network by a research ship every 18
months at a significant cost.

Recent advances in mobile robotics allow for more in-
telligent data harvesting solutions. In particular, the use of
autonomous underwater vehicles (AUVs) to retrieve data from
sensor networks is becoming a popular research area [4], [5].
A key advantage is the AUVs’ ability to travel close to
sensor nodes to benefit from increased acoustic throughput
or make use of short-range high-bandwidth optical or radio
communication [6], [7]. However, existing AUV data retrieval
methods do not adequately consider the high uncertainty
inherent to the real-world data harvesting task. In particular,
cost-effective small AUVs have limited computing power and
poor dead-reckoning underwater localisation. Although depth
information is straightforwardly known via sensed pressure,
2D latitude/longitude position uncertainty for these vehicles
can be between ∼ 10% to ∼ 30% of distance traveled without
external position feedback, depending on the environment [8].
This localisation error is caused by the unobserved effects
of water currents and vehicle dynamics uncertainty and
noise. AUV navigation can therefore vary significantly in
the end location and time taken. Furthermore, sensor node
data contents are not typically known a priori. Thus, decisions
on which sensors should be harvested first must be made
during the mission, when the information regarding their
contents is communicated to the AUV. Such decisions are
typically rule based. In contrast, our approach considers a
prior distribution over the data content of each sensor node
at planning time. This uncertainty is then resolved when the
information is received during the mission, allowing the AUV
to optimally select which nodes to harvest given the amount
of time still left in the mission.

The main contribution of this paper is a novel Markov
decision process (MDP) formulation of an AUV mission
planning problem that aims to maximise the expected total
utility of data retrieved from a UWASN under a time
bound. Unlike existing data harvesting methods, our approach
accounts for uncertainty both in underwater environmental
dynamics and the UWASN data contents. To ensure our
approach can be deployed in low-cost AUVs, which typically
have few on-board computation capabilities, the MDP is
solved offline and the synthesised policy is loaded onto the
AUV. Policy execution is then achieved by a simple lookup
table. Furthermore, the MDP state is based on the sensor nodes
the AUV is able to communicate with, significantly reducing



Fig. 1. ecoSUB AUV alongside 5 smart sensor nodes
(foreground) at the trial site, Loch Ness, Scotland.

−4.450 −4.445 −4.440

Longitude (decimal degrees)

57
.3

3
00

57
.3

32
5

57
.3

35
0

L
at

it
u

d
e

(d
ec

im
a
l

d
eg

re
es

)

Sensor node
(data: full)

Sensor node
(data: empty)

Max comms range

Underwater
waypoint

Surface
waypoint

Underwater edge

Surfacing edge

Diving edge

Surface edge

AUV (at surface)

AUV (submerged)

ID=2

ID=4

ID=5

ID=6

ID=8

Fig. 2. Planner representation of the Loch Ness field trial data gathering scenario, showing
4 surface and 6 underwater waypoints.

the computational burden of state estimation too. Empirical
evaluation is carried out in simulated AUV experiments, and
a fully integrated system is demonstrated as proof-of-concept
in a real-world field trail at Loch Ness in Scotland using a
deployed UWASN and low-cost AUV (Fig. 1). In both cases,
we outperform the types of hand-designed rule-based systems
commonly deployed for AUV mission planning.

II. RELATED WORK

Most existing AUV data harvesting methods plan shortest
touring paths between sensor nodes, with no consideration of
navigation, localisation, or node data contents uncertainty [4],
[9]. To deploy these methods in the real world, high-quality
localisation could be achieved using costly, bulky and power-
hungry inertial navigation units and currents velocity sensors.
Alternatively, one could receive position feedback by covering
the operating area with acoustic localisation infrastructure.
Again, this is expensive, often impractical, and wasteful since
precise localisation is unnecessary in areas with no sensor
nodes present. Our planning method is therefore designed to
take advantage of sensor nodes that can themselves provide
time-of-flight acoustic “ping” localisation to the AUV.

Similarly to our method, some existing works make use of
kinematic navigation simulators [5]. We build probabilistic
policies, rather than fixed plans, based on these uncertain
models of the AUV and environment. By explicitly consider-
ing uncertainty in the outcomes of AUV navigation actions,
our method allows the AUV to reason about localisation only
as far as it needs to to carry out its data retrieval mission.

Furthermore, to the best of our knowledge no other
methods are able to reason about collecting data from a
smart sensor network with uncertain amounts of different
values of data present. Even where heterogeneous data types
are considered [4], [5], it is assumed that the data contents
of sensor nodes is known before planning the mission. This
is clearly not the case when sensor nodes have no persistent

communication link to the outside world: the application for
which AUV data retrieval is best suited.

When the AUV is underwater, its position is uncertain
and partially observable via time-of-flight pings from sensor
nodes. A partially observable MDP (POMDP) [10] approach
to underwater navigation could be to define a grid of (lat , lon)
positions underwater, and maintain a belief over the AUV’s
grid position. The Adaptive Belief Tree (ABT) [11] algorithm
uses this formulation as an example domain. For our task,
this grid MDP contains many states with no utility as they
would not be in contact with any sensor node. Our approach
limits the state space size by only defining underwater
states at waypoints where the vehicle can communicate
with sets of beacons. One existing work [12] similarly
defines underwater waypoints and carries out time-dependent
planning between these. However, this planner explicitly
considers only execution time uncertainty; it must replan
online when actions do not result in the assumed outcome.

POMDP planning is highly intractable, and scalable
POMDP methods such as ABT generally carry out online
planning. As pre-computing a policy has large advantages in
terms of the power and compute resources required on-board
the AUV, we avoid online POMDP belief planning. Instead
we take a novel approach and measure navigation success by
whether the AUV is able to communicate with the target nodes
it was trying to find. The AUV controller carries out line-of-
sight navigation control alongside position estimation via an
extended Kalman filter (EKF). The EKF is well suited to this
type of trilateration-based position estimation problem [8].

III. PRELIMINARIES

A. Continuous-Time Markov Decision Processes

We will use continuous-time Markov decision processes
(CTMDPs) to model the transmission of data from sensor
nodes to the AUV. A CTMDP is a tuple Q = ⟨S, in, A,∆,R⟩,
where S is a finite set of states; in ∈ Dist(S) is the initial



state distribution; A is a finite set of actions; ∆ : S×A×S →
R≥0 is the rate transition function; and R : S × A → R≥0

is the reward rate function. In a CTMDP, when action a is
taken at state s, a race condition between n processes occur,
one process for each state s′ such that ∆(s, a, s′) > 0. The
duration of the process that results in a transition to s′ is
modelled as an exponential distribution with rate ∆(s, a, s′).
Thus, defining E(s, a) =

∑
s′∈S ∆(s, a, s′), the probability

of the CTMDP evolving to s′ given action a was taken in
state s is given by ∆(s, a, s′)/E(s, a) and the sojourn time
in state s given that action a was taken is exponentially
distributed with a rate E(s, a). Reward is accumulated at the
rate R(s, a) while action a is taken in state s.

B. (Discrete) Timed Markov Decision Processes

To model the navigation of the AUV, we will use a
(discrete) timed MDP (TMDP) [13], which assumes a discrete
distribution over the duration of actions. TMDPs provide a
simplified model of action duration, which can easily be
encoded into the state space, yielding a (discrete-time) MDP,
for which standard techniques such as value iteration can
be used. We will exploit this and define the global planning
model as a TMDP too, by discretising the data transmission
CTMDPs into MDPs, as described in Section V-C.

A TMDP is defined as a tuple M = ⟨S, s,A, δ, T,Θ, R⟩,
where S is a finite set of discrete states; s ∈ S is the initial
state; A is a finite set of actions; δ : S × A × S → [0, 1]
is a probabilistic transition function where δ(s, a, s′) is the
probability of moving to state s′, given that action a was
executed at state s; T = {t1, . . . , t|T |} ⊂ N≥0 is a finite set
of discrete action execution times, which we assume to be
in increasing order; Θ = {θs,a,s′ | δ(s, a, s′) > 0}, where
each θs,a,s′ : T → [0, 1] is a probability distribution over
integer durations, representing the time taken (duration) to
execute action a from s and finish in s′; and R : S ×A →
R≥0 is a reward function. During a given mission the AUV
selects actions using a policy π which maps state-action
histories in the TMDP to the next action. We consider TMDP
problems with a finite time-bound β ∈ N>0. After the time
bound, executing actions and receiving additional reward is
not possible.

For a time-bound β, a TMDP can be converted into an MDP
MT

β = ⟨ST
β , A, δ

T
β , R

T
β ⟩, where the state is augmented with

the current timestep: ST = {(s, t) ∈ S×N | t ≤ β+t|T |}; the
transition function is augmented to consider the uncertainty
over durations and the time-bound:

δTb ((s, t), a, (s′, t+ k)) ={
δ(s, a, s′)θs,a,s′(k) if t ≤ b
0 otherwise; (1)

and RT
b ((s, t), a) = R(s, a). The planning problem is

formulated as maximising the expected total accumulated
reward in MT

β , which yields a policy π : ST → A.

IV. PROBLEM SETUP
In our setting the UWASN consists of “smart” sensor nodes

which adaptively choose when to record measurement data

based on the environment’s behaviour [5], [14]. For example,
a node might use a higher sampling rate when readings change
rapidly. Alternatively, nodes may detect low-probability, high-
value events such as passing marine life. These sensor nodes
know the value, or utility of the data they contain.

The UWASN consists of a set Φ = {ϕ1, . . . , ϕ|Φ|} of
underwater sensor nodes. For ϕ ∈ Φ, we denote the location
of ϕ as loc(ϕ) = (lat , lon, depth) ∈ R3. The location of all
nodes is known. These nodes are able to communicate with
the AUV via acoustic communication, and potentially with
each other if they are within some maximum communications
distance. Nodes can send 3 types of acoustic packet: a data
transfer packet of size bd, a localisation packet of size bl

which provides the AUV with a distance estimate to the node,
and a data statistics packet of size bs describing the data it
contains. The probability of the AUV successfully receiving
the packet is a function the distance from the node to the
AUV, the acoustic packet size, and environmental conditions.

There is also a set D = {d1, ..., d|D|} of data types.
A function U : D → R>0 maps each data type d to
its information utility per byte U(d). Finally, we define
L : Φ × D → Z≥0 such that L(ϕ, d) is the number of
bytes of data type d in ϕ. The total utility of data stored on
a node ϕ is therefore

∑
d∈D U(d) · L(ϕ, d). The AUV starts

with a prior over the value of L, and only knows its actual
value with certainty when it receives a data statistics packet
from the node. Given a bound β on total mission time, the
AUV’s goal is to collect as much information utility U from
the sensor nodes as possible.

The problem above has several sources of uncertainty.
Key sources are the a priori unknown sensor node content;
the navigation and localisation uncertainty; and the varying
communication rate between the AUV and the sensor nodes.
This rate emerges from stochastic receipt probabilities of
individual data transfer packets.

V. MODEL CONSTRUCTION

This section details the construction of our TMDP planning
model M. As illustrated in Figure 3, M is the product of
a single navigation TMDP Mn (Section V-A) and one data
retrieval CTMDP Qϕ (Section V-B) for each sensor node ϕ.

A. Navigation Model

We start by defining an AUV topological map. We exploit
the communication between the AUV and the sensor nodes,
and define topological waypoints based on which sensors
the AUV is able to communicate with (i.e. reliably receive
data packets from). The AUV topological map is defined
as a tuple T = ⟨V,E⟩, where V = V s ∪ V u is the set of
waypoints. V s is a set of surface waypoints and V u is a set
of underwater waypoints. When the AUV is at the surface,
it receives a GPS fix and its coordinates are known with
high confidence. Thus, each waypoint vs ∈ V s is associated
with a location loc(vs) = (lat , lon, 0). One can take several
approaches to discretise the surface into a set of waypoints,
e.g. building a grid map or utilising the underwater waypoint
locations to predict the areas that the AUV will likely surface
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Fig. 3. High-level flow diagram depiction of the TMDP model construction
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multiple of the same type of component.

often. The set of underwater waypoints is defined based on
which sensor nodes the AUV can communicate with. Thus,
V u = {Φ′ ⊆ Φ | ∀ϕ∈Φ′ , ∥loc(ϕ), loc(Φ′)∥2 < dcomm

max },
where loc(Φ) is defined as the centroid of the locations of
each sensor node ϕ′ ∈ Φ′. Each underwater waypoint vu ⊆ Φ
is composed of a set of sensor nodes for which the AUV can
be at a distance dcomm

max that ensures the AUV has a minimum
probability of communicating with all ϕ ∈ vu. Edges in T
connect waypoints that are within a predefined distance dnavmax

of each other. Furthermore, since we assume AUVs are not
able to navigate reliably along the water surface due to the
effects of waves and shipping collision hazards, edges between
surface waypoints are not allowed. Formally, E = {(v, v′) ∈
V × V | ∥loc(v), loc(v′)∥2 < dnavmax and (v, v′) ̸∈ V s × V s}.

There are two modes of navigation between waypoints.
First, if the target waypoint is a surface waypoint, the AUV
is instructed to navigate towards its location. When the AUV
reaches the surface, it gets a GPS fix and we update its current
waypoint to be surface waypoint closest to the AUV current
location. Second, if the target waypoint is an underwater
waypoint, the AUV is instructed to navigate towards the
centroid of the sensor nodes that compose the target. Once
the AUV’s current localisation estimate is within a predefined
distance to the centroid, the AUV starts pinging the sensor
nodes. Its current waypoint is then updated to the waypoint
that corresponds to the sensor nodes that pinged back, i.e.
that the AUV managed to communicate with.

As the results of navigation and data collection are not

readily known, we assume access to two black-box simulators.
Firstly, the comms model Pr(comm | dist, b) gives the
probability of an acoustic packet of size b being successfully
received at range dist. Secondly, the navigation simulator
Nav (v′, t | v, e, Pr(comm | ·)) is a kinematic simulator of
the AUV and its localisation and guidance system. Given an
initial location v, and target edge e, the navigation simulator
simulates the vehicle attempting to navigate to the target
waypoint specified by the edge. As Nav is a stochastic
generative simulator, it returns samples ṽ′, t̃ ∼ Nav( · | ...)
of the outcome waypoint v′ and time taken t rather than
closed form probability distributions. Nav() samples the
probability of localisation ping success using the comms
model. It also samples possible water currents dynamics
and vehicle dynamics and control errors to encompass all
navigation uncertainty and outcomes.

We can now define the navigation TMDP. Given an
AUV topological map T = ⟨V,E⟩, we define MT =
⟨ST , sT , AT , δT , TT ,ΘT ⟩, where ST = V , i.e. the states
correspond to topological map waypoints; sT ∈ V s, i.e. the
AUV starts at a specified surface waypoint; and AT = E, i.e.
actions correspond to attempting to navigate along topological
map edges. The duration and state transition outcomes of
navigation actions are stochastic. If the target waypoint v′

is composed of more than one sensor node, it may not be
possible to communicate with all sensor nodes in v′ due to
unsuccessful acoustic communication attempts. Alternatively,
the vehicle’s true path may diverge from its estimates due to
lack of successful localisation pings. The AUV will either end
up at another underwater waypoint, or will be completely lost
and forced to surface. In this case it transitions to the nearest
surface waypoint. The transition and duration distributions
are estimated for each e = (v, v′) by sampling, from the
navigation simulator, NA attempts of navigating from v
towards v′. This is shown as (a) in Figure 3, and yields
dataset xv,e = {(vi, ti)}NA

i=0. Then, for each v′′ ∈ ST , the
transition distribution δT (v, e, v′′) is obtained by calculating
the frequency of data points (vi, ti) in xv,e such that vi = v′′.
The duration distribution ΘT is similarly estimated by first
clustering the times ti in the dataset, yielding a cluster set
T e = {te1, . . . , te|T e|}. This takes place at (b) in Figure 3.
Then, for te ∈ T e, θv,e,v′′(te) is obtained by calculating the
frequency of data points (vi, ti) in xv,e such that vi = v′′

and te is the element in T e closest to ti.

B. Data Retrieval CTMDPs

We use CTMDPs to represent data retrieval as a discretised
stochastic counting process, in the form shown in Figure 4.
The higher the number of states in the CTMDP, the closer the
model matches the true underlying behaviour of individual
bytes of data being probabilistically retrieved from the node,
with probabilities given by the comms model.

Recall that sensor node ϕ has some a priori unknown data
function L : Φ×D → Z≥0 such that L(ϕ, d) is the number of
bytes of data type d in ϕ. For each ϕ ∈ Φ, d ∈ D, we model
the transfer of data of type d from ϕ to the AUV as a CTMDP
Qϕ,d = ⟨Sϕ,d, inϕ,d, Aϕ,d,∆ϕ,d⟩. Sϕ,d = {s0ϕ,d, . . . , skϕ,d},



where each state siϕ,d, i > 0 represents a “chunk” of size biϕ,d
bytes of data type d stored on the node, and s0ϕ,d represents
that node ϕ has no more data of type d; inϕ,d : Sϕ,d → [0, 1]
is the initial state distribution, which we will define later;
Aϕ,d = {av | v ∈ V u and ϕ ∈ vu}, i.e. actions correspond
to retrieving data type d from sensor node ϕ at waypoint
vu; ∆ϕ,d : Sϕ,d ×Aϕ,d × Sϕ,d → R≥0 is the transition rate
function and Rϕ,d : Sϕ,d ×Aϕ,d → R≥0 is the reward rate.

Using the comms model, we can calculate the expected
retrieval rate λv

ϕ, in bytes per second, from sensor node ϕ
when the vehicle is at waypoint v. This is shown by arrow
(c) in Figure 3. When collecting data of type d, the reward
rate is straightforwardly the rate of utility value retrieval,
i.e. R(siϕ,d, av)ϕ,d = U(d) · λv

ϕ. A transition occurring from
siϕ,d represents the node being exhausted of biϕ,d bytes of
that type of data, meaning that the next transition must be
to si−1

ϕ,d . When the AUV is retrieving data at waypoint v,
the transition rate from siϕ,d to si−1

ϕ,d is therefore equal to
λv
ϕ/b

i
ϕ,d. Formally, for all i ∈ {1, . . . , k} and av ∈ Aϕ,d,

∆(siϕ,d, av, s
i−1
ϕ,d ) = λv

ϕ/b
i
ϕ,d, and ∆(s, av, s

′) = 0 for all
other s, s′ and a. Therefore, the transition and reward rates
(Figure 3, (d)) are dependent on the expected retrieval rate.

A full joint model of the data state for all of a node’s data
types d would require the parallel composition between the
CTMDPs for each d ∈ D. However, this would lead to an
exponential blow-up of the number of states. Furthermore,
the best harvesting policy for the AUV is to first retrieve
the highest utility available data, then move on the next
highest utility data, and so on. Thus, we model the data
transmission of each node as a chain of the CTMDPs
for each d ∈ D, starting with the highest utility data
type and transitioning to the lower levels. In Figure 4, we
present the data transmission CTMDP for sensor node ϕ
assuming two data types d1 and d2 such that U(d1) > U(d2)
for simplicity. The generalisation for more data types is
straightforward. Let Qϕ,d1

= ⟨Sϕ,d1
, inϕ,d1

, Aϕ,d1
,∆ϕ,d1

⟩
and Qϕ,d2

= ⟨Sϕ,d2
, inϕ,d2

, Aϕ,d2
,∆ϕ,d2

⟩ be the data trans-
mission CTMDPs for sensor node ϕ and data type d1 and
d2. The CTMDP for sensor node ϕ is defined as Qϕ =
⟨Sϕ, inϕ, Aϕ,∆ϕ⟩, where: Sϕ = (Sϕ,d1

\ {s0ϕ,d1
}) ∪ Sϕ,d2

;
the initial state distribution is defined as:

inϕ(s) =

{
inϕ,d1

(s) if s ∈ Sϕ,d1

inϕ,d1
(s0ϕ,d1

)inϕ,d2
(s) if s ∈ Sϕ,d2

;
(2)

Aϕ,d = Aϕ,d1 (note that Aϕ,d1 = Aϕ,d2); and the transition
rates are defined as:

∆ϕ(s, s
′) =





∆ϕ,d1
(s) if s, s′ ∈ Sϕ,d1

∆ϕ,d1(s, s
0
ϕ,d1

)inϕ,d2(s
′) if s = s1ϕ,d1

and
s′ ∈ Sϕ,d2

∆ϕ,d2(s) if s, s′ ∈ Sϕ,d2

0 otherwise.
(3)

Qϕ,d1

s2ϕ,d1

r = λv
ϕ · U(d1)

Qϕ,d2

s1ϕ,d1
s1ϕ,d2

s0ϕ,d2

r = λv
ϕ · U(d2)

λ2

r = 0

λ2λ1 · ins2ϕ,d2
λ1

s2ϕ,d2

λ1 · ins1ϕ,d2
λ1 · ins0ϕ,d2

Fig. 4. A data retrieval CTMDP chain for two types of data, where ϕ is
only contactable from one waypoint. The initial state distribution inϕ is
defined across all states in the CTMDP chain but is omitted here for clarity.

This model assumes the AUV will start by retrieving the
highest utility data in node ϕ. In the example in Figure 4, ϕ
is only contactable from one waypoint so only a single data
collection action is defined. The data contents for data types
1 and 2 are represented by two states each, each representing
b1 and b2 bytes of data respectively. λ1 = λv

ϕ/b1 and λ2 =
λv
ϕ/b2. Earlier in the data retrieval process, the reward rate

is higher as U(d1) > U(d2). When the node is empty (state
s0ϕ,d2

), the reward rate is zero and no transitions are enabled.
The CTMDP chain simplification is a source of approxima-

tion: we cannot fully consider the information about the data
contents in sensor node ϕ since we are only able to transition
to an initial state according to inϕ. Broadly speaking, we
can transition to the correct state representing the correct
amount of the highest utility data in ϕ, but then the model
can only transition to the states representing the next highest
utility data types according to the prior over the data in ϕ.
As shown later, this approximation still allows for efficient
behaviour, since it still considers the information about the
amount of data of the highest utility data type accurately.

C. Mission TMDP Construction

Let MT be a navigation TMDP and {Qϕ,d}ϕ∈Φ be the
data retrieval CTMDPs. The AUV mission planning TMDP
is a product composition of these models. We must first
transform the data retrieval CTMDPs into a discrete MDP
where all actions pass one navigation TMDP timestep.

We carry out a process similar to uniformisation [15] to
transform each CTMDP Qϕ into an equivalent MDP QD

ϕ ,
given navigation TMDP timestep t. This occurs at arrow (e)
in Figure 3. Uniformisation models a CTMDP with a discrete
time MDP by adding self-loop action outcomes to states. As
the timestep is given by the TMDP, rather than defined by the
fastest rate of the CTMDP as is standard in uniformisation,
we must carry out an adjustment of discrete time reward
values to ensure they remain identical in expectation.

Let us define Pλ(t ≤ T ) as the CDF of the first arrival
time in a Poisson process, i.e. an exponential distribution. If,
during one timestep of data retrieval from the node, the data
for the current data state is not exhausted (i.e. a self-loop
outcome in the discrete MDP), the data reward collected



by the AUV in the timestep is simply r0 = Vj · µi · τ . If
the data was exhausted during that timestep, the data value
collected in the timestep is rex = Vj ·µi ·τex where τex is the
expectation of when during the time period τ the data was
exhausted. From Bayes’ rule, we can define the probability
that the first Poisson arrival took place within T1 seconds
given that it took place within T2 > T1 seconds:

Pλ(t ≤ T1 | t ≤ T2) =
Pλ(t ≤ T2 | t ≤ T1)Pλ(t ≤ T1)

Pλ(t ≤ T2)
(4)

=
Pλ(t ≤ T1)

Pλ(t ≤ T2)
=

1− e−λ·T1

1− e−λ·T2
. (5)

Differentiating with respect to T1 to find the PDF,

pλ(t = T1 | t ≤ T2) =
λ · e−λ·T1

1− e−λ·T2
, (6)

the expectation τex can then be calculated:

τex =

∫ τ

t′=0

t′ · pλij (t ≤ t′ | t ≤ τ) dt′ (7)

=
1− e−λij ·τ · (λij · τ + 1)

1− e−λij ·τ · λij
. (8)

The mission TMDP M represents the dynamics of the
entire system. Formally, M = ⟨S, s,A, δ, T,Θ, R⟩, where
S = V ×ϕ∈Φ S+

ϕ,d, where S+
ϕ,d = Sϕ,d ∪ {no comm}

represents the amount of data in sensor node ϕ, plus a
special initial state that represents that the AUV has yet
to communicate with ϕ; A = E ∪ {cϕ}ϕ∈Φ, where actions
in (v, v′) ∈ E represent navigation actions and actions cϕ
represent transfer of data from sensor node ϕ; for s =
(v, sϕ1 , . . . , sϕ|Φ|), s

′ = (v′, s′ϕ1
, . . . , s′ϕ|Φ|

) and a ∈ A, the
transition function is defined as:

δ(s, a, s′) =





∏
ϕ∈Φc

v′

pa,ϕv→v′ · inϕ(s
′
ϕ) if a = (v, v′′) and

∀ϕ∈Φ\Φc
v′
, sϕ = s′ϕ

psϕi
→s′ϕi

if a = cϕi
and

v = v′ and
∀ϕ∈Φ−i , sϕ = s′ϕ

0 otherwise,
(9)

where Φc
v′ = {ϕ ∈ v′ | sϕi = no comm} and Φ−i = Φ \

{ϕi}; and the reward rϕi(sϕi , cϕi) is the uniformised discrete
timestep reward from carrying out a data collection action
from the relevant node.

For the first case in (9), navigation actions in the TMDP
have some probability pa,ϕv→v′ of receiving a data statistics
message from node ϕ, either directly or via network state
“gossiping”. These probabilities for each action can be
estimated using a more complex network communications
model than we describe here, or given a constant rate per
unit time when within localisation range of the node.

For the second case in (9), when a data collection action is
selected in the TMDP, the transitions probabilities are defined
by the transition probabilities in the relevant sensor node
MDP. The waypoint and the state of all other node MDPs
do not change.

VI. EXPERIMENTS

In our experimental scenario, an UWASN with 5 nodes
collects two types of data: events where U(de) = 5 and
measurements where U(dm) = 1. For ease of comparison, we
use the same physical layout of sensor nodes and waypoints
for simulated experiments as were used for the real field trial
runs. This layout is as shown in Figure 2. For all results
presented here, the mission length was 75 minutes. Each
node was modelled with |Sϕ,de

| = 4 and |Sϕ,dm
| = 2, where

the expected number of bytes of measurements data is 400
and between 0 and 1000 bytes of events data, with higher
probability assigned to lower numbers of events bytes.

The baseline comparison method is inspired by common
industrial AUV rule-based mission specification. The baseline
method travels between each single-node waypoint in a
shortest touring path, having estimated travel times from
distances. The baseline chooses departure times such that
the expected time spent at each node is proportional to the
expected total data utility at the node defined by the prior
belief. For experiments in this paper, all nodes were assigned
an identical data belief distribution, resulting in the baseline
aiming to spend an equal amount of time at each node.

Finally, statistics messages are transmitted by the sensor
nodes every 30 seconds. These have the same effective range
and delivery probability as localisation pings from the node.
For the comms model parameters used in these experiments,
this was an effective maximum range of ∼400m. The comms
model was provided by the developers of the Nanomodem
acoustic modems [1] used in the field trial. The TMDP was
solved using value iteration, with PRISM [16].

A. Real-World Robot Experiments

The AUV used for real-world experiments was an eco-
SUB [17]. The policy was implemented as an SQLite database,
allowing rapid action lookup in a ∼1GB policy with limited
hardware. The localisation ping period (the time between
attempts by the AUV to ping nodes to request a localisation
ping) was 3 seconds. The primary source of uncertainty was
therefore the unknown data distribution in the network.

Figure 5 shows one run each of the baseline (scoring data
utility = 5256) and policy (scoring data utility = 8860) for
the same data contents scenario. The plots show an example
of intelligent adaptive behaviour from the policy. The policy-
running AUV has decided that the additional event utility on
the furthest away node (ID=4) is less valuable than remaining
in the rest of the network closer to the goal location. It
has therefore not visited that node during the mission. In
a subsequent mission, the data value belief for this node
would then be higher and the policy would more likely
prioritise visiting it. For statistical comparison, running this
experimental scenario in simulation (Section VI-B) with 20
repeats gives a policy mean score of 7939 (standard deviation
(std) = 800) and baseline mean score of 5527 (std = 1454).

B. Experiments in Simulation

For statistical evaluation, simulations were run using the
navigation and communication models. Both simulators’



Fig. 5. AUV paths (estimated with acoustic localisation) in two real-world field
trial missions. LHS: policy execution. RHS: baseline execution. Trajectory point
colour corresponds to received acoustic localisation from a specific sensor node.
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Fig. 6. Data collection performance vs localisation difficulty
for policy and baseline on the same data collection scenario. 20
simulated runs per plotted box. Means shown as green triangles.

parameters were tuned to reasonably closely match the
dynamics experienced during the real-world trials. Figure 6
illustrates the effects of decreasing localisation performance
(and therefore increasing localisation and navigation uncer-
tainty) on the performance of our method and the baseline.
Each plotted box shows 20 simulated runs with the same
fixed data distribution scenario. Despite a decreasing trend
in retrieved utility value, the policy clearly outperforms the
baseline by a greater margin as the uncertainty in the data
collection mission grows.

VII. CONCLUSIONS

We have proposed a novel method for planning AUV data
retrieval from sensor networks under uncertainty, and demon-
strated its effectiveness in real and simulated experiments. To
the best of our knowledge, ours is the only approach able to
effectively plan in this problem setting.

The scalability of the approach described is limited
primarily by the TMDP solution method, which produces
a policy covering the entire state space. The state space is
exponential in the number of nodes considered and the size
of node CTMDPs. Analysing and improving scalability will
therefore be addressed in future work. One avenue would be
to design a hierarchical MDP model, where a node in our
model would represent a cluster of physical sensor nodes
which communicate between each other or which are all
communicable from the same waypoint. A heuristic search
solution method would also improve solution efficiency and
produce more compact policies for loading onto the AUV.
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