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3EMARO Lab, DIBRIS, Università degli studi di Genova, Genoa, Italy
Correspondence*:
Si-ao Wang
siao.wang@edu.unige.it

ABSTRACT2

Tactile sensing endows the robots to perceive certain physical properties of the object in contact.3
Robots with tactile perception can classify textures by touching. Interestingly, textures of fine4
micro-geometry beyond the nominal resolution of the tactile sensors can also be identified through5
exploratory robotic movements like sliding. To study the problem of fine texture classification,6
we design a robotic sliding experiment using a finger-shaped multi-channel capacitive tactile7
sensor. A feature extraction process is presented to encode the acquired tactile signals (in the8
form of time series) into a low dimensional (≤ 7D) feature vector. The feature vector captures the9
frequency signature of a fabric texture such that fabrics can be classified directly. The experiment10
includes multiple combinations of sliding parameters, i.e., speed and pressure, to investigate11
the correlation between sliding parameters and the generated feature space. Results show that12
changing the contact pressure can greatly affect the significance of the extracted feature vectors.13
Instead, variation of sliding speed shows no apparent effects. In summary, this paper presents14
a study of texture classification on fabrics by training a simple k-NN classifier, using only one15
modality and one type of exploratory motion (sliding). The classification accuracy can reach up16
to 96%. The analysis of the feature space also implies a potential parametric representation of17
textures for tactile perception, which could be used for the adaption of motion to reach better18
classification performance.19

Keywords: active touching, robotic touch, tactile sensing, texture identification, haptic perception20

1 INTRODUCTION

1.1 Tactile Sensing and Perception21

Tactile sensing is fundamental for robots to understand the space surroundings by revealing some contact22
features not directly accessible to visual and acoustic sensors, including pressure, vibration and temperature.23
Tactile sensors are specifically designed to convert the instant changes of these physical properties into24
electrical signals. Unlike visual and acoustic sensing, tactile sensing involves and probably only involves25
the direct mechanical interaction between the sensor and the object in contact with. In the majority of the26
cases, external environmental conditions like illumination, acoustic noise, humidity and temperature do not27
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affect the capability of tactile sensing. Despite its robust performance in different scenarios, tactile sensing28
is a very limited instrumental modality which only captures the regional stimulus around a sensor. Luckily,29
the limitation can be alleviated by pairing the sensing with exploratory robotic motions to enlarge the30
contact area, requiring both spatial and temporal decoding to interpret the signals. The process of decoding31
signals to comprehend the space surroundings is the core of tactile perception. Unfortunately, at the current32
stage, there is no such a uniform and standard format of tactile sensor and tactile data and hence tactile33
perception is tightly bonded to the specific sensing technology being used (Luo et al., 2017).34

With the advancement in interactive control for robotics, tactile sensing is gaining growing attention in35
recent decades. Since robotic tasks with physical contacts are very likely to introduce visual occlusion,36
more studies using tactile sensing to perceive object shape/textures (Kaboli and Cheng, 2018; Kerr et al.,37
2018; Martinez-Hernandez et al., 2020; Fang et al., 2021) and execute dexterous manipulation (Jiménez,38
2017; Belousov et al., 2019) are popping up. Results show that tactile sensing has great potential especially39
in handling soft materials like fabrics considering its instant response to tiny variations of stimulus.40

1.2 Fabric Classification via Active Perception41

A better understanding of the objects that the robot is interacting with helps to adjust the control strategy42
and control parameters, leading to more efficient and possibly safer motions. Among all objects for43
interaction, fabrics are of particular interest to us as they are not only one of the most common soft44
materials in daily life, but also intrinsically difficult to distinguish. Fabrics can be dyed into different45
colours so that vision alone has difficulty in identifying them. Textures of fabrics vary a lot and are usually46
so fine and complex that sometimes even human beings can barely distinguish (e.g., canvas, denim and47
linen) with non-destructive methods.48

To classify fabrics, usually active motions are necessary to acquire a holistic tactile sample of the texture49
since tactile sensors only capture regional stimuli. Manfredi et al. (2014) found that the vibrations elicited50
during the interaction carries information about the microgeometry of fabric surface and mechanical51
properties of the tactile sensor itself. In Fishel and Loeb (2012); Khan et al. (2016); Kaboli and Cheng52
(2018); Kerr et al. (2018) sliding motions are conducted in different manners to collect vibration signals53
about the fabric textures. Particularly, Fishel and Loeb (2012) shows that changing exploratory actions can54
affect the received tactile signals and leads to different classification performance. However, how changing55
the motion parameters can affect the performance of the perception and fabric classification has not been56
thoroughly investigated.57

1.3 Goals58

Since tactile decoding and perception is tightly bonded with the specific sensors being used, one of the59
very first objectives is to construct a robust perception system that could extract certain tactile features60
from the tactile signals. The tactile features are desired to embed some peculiar information to the fabrics,61
independent of the variation of sliding parameters during the acquisition stage. The study Weber et al.62
(2013) on the tactile perception of human beings indicates that certain invariant tactile features can be63
retrieved by touching and sliding/rubbing. Our research also serves to verify the feasibility of a similar idea64
on a robotic system.65

In reality, it is ideal to have the capability of adapting the robotic behaviour to compensate for the66
limitation of the sensing technology (e.g., bandwidth, resolution, geometric structures) and the perception67
algorithm since the mechatronic system itself is usually unmodifiable. Adaptation first requires an overall68
understanding of correlations between motions and tactile signals. Our study aims to give a general picture69
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so that in the task of fabric classification via sliding, performance can be improved by simply adjusting the70
motion parameters.71

We will also testify to the expansibility and scalability of the algorithm. Expansibility suggests that the72
algorithm applies to textures other than fabrics on the classification task, while scalability means that the73
system can incorporate tactile information from new fabrics in an iterative approach.74

Beyond the classification task, another purpose of the research is to search for a potential parametric75
representation of the textures in the feature space that can be used further in a more complex system for76
fabric handling and manipulation.77

1.4 Outline78

Inspired by how humans try to identify fabrics with their skin solely, via sliding and rubbing fingers on79
the fabric surface, we command a robotic arm equipped with a capacitive tactile sensor on its end-effector80
to grip the fabric and slide. Different from some existing attempts of texture identification in Fishel and81
Loeb (2012); Khan et al. (2016); Kerr et al. (2018) that fix the inspectee material on a motorized platform82
where the sensor is stationary, our vibration signals are acquired during a dynamic process where fabric83
stripes are free to stretch and bend. We allow the 7-DOF robotic arm to carry out the exploratory motions84
in a large area, similar to the experiments in Bauml and Tulbure (2019) and Taunyazov et al. (2019), which85
resembles the daily scenario where humans touch to feel the fabrics.86

Unlike Fishel and Loeb (2012); Khan et al. (2016) innovating on their features according to either physics87
or statistics, our algorithm seeks emerging frequency features by using an incremental principal component88
analysis (IPCA) method. It requires very little data for bootstrap compared to more complex neural network89
approaches and the explainability can be easily represented by the ratio of variance.90

Our methods are tested upon a specific capacitive tactile sensor, but the algorithm per se is generic and91
applies to any mono-modality multi-channel tactile sensor to extract frequency features. With the extracted92
features, fabric textures can be classified by training a simple k-NN classifier.93

We show that the proposed method is capable of decoding tactile signals and classifying the fabrics under94
different sliding pressures and speed settings. Very few frequency features suffice to represent the perceived95
fabric textures. An incremental IPCA method is applied to allow for iterative update of the feature extractor96
so that tactile information of new fabrics can be fused to improve the classification performance. Results97
imply that the distinguishability of fabrics not only depends on their microgeometry textures but also the98
physical properties including elasticity and friction coefficient that can only be perceived during a dynamic99
interaction. In the cases of ambiguity to classify certain fabrics, it is possible to increase the confidence and100
accuracy by adjusting the sliding speed and pressure to an optimal setting specific to those fabrics.101

2 RELATED WORKS

The problem of discriminating textured objects or materials with the support of tactile sensing has been102
widely investigated in the literature. Most of the previous works integrate tactile sensors into robot103
end-effectors which are controlled to interact with the objects of interest. Tactile data collected during104
the interaction are then processed to extract features for texture classification using machine learning105
techniques.106

The type of features extracted from tactile data usually depends on the sensing technology adopted.107
There are two major trends of methods in the task of texture classification. The first either employs a108
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high-resolution vision-based sensor (Li and Adelson, 2013; Luo et al., 2018; Yuan et al., 2018) or crops109
the time-series data (Taunyazov et al., 2019) to construct tactile images, and directly encode the spatial110
textures by neural networks (NNs). While the second type of method collects the tactile signals using111
sensors sensitive to vibrations. Tactile signals are first transformed into the frequency domain and then112
both temporal and frequency features are extracted to identify textures as in Fishel and Loeb (2012); Khan113
et al. (2016); Kerr et al. (2018); Massalim et al. (2020).114

2.1 Spatial Features as Images115

Li and Adelson (2013) directly uses a vision-based GelSight sensor to classify 40 different materials.116
The high-resolution tactile image generated by the sensor captures geometric information on the texture of117
the specific material. In particular, the authors proposed a novel operator, the Multi Local Binary Patterns,118
taking both micro and macro structures of the texture into account for feature extraction.119

Instead of classifying the exact type of material, the work proposed by Yuan et al. (2018) aims at120
recognizing 11 different properties from 153 varied pieces of clothes using a convolutional neural network121
(CNN) based architecture. Those properties are both physical (softness, thickness, durability, etc) and122
semantic (e.g. washing method and wearing season). Moreover, a Kinect RGB-D camera is also used to123
help explore the clothes autonomously. The results showed great potential in the application of domestic124
help for clothes management.125

Alternatively, Taunyazov et al. (2019) proposed an interaction strategy alternating static touches and126
sliding movements with controlled force, exploring the possibility to extract spatial features from a127
capacitive sensor using a CNN-LSTM (long-short-term memory) architecture. Experiments are performed128
on 23 materials using a capacitor-based skin covered on the iCub forearm, reaching 98% classification129
accuracy. Capacitive tactile sensors are usually more suitable for dexterous manipulations compared to130
vision-based sensors due to their compact sizes and less deformable contact surfaces. The possibility to131
apply a vision-based tactile perception method eases the usage of the capacitive sensors.132

Bauml and Tulbure (2019) presented another interesting research in this category. The proposed method133
makes use of the trendy transfer learning techniques to enable n-shot learning for the task of texture134
classification. The capability of learning from very few samples by taking advantage of a pre-trained dataset135
can be very handy for deploying tactile sensing systems on new robotic systems.136

2.2 Temporal and Frequency Features137

Fishel and Loeb (2012) conducted a comprehensive research on texture classification using BioTac.138
Unless most of the other works, their features are computed with specific physical meanings as traction,139
roughness and fineness. Several combinations of sliding speeds and normal forces are also tested to enable140
a Bayesian inference.141

Khan et al. (2016) described a similar experiment with hand-crafted statistical features to identify textures.142
The research employs a custom finger-shaped capacitive tactile sensor, which is mounted on the probe of a143
5-axes machine and controlled to slide on a platform covered with the fabric. Both applied pressure and144
velocity are controlled for the sliding motions. The statistical features, computed both in frequency and145
time domains, are used to train a support-vector-machine (SVM) classifier to discriminate 17 different146
fabrics.147
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Another similar work is followed by Kerr et al. (2018) where IPCA based feature extraction is performed148
on the tactile data. Both pressing and sliding motions are applied to acquire data and the several different149
classifiers are evaluated.150

A recent work Massalim et al. (2020) tries to not only identify textures but also detect slip and estimate the151
speed of sliding, using an accelerometer installed on the fingertips of the robotic gripper to record vibration.152
This work combined multiple deep learning techniques to achieve a decent classification accuracy.153

2.3 Summary154

Compared to some of the literature, our work differs mostly in two aspects:155

1. the design of the experiments simulate a realistic application scenario where very few constraints are156
applied on the fabrics and the robotic sliding157

2. the perception system is very lightweight computationally, which can be implemented on a modern158
quad-core consumer PC; it tries to extract some intrinsic frequency features without the necessity159
to train on a large dataset (like other deep learning techniques) and the quality of these features are160
self-explanatory161

3 METHODS

This section details the signal decoding and perception algorithms. We describe the pipeline of signal162
processing and feature extraction that maps the original tactile signals in large matrix form to low163
dimensional vectors and introduce a weighted k-NN classifier to identify the fabrics in the feature space.164

A tactile sensor usually consists of several taxels (the minimal tactile sensing unit like pixels for cameras)165
that only perceive local stimuli and generate multi-channel signals over time. We follow a feature extraction166
method based on incremental principal component analysis (IPCA) to gradually extract the frequency167
features during the process of sliding and touching different types of fabrics. The feature extractor168
first transforms a tactile time series into a multi-channel frequency spectrum in the format of matrix169
and resamples the frequency spectrum to a fixed size. After that, the frequency spectrum (as a matrix)170
is vectorized (flattened). After collecting multiple tactile measurements and transforming them all to171
resampled, vectorized frequency spectra, we stack them together to form a large data matrix. Then we172
apply IPCA to project the data matrix to lower-dimensional vectors. With the condensed representation of173
tactile measurements, it is possible to classify fabric textures by training a k-nearest neighbours (k-NN)174
classifier.175

3.1 Signal Processing176

A tactile measurement, M-channel time series X , represented in the matrix form177

X =


x1(0) x2(0) ... xM (0)

...
... ...

...
x1(t) x2(t) ... xM (t)

...
... ...

...
x1(N − 1) x2(N − 1) ... xM (N − 1)

 ∈ RN×M (1)
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is first normalized to178

X̂ =


x1(0)−x̄1

σ1

x2(0)−x̄2
σ2

... xM (0)−x̄M
σM...

... ...
...

x1(N−1)−x̄1
σ1

x2(N−1)−x̄2
σ2

... xM (N−1)−x̄M
σM

 ∈ RN×M (2)

using the channel mean and standard deviation X̄ = [x̄1 x̄2 ... x̄M ] ∈ RM and σ =179
[σ1 σ2 ... σM ] ∈ RM . Normalization brings the sensor signals acquired with different Pressure180
settings into the same scope such that comparative analyses are directly available. The mean-deviated and181
scaled tactile measurement is then transformed into the frequency domain by applying Fourier transform182
channel-wise, taking only the magnitude to gain the real frequency-spectra matrix Y defined by183

Y =

 y1(0) y2(0) ... yM(0)
...

... ...
...

y1(N−1) y2(N−1) ... yM(N−1)

 ∈ RN×M (3)

where each entry ya(b) is given by184

ya(b) = ||
N−1∑
n=0

xa(n)− x̄a
σa

e−i2πb n
N ||. (4)

Resampling is necessary here to unify the sizes of different spectra as the scopes of the frequency185
spectra are dependent on the length of the original time series, which can vary among measurements186
since the experiments are conducted with several different sliding speeds. The re-sampled frequency187
matrix Y ∈ RNr×M , where Nr is a predefined resolution constant, is then vectorized (flattened) into a188
frequency-spectra vector y⃗ ∈ RNrM .189

Multiple tactile measurements acquired in sliding motions, as vectors of the same dimension now, can be190
stacked together to form a new observation matrix191

O = [y⃗1 y⃗2 ... y⃗K ] ∈ RNrM×K (5)

containing all the frequency vectors, where K is the total number of measurements. We then resort to192
principal component analysis (IPCA) on the observation matrix O for dimensionality reduction and feature193
extraction.194

3.2 Feature Extraction195

IPCA as an unsupervised method is well suitable for dimensionality reduction in our problem. It preserves196
as much as possible the information contained in the original data matrices by minimizing a reconstruction197
loss. We apply the incremental IPCA (IPCA) introduced in Ross et al. (2008) to fit the training dataset O.198

Denoting the mean-deviated form of O as Ô. The goal is to find a feature matrix Q ∈ RD×K with199
D ≪ NrM such that the the total reconstruction error200

||Ô − ΦQ||F (6)
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is minimized. Frobenius norm is chosen considering its fast and easy computation, while other similar201
matrix norms also function the same for this optimization setup. Here Φ ∈ RNrM×D is a projection matrix202
mapping a frequency-spectra vector y⃗ ∈ RNrM to a new feature vector q⃗ ∈ RD.203

Given n new measurements pre-processed and vectorized, formatted as a matrix204

A = [ ⃗yK+1 ⃗yK+2 ... ⃗yK+n] (7)

A brutal update for these n new data requires the computation of singular-value-decomposition (SVD)205
for the mean-deviated form of the augmented data matrix OK+n = [O A], which is not ideal for online206
applications. In the presence of more tactile measurements, the data matrix keeps expanding and traditional207
IPCA will slow down drastically.208

IPCA differs from traditional IPCA in handling new data. Instead of re-computing the SVD for the entire209
augmented data matrix210

ÔK+n = [Ô Â] (8)

where Â is the mean-deviated form of A, only the SVD of the horizontal concatenation of the original and211

the additional data matrix, and one additional vector
√

Kn
K+n(Ō − Ā) are needed. To obtain the SVD for212

the augmented data matrix ÔK+n, first we define213

B = [Ā

√
Kn

K + n
(Ō − Ā)] (9)

and compute214
B̃ = orth(B − UUTB) (10)

where orth performs orthogonalization and215

R =

(
Σ UTB

0 B̃(B − UUTB)

)
(11)

via QR decomposition [U B̃]R
QR
= [UΣA]. Then we apply SVD to R as R SV D

= ŨΣ̃Ṽ T and finally the216
equivalent SVD of ÔK+n = U ′Σ′V ′T is given by U ′ = [UB̃]Ũ and Σ′ = Σ̃; whereas V ′ is not directly217
used in IPCA, it is not calculated explicitly.218

Considering that tactile measurements are acquired incrementally, the feature extractor can be trained219
upon known data. During the procedure where more new tactile measurements are presented, the IPCA220
based feature extractor can first map the new data matrices to feature vectors to perform classification, and221
then partially fit the newly sampled data to incorporate the information and improve the performance. The222
application of the incremental method enables the feature extractor to adapt to the growing database fast223
and efficiently.224

3.3 Identification and Classification225

In the lower dimensional feature space, a weighted k-NN classifier (Dudani, 1976) can be fitted upon226
training dataset. The trained classifier predicts the label of a query point in the D-dimensional feature space227
using distance-weighted voting by its k nearest points.228
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Given a feature vector q⃗′ representing a new tactile measurement mapped in the feature space, to predict229
its label with all the other points, we define N as the set of k nearest points to the query point q⃗′ and230
compute231

y′ = argmax
v

∑
(qi,y⃗i)∈N

wiI(v = y⃗i) (12)

where wi =
1

d(q′,qi)
and I is the indicator function232

I(v = yi) =

{
1 if qi belongs to class i
0 otherwise

4 EXPERIMENTAL SETUP

4.1 CPM-Finger Capacitive Tactile Sensor233

Our research employs a capacitive tactile sensor CPM-Finger (see Figure 1) introduced in Denei et al.234
(2017), developed for fabric detection and manipulation. It collects the vibration during the interaction235
with the object. Compared to other common types of tactile sensors including piezoelectric/piezoresistive236
sensors, triboelectric sensors and optic sensors, the capacitor-based sensor has a wider dynamic range and237
is more robust, suitable for scanning (or sliding on) objects and its compact size allows easy integration238
into most robotic systems (Al-Handarish et al., 2020; Nicholls and Lee, 1989). The sensor contains 16239
small capacitors (see Figure 2), i.e., taxels (as pixels for visual sensor) that convert physical deformation240
of the elastomer to the variation of capacitance. The contact surface is covered by Spandex as a protective241
fabric. The sensor is based on the fact that, for a parallel-plate capacitor, the capacitance can be described242
by243

C = ϵ
A

d(P )
(13)

where ϵ is the permittivity of the dielectric middle layer, A is the overlap area of two parallel plates and244
d(P ) is the distance between the two plates as a function of the applied pressure P . At the sampling rate245
of 32Hz, the sensor signals in one second can be arranged into a matrix X ∈ R32×16 (see Figure 5 for246
an example). For each capacitor there is a baseline value output from the capacitance-to-digital converter247
(CDC) at zero pressure. The value has been subtracted from the sensor reading at the firmware level such248
that the output sensor signals share the same value ranges and rest at 0 without pressure applied. For that249
reason, the sensor signals do not convey an exact physical meaning and we can comfortably omit the unit250
µF and carry the values around for simplicity.251

4.2 Robotic Sliding Experiments252

The sliding experiments are implemented with a Franka Emika Panda 7DOF robotic arm with a two-finger253
gripper as the end-effector. One CPM-Finger tactile sensor is installed on the gripper to replace the original254
rubber fingertip.255

7 types of fabrics are used for the experiments. We name them as BeigeCotton, BrownCotton, Linen,256
Canvas, Denim, DenimFlex and WovenFabric as shown in Figure 3. They are cropped into 65 cm × 10 cm257
stripes with both ends clipped to an aluminium rack. Fabrics are tensioned roughly to guarantee a vertical258
positioning (see Figure 4), but not over-stretched so that they can still be extended and twisted during the259
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robotic sliding motion. Precise measurement of the fabric tension is beyond the scope of our experiments260
due to following considerations:261

1. It is not always possible to measure the exact tension of the fabrics in the real applications given the262
complex forms of the fabrics;263

2. Nonuniform tension among the fabrics can serve as a testimony of robustness of our methods;264

3. Due to the friction between the protective fabric Spandex and the inspectee fabric, stretching and265
twisting happen during sliding in a hard-to-predict way, preset tension has little indication to the results,266
especially for higher sliding pressure settings.267

The robot gripper is controlled to grip the fabric stripe with constant pressure and slide vertically at a268
constant speed to collect one set (3 samples a set) of tactile signals for each parameter setting (sliding269
up and down in the same velocity are considered as two speeds). The grip pressure is maintained via270
PID control on the closing distance between the fingertips. We capture the average value of the 16 sensor271
readings as an indicator of the grip pressure (Pressure).272

The control command is computed and sent to the robot host controller through a Linux OS patched with273
a realtime kernel.274

4.3 Fabric Slide Dataset275

The data acquisition proceeds as follows:276

1. The robot closes the gripper till a desired Pressure is reached, and holds the Pressure.277

2. The robot moves the gripper vertically with a constant speed downwards and then upwards for a278
distance of 50 cm respectively, in the same velocity. The tactile signals as time series are captured279
during the process and stored in the format of a matrix.280

3. Each pair of sliding parameter setting is repeated 3 times. And then the robot releases the gripper,281
moves horizontally away from the current tested fabric stripes and shifts to the next fabric, till all282
fabrics are tested with the current sliding speed and holding pressure.283

4. The robot repeats the whole sliding experiments from step 1 to 3 with different pairs of control284
parameters, i.e., speeds and Pressure as listed in Table 1, on all fabrics.285

Two types of denim, i.e., Denim and DenimFlex in our nomenclature, fabrics skip through the sliding286
with Pressure 250, and WovenFabric passes through both Pressure 210 and 250, as in these cases, the287
torques required to conduct the sliding motions exceed the maximum payload of the robot due to severe288
folding and twisting of the inspectee fabrics caused by frictional force. With all the other available Pressure289
settings, sliding motions in all 6 speeds are executed. In total 966 samples are collected as matrices in the290
shapes of N ×M where N is dependent on the duration of the sliding motion and M is the number of291
signal channels, i.e., the number of taxels, which is 16 for our CPM-finger sensor.292

5 ANALYSES AND RESULTS

To simulate the scenario where new fabric classes are presented, we follow an iterative process to update293
the feature extractor and test the classifier:294

1. We first randomly select two fabrics, e.g., Canvas and DenimFlex as prior knowledge, i.e., initial295
training classes, to fit the IPCA feature extractor.296
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2. The measurements from the two training classes are transformed into the feature space by the feature297
extractor just trained on them.298

3. Tactile measurements of all the other (unfitted) fabric classes serve as the test datatset. They are299
transformed into feature vectors to testify the classifier.300

4. Randomly pick one unfitted fabric class as a newly presented class to update the IPCA feature extractor301
with partial fitting method. Add the class to the training classes.302

5. Project the data of training classes into the feature space.303

6. Repeat from 3.304

The feature space and the projected data points of our randomly selected training classes, Canvas and305
DenimFlex, in the 3D space (see Figure 6A). Two fabric classes separate apparently, very likely due to306
their intrinsic difference in textures, elasticity and friction, which can also be perceived and discerned with307
human touch with ease.308

Then a new fabric BeigeCotton is presented as a testing class. The tactile measurements of the first test309
class are transformed to 3D feature vectors by the IPCA feature extractor trained solely on the first two310
training classes, to join the feature space where 3 fabrics are presented now (see Figure 6B). The first test311
fabric BeigeCotton intertwines with Canvas in the feature space as they are both in plain knit. The minor312
resemblance in textures put them in a similar region in the feature space. After observing the visualization313
of our new 3-class feature space, we reuse the original tactile measurements of BeigeCotton to partially fit314
our incremental IPCA feature extractor. In the presence of the next new fabric, the feature extractor has315
already been updated to include the fabric class BeigeCotton.316

Similarly, Figure 6CDEF show feature spaces associated with the incremental process of incorporating317
more testing fabrics to the IPCA feature extractor. The visualization of the feature space gives a hint that318
BrownCotton and BeigeCotton can be hard to distinguish under some circumstances; Canvas lies in the319
large common region of other Cottons but it responds to different pressure settings in its own way that320
deviates from BeigeCotton and BrownCotton. Linen demonstrates some essentially different features that321
stand out from other fabrics. The elasticity is much greater than Cotton and Canvas. While the textures on322
the surface are not as smooth and even as other fabrics, it could be the reason that Linen scatters irregularly323
in the feature space. The embrace of Denim and DenimFlex in the feature space is consistent with the324
similarity of the two Denims in textures and elasticity, which again can be verified by human touch.325

With all the tactile measurements projected into the feature space, we split the feature vectors of all classes326
in halves as one training dataset and one testing dataset to fit and test a k-NN classifier taking k = 10.327
First, we show how the number of features D extracted by the IPCA method affects the classification328
performance on the testing set (see Figure 7). Trends of classification accuracy are congruent with the329
change in the ratio of variance explained by D principal components. When D ≥ 7 the classifier reaches330
its limit in our experiments, where classification performance ceases to improve.331

To be consistent with all the 3D visualization, we use a feature extractor of D = 3 principal components332
(PCs). We first show the confusion matrix (see Figure 8) using half of the samples as a training dataset333
and the other half as a testing dataset, to have a rough picture of the classification performance. Entries334
with higher confusion rates are well matched to the fabrics classes that are tangled in the feature space in335
Figure 6F.336

All the above results combined feature vectors sampled with all different sliding parameters specified in337
Table 1. To check how the fabric classes separate for each Pressure setting, we first show the feature spaces338
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corresponding to only one Pressure (while speeds are still mixed) at a time. With the same feature extractor339
trained on D = 3 PCs, the classifier shows a performance fluctuation under different Pressure settings (see340
Figure 9A). The sweet spots fall at Pressure 180 and Pressure 210 where the classifier shows significantly341
better performance. The results coincide with the better segregation of fabric clusters as in Figure 10C342
and in Figure 10D. We also show the 95% confidence ellipsoids to help visualize the change of clustering343
along with the pressure change.344

Since only 4 fabrics can be sampled under the Pressure 250, the results shown in Figure 10E is only for345
reference without being directly comparable to other pressure settings. And hence it is plausible to infer346
that higher holding pressure contributes to better classification of fabrics in the sliding motion. Moreover,347
the slightly better yet negligible improvement in classification in the range of pressures from Pressure 180348
to Pressure 210 indicates a potential saturation of grip pressure, which refers to a sufficiently (maybe fully)349
stretched or even over-stretched condition of the fabric stripes, where fabrics textures are severely distorted350
or even flattened out. Whether a fabric stripe is stretched enough for identification and classification might351
as well be closely related to the resolution and sensitivity of the tactile sensor itself. As can be seen in352
Figure 10A data points of different classes remain in close distances with each other, which implies that353
under low pressures the extracted features carry insufficient information of the fabric classes.354

To better illustrate the effect of grip pressure, we show in Figure 11 of data points sampled under different355
pressures with marks ×, ●, ✚ and F sequentially, in the ascending order. Data points are more scattered356
under larger pressures, which confirms our conclusion in the last paragraph that larger holding pressures357
help to extract more information from the fabrics. However, another notable phenomenon is that features358
are also less consistent (more scattered) under larger pressures. This is very likely caused by the very359
strong interaction between the sensor and the fabric stripes, where the sliding motion is not as smooth as360
it is under lower pressure settings due to augmented frictional forces. In the experiments, due to gravity,361
anisotropic ”fingerprint” of the sensor and fabric folding and shifting, the sensor stutters during the sliding362
motion.363

Finally, we show the effect of different sliding speeds on classification in Figure 9B. Classifications are364
conducted with a one-speed setting (only the magnitudes of speeds are considered). Sliding speeds are365
seemingly irrelevant to the features extracted under our experimental setup. Increasing or decreasing the366
sliding speed alone shows no major impact on the classification performance.367

Given the results shown above, mostly the visualization of the feature space with clusters and the analysis368
of classifier performance concerning the parameters of sliding motions, we make a statistically sound369
inference that a low dimensional (circa ≤ 7D) vector is sufficient to feature the tactile measurement of370
textures sampled from our CPM-Finger tactile sensor. The feature vector is essentially a condensed form371
of the frequency spectrum which not only represents the frequency signature of a fabric texture but also372
embeds some characteristics of the tactile sensor itself. Even at a relatively low sampling frequency of373
32Hz, we can still reach a considerable classification accuracy of 96% for 7 fabrics by using a 7D feature374
extractor.375

The fact that the same processing pipeline has significantly different performance on fabric classification376
when varying sliding motion parameters, supports our assertion (see 1) that, tactile sensing as a contact377
perceptive technique, is conceptually very different from the visual and auditory perception. Tactile sensors378
capture the information in the interaction with the environment, during which the interactive modes (i.e,379
the relative motion between tactile sensors and the objects in contact) and parameters are also reshaping380
the environment, that reversely affect the tactile measurement itself. Whereas for visual and auditory381
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perception, movements of the sensory system are not mandatory to acquire signals and have no direct382
impact on the observable most of the time.383

For a specific sensing technology, varying the parameters of the exploratory motions not only serves to384
enlarge the perceptive field and gain more information but also helps to seek the best interactive conditions385
of the tactile sensors regarding the object. The essence of tactile sensing is a capture of the generated386
deformation during the mechanical interaction between the sensor and the object surface. Changing the387
motion parameters for better classification performance can be viewed as a robotic adaptation to maximize388
the efficacy of the sensors and the perception system, given that specs of the sensors (e.g., sampling rate,389
resolution) and the physical properties of the object are likely unalterable.390

6 DISCUSSION

In this study, we focus on the problem of fabric classification only. However, it is natural to question391
whether the same methods apply to the classification of general materials. Some preliminary results of392
the experiments on a 3D printed polylactic acid (PLA) board with two types of Boards (with 2 mm and393
10 mm grilles respectively, see Figure 3H and Figure 3I) show that using the feature extractor proposed394
in 3.2, trained on all fabric samples, the tactile measurements of the PLA board can be transformed into395
the same feature space (see Figure 10F). It accordingly seems that our proposed methods may also be396
promising in classifying non-fabric materials. The first step to extend our research will be simply adding397
more materials in the forms that are suitable for the same sliding motions. In that case, we can reach a398
more comprehensive understanding of whether for capacitive tactile sensors, the frequency spectrum alone399
suffices to feature a general texture.400

Readers may also argue that the k-NN classifier might not be the best performer in material classification401
in our problem. A comparison between different methods including artificial neural network classifiers,402
decision tree classifiers, naive Bayesian classifiers, etc., can bring a better idea of the classification accuracy.403
But what we present in this study, beyond the results of classification itself, most importantly, is the fact404
that even a single modality tactile sensor at a low sampling frequency is already capable of classifying405
fabric materials by using a simple sliding motion, to a reasonable good accuracy (90% - 96%) with no406
more than 7D feature vectors. This implies the great potential of tactile sensing in similar tasks of object407
identification and classification.408
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FIGURE CAPTIONS

Sliding Parameters
Speed (mm/s) Pressure
10 120
20 150
50 180
100 210
120 250
150 N/A

Table 1. Combinations of sliding parameters are chosen from this table.
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Figure 1. Illustration of CPM-Finger tactile sensor (Denei et al., 2017).
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Figure 2. The top and bottom view of the sensor circuit board. The side with the pressure sensors is in
contact with the objects during experiments.
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Figure 3. Fabric samples (A) BeigeCotton, (B) BrownCotton, (C) Canvas, (D) Denim, (E) DenimFlex, (F)
Linen, (G) WovenFabric, (H) Board2mm, (I) Board10mm. Labels of the fabrics are only for identification
in the experiments, and are not related to the exact material or any trademark.
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Figure 4. Illustration of the experimental setup. The original rubber fingertip of the gripper is replaced
with a CPM-finger sensor. 5 fabrics are fixed on an aluminium rack at one time.
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Figure 5. A sample of the multichannel tactile signals in (A) space domain and (B) frequency domain.
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Figure 6. 3D feature space of the tactile signals acquired sliding trials. (A) to (F) correspond to feature
spaces of 2 to 7 fabrics in the process of iterative feature extraction.
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Figure 7. Number of (IPCA) features VS. Classification accuracy of a k-NN classifier, with k = 10
using half of dataset as a test set. The black line follows the ratio of variance explained by the principal
components.
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Figure 8. Confusion matrix of 7-fabric classification using a k-NN classifier with 3 IPCA features.
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Figure 9. (A) Sliding pressure (as the average value of the 16 taxel signals, unitless) vs. Classification
accuracy (B) Sliding speed vs. Classification accuracy
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Figure 10. Feature spaces (A)-(E) correspond to sliding pressure settings of 120, 150, 180, 210 and 250 of
only fabrics. (F) is the feature space of all fabrics and PLA boards with all different speed and pressure
settings. The 95% confidence ellipsoids are shown to illustrate the intra-class dispersion.
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Figure 11. Samples of Denim and DenimFlex in the feature space. Markers of ×, ●, ✚ and F correspond
to sliding pressures 120, 150, 180 and 210 respectively.
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