
 

 

 

  

Abstract— This paper describes a novel probabilistic 

approach to incorporating odometric information into 

appearance-based SLAM systems, without performing metric 

map construction or calculating relative feature geometry. The 

proposed system, dubbed Continuous Appearance-based 

Trajectory SLAM (CAT-SLAM), represents location as a 

probability distribution along a trajectory, and represents 

appearance continuously over the trajectory rather than at 

discrete locations. The distribution is evaluated using a Rao-

Blackwellised particle filter, which weights particles based on 

local appearance and odometric similarity and explicitly 

models both the likelihood of revisiting previous locations and 

visiting new locations. A modified resampling scheme counters 

particle deprivation and allows loop closure updates to be 

performed in constant time regardless of map size. We 

compare the performance of CAT-SLAM to FAB-MAP (an 

appearance-only SLAM algorithm) in an outdoor environment, 

demonstrating a threefold increase in the number of correct 

loop closures detected by CAT-SLAM. 

I. INTRODUCTION 

ISUAL appearance-based localization is increasingly 

used for loop closure detection in metric SLAM 

systems. Since it relies only upon the visual similarity 

between images from two locations, it can perform loop 

closure regardless of accumulated metric error (a major 

cause of failure for metric SLAM systems [1]). So-called 

‘appearance-based SLAM’ systems represent the 

environment as a series of images from discrete locations, 

and typically calculate image similarity based on extracted 

SIFT [2] descriptors. 

The largest successful appearance-based SLAM 

experiment to date used FAB-MAP [3], and detected loop 

closures on a 1000km road network [4]. Development of 

appearance-based SLAM systems has focused on increasing 

the number of previously visited locations that are 

recognized (high recall) while maintaining low numbers of 

false positives (high precision). Since false positive loop 

closures cause corruption in most mapping systems, 100% 

precision is a common requirement for appearance-based 

loop closure detection [3]. 
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Attempts to improve the precision-recall performance of 

appearance-based SLAM algorithms typically require 

additional information not provided by descriptor-based 

image similarity alone; [4, 5] uses RANSAC to compare 

feature geometry, while [6-8] uses additional laser or stereo 

image sensors for 3D geometric verification. These methods 

still rely on matching two distinct locations using 

appearance alone – they discard the motion information 

between locations (provided by vehicle odometry), and the 

sequence in which the locations were visited.  

This paper presents Continuous Appearance-based 

Trajectory SLAM (CAT-SLAM), a probabilistic approach to 

appearance-based loop closure detection incorporating 

odometric information. CAT-SLAM represents the map as a 

continuous trajectory which traverses all previously visited 

locations, and appearance is represented continuously along 

the trajectory, rather than at discrete points. Loop closure 

hypotheses are developed over a number of updates using a 

Rao-Blackwellised particle filter, which weights particles 

based on trajectory-constrained metric motion information 

and appearance-based observation likelihoods.  

We evaluate the loop closure performance of CAT-SLAM 

in comparison to FAB-MAP using the New College dataset 

[9], previously used for various FAB-MAP experiments [6, 

7]. In this environment CAT-SLAM demonstrates a 

threefold improvement in location recall over FAB-MAP 

with zero false positives. 

II. BACKGROUND 

Comparatively few appearance-based SLAM systems that 

make use of odometric information (but do not perform 

metric SLAM) have been developed. [10] combines a graph 

relaxation algorithm for map-building with appearance-only 

image matching, but relies on visual matches alone for loop 

closure. [11] uses a POMDP to reason about likely loop 

closures based on sequences of location ‘fingerprints’, but 

has only been demonstrated for small indoor environments. 

Promising results for using odometry to perform ‘pose 

filtering’ are shown in RatSLAM [12], which uses a 

biologically-inspired approach to combine appearance and 

metric information. Combinations of FAB-MAP with 

RatSLAM demonstrated long-term mapping with no false 

positive loop closures [13, 14]. 

The following section describes the essential components 

of two SLAM systems from which components of CAT-

SLAM are derived: FastSLAM and FAB-MAP. FastSLAM 
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[15] uses a Rao-Blackwellised particle filter and various 

schemes for particle resampling to perform efficient 

geometric SLAM. By assuming the map stored by each 

particle is correct, observations become conditionally 

independent. The joint state is represented by N particles, 

each with pose history X0:k, weight w and distribution as 

follows: 
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The motion-update of FastSLAM is performed by directly 

sampling from the distribution for each particle: 
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Each particle is assigned a weight based on the importance 

function: 
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The particles are then resampled with replacement after 

normalization, where the probability of selection is 

proportional to the weight w. While this allows FastSLAM 

to store multiple hypotheses and switch between them as 

required, it can suffer from “particle deprivation” if there are 

no particles near the correct hypothesis [15]. Extensions 

have been made to the FastSLAM algorithm; however, even 

these state-of-the-art implementations of FastSLAM rely on 

accurate odometric information to close large loops [1]. 

FAB-MAP [3] forsakes geometric map building and 

instead focuses on performing SLAM in appearance space. 

Each unique location Lk is represented by a set of 

probabilities that each object ei (that creates observation zi) 

is present in the scene. 
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The probability of an image coming from the same location 

as a previous image is estimated using recursive Bayes: 
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where k
Z  is a collection of previous observations up to time 

k, ),|( 1−k

ik
LZP Z  is assumed to be independent from all 

past observations and is calculated using a Chow Liu 

approximation [16]. Observation likelihoods are determined 

using the Chow Liu tree as follows: 
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where r is the root node of the Chow Liu tree and pq is the 

parent of node q. The prior probability of matching a 

location )|( 1−k

i
LP Z  is estimated using a naïve motion 

model. The denominator of equation 5 incorporates the 

probability of matching to all possible locations; to estimate 

if a new observation comes from a previously unvisited 

location the model needs to consider mapped and unmapped 

locations as follows: 
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where M is the set of mapped locations. Since the second 

term cannot be evaluated directly (as it would require 

knowledge of all unknown locations), a mean field or 

sampling estimation must be used [3]. 

III. CAT-SLAM 

In this section we outline our proposed appearance-based 

SLAM system. CAT-SLAM is derived from a ‘trajectory-

based’ interpretation of the SLAM problem. It combines 

aspects of the geometric motion model of FastSLAM with 

the appearance-based observation model of FAB-MAP. As 

with FastSLAM, poses xi are linked by odometry 

information ui; however, observations zi are formed by 

appearance representations rather than metric distances. The 

observation model is formed by a continuous appearance 

model, which calculates the expected appearance along the 

trajectory between two nodes. This model allows the 

calculation of the expected observation zk from arbitrary 

location xk on the trajectory between two previously visited 

discrete locations.  

The history of states is represented by a continuous 

trajectory T, which intersects all previously visited locations 

X0:k: 
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The full history of states is recovered using the continuous 

state x(t) with continuous index t. The particular form of the 

trajectory T is defined by the continuous motion model of 

the vehicle; the simplest case of a linearly interpolated 

trajectory is illustrated as follows: 
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As with appearance-based systems, the map is formed by the 

history of states as follows: 
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The map update is performed by correcting the history of 

states X0:k when a loop closure is detected using a graph 

relaxation algorithm if required. The location distribution 

conditioned on the continuous trajectory T is therefore: 
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where Z0:k is the full history of observations and U0:k the 

history of control inputs. The distribution is approximated 

using N particles, each with weight w, position on the 

trajectory xk, continuous trajectory index t and binary 

particle direction d: 
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Figure 1 illustrates the 4 stage update process of the CAT-

SLAM particle filter: 
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Fig. 1 – Update process of CAT-SLAM particles. a) Particles )(

1

i

k −
x are 

constrained to the trajectory between previously visited locations x0:k. b) 

Proposed particle locations )(ˆ i

k
x are sampled from the motion model with 

control input uk. c) The updated position on the trajectory )( i

k
x is found at 

maximum likelihood location of distribution ( ))(ˆ|
i

kk
P xx . d) The particle 

weight is updated using the motion likelihood and observation likelihood 

( ))()(
|

i

k

i

k
P xz , where zk is generated using a continuous appearance model. 

A. Trajectory-based Pose Filtering 

The proposal distribution for the trajectory-based particle 

filter is given by the vehicle motion conditioned on the 

trajectory T:  
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This method permits the use of a nonlinear motion model 

but ensures all particles remain constrained to the trajectory 

of previously visited locations. The particle update is 

performed by first generating a proposed pose 
k

x̂  using the 

nonlinear vehicle model f given control input uk with 

additive Gaussian noise wk, based on direction d: 
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This allows particles to propagate in both forward and 

reverse directions along the trajectory. The proposed state 

covariance is generated by linearizing the motion model at 

the proposed state location with noise covariance Qk:
 

 
( )

u

ux
QΣ

δ

δ
k

i

ki

k

i

kk

i

k

i

k

f
JJJ

,
,

)(

1)(T)()()( −==  (15) 

From this, a distribution over all possible states can be 

represented using the standard multivariate Gaussian: 
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The location of the particle on the trajectory is found by 

searching the trajectory for the continuous index t for which 

the above distribution is maximized: 
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From this index the pose of the particle is set to the 

maximum likelihood pose on the trajectory relative to the 

current pose: 
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The maximum motion likelihood ( )
k

P xx ˆ|  is stored for use 

in particle importance weighting. 

B. Continuous Appearance Model 

The location representation for each particle is extended 

from equation 4 to represent appearance continuously 

between discrete observations as follows: 
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The method of generating these interpolated appearance 

representations is dependent on both the continuous vehicle 

motion model and the camera model. For the linear case of 

equation 9 the continuous representation of appearance is 

generated by interpolating between two successive discrete 

observations: 
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The set of objects ei that form the appearance representation 

must be derived from training data in a similar environment 

to the test environment [3]. 

C. Particle Weighting and Resampling 

The importance weighting of the particles combines the 

observation likelihood of FAB-MAP using the continuous 

representation of appearance with the motion prior of 

FastSLAM conditioned on the trajectory. The proposed 

weighting of each particle is as follows: 
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The observation likelihood makes use of the Chow Liu 

distribution from equation 6 at location t on the trajectory: 
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The leftmost part of equation 22 is calculated as follows: 
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where ( )
qpqq

zsezP ,| =  is the detector probability and 

( )( ))(| i

i
tseP x=  the continuous appearance representation 

defined in equation 20. The motion prior is the maximum 

likelihood point of the motion distribution along the 

trajectory as found in equation 17: 
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To represent the likelihood of a location not on the 

trajectory, an additional particle u representing an 

‘unknown’ state is weighted as follows: 
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These two distributions can be approximated using 
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information from training data as follows: 
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where zavg represents an ‘average’ observation and uavg an 

‘average’ control input, found by averaging all observations 

and controls in the training data set or by using the sampling 

method in [3]. Without this ‘unknown’ state the particle 

distribution represents pure localization; the probability of a 

state not on the trajectory is otherwise assumed to be zero. 

The proposed weight of each particle is normalized as 

follows: 

 
u

k

N

j

j

k

i

ki

k

ww

w
w

ˆˆ

ˆ
)(

)(

)(

+
=
∑

 (27) 

The particles are resampled when the effective sample size 

(ESS) [17] falls below a predefined threshold. The ESS is 

computed as follows: 
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Particles are selected with probability proportional to their 

weight wk using the Select with Replacement method [17]. 

Any particles selected to replace the ‘unknown’ particle are 

sampled to a uniform random location on the trajectory, 

which serves to counteract the effects of particle deprivation: 
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The value of the distribution at particle location xk is 

determined using a spatially selective method: 
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The spatially selective function h(i, j) is defined as follows: 
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The distribution will only reach a probability of 1 at a 

location if all particles are within predefined distance r of 

that location (causing the numerator to sum to 1), and the 

‘unknown’ location weight is equal to 0. Evaluating the 

distribution can be performed in constant time proportional 

to the number of particles regardless of the number of 

previously visited locations. 

IV. EXPERIMENTAL METHOD 

A. Dataset 

The dataset used for this evaluation of CAT-SLAM against 

FAB-MAP is presented in [9]. It comprises over 7000 

panoramic images from a Point Grey Ladybug2 camera with 

accompanying wheel odometry (from shaft encoders on the 

Segway RMP) and GPS data logged at 5Hz. The route taken 

is a 2.5km tour of the grounds of New College, Oxford, with 

multiple traversals of each location in both forward and 

reverse directions.  

Ground truth is provided by GPS locations; however, the 

signal is degraded in many locations throughout the dataset 

(particularly through a tunnel between courtyards). 

Approximately 45% of the panoramic images have an 

associated valid GPS position; data for the precision recall 

curves are based only on these images for which ground 

truth is available. 

B. Algorithm Details 

The FAB-MAP implementation used for comparison is 

derived from [3]. Enhancements presented in [4] primarily 

reduce computation time and increase scalability, and are not 

required for the comparatively small dataset used for this 

experiment. The geometric post-verification presented in [4] 

is not used for either algorithm. 

Training data for the codebook and Chow Liu tree were 

provided by a downsampled 1000 image version of the main 

dataset with repeated sections removed. The codebook was 

generated using modified sequential clustering [18] yielding 

6856 visual words. The ‘average’ observation zavg was 

generated using the mean field approximation in [3].  Table 

1 presents a summary of the constants used in both 

algorithms. 

V. RESULTS 

A. Precision-Recall Curve 

The primary performance metric is the precision-recall 

curve. Expected matches are defined as previously visited 

GPS locations within 7.5m of the current location; a true 

positive results if the maximum likelihood location is above 

the hypothesis threshold and the estimated GPS location is 

within 7.5m of the current location. For use in loop closure 

detection for metric SLAM, the desired performance is high 

recall at 100% precision. 

TABLE 1 

SUMMARY OF CONSTANTS USED IN ALGORITHMS FOR EXPERIMENTS. 

FAB-MAP  

)0|1( ==
ii

ezp   0 

)1|0( == ii ezp   0.61 

)Z|(
1−k

newLp   0.9 

CAT-SLAM  

)0|1( == ii ezp  0 

)1|0( == ii ezp  0.61 

Translation Uncertainty σy 0.05 meters 

Rotation Uncertainty σθ 0.05 radians 

Number of Particles N 2000 

ESS Threshold 0.25 

Distribution Radius r 2.5 meters 

 

The precision-recall curve for both FAB-MAP and CAT-

SLAM is shown in Figure 2. The result for FAB-MAP is 

consistent with that presented in [7] for the same dataset, 

achieving 16% recall at 99.5% precision and 12% recall at 

100% precision. CAT-SLAM reports 38% recall at 100% 

precision, more than 3 times that of FAB-MAP. For loop 

closure detection in metric SLAM this is a clearly superior 

result. The trajectory-matching nature of CAT-SLAM 
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provides increased false positive rejection whilst increasing 

recall over a sequence of matching observations. 

Below 95% precision FAB-MAP provides superior recall 

rates to CAT-SLAM. Since FAB-MAP can form a location 

hypothesis from a single frame, it can often recognize 

isolated loop closures (such as approaching a previously 

visited location from a new direction) where CAT-SLAM 

cannot. By requiring a sequence of supporting visual 

information over a number of updates, CAT-SLAM trades 

isolated loop closure detection for increased false positive 

rejection. 

B. Frame Recall Sequence 

Figure 3 shows the frame recall sequence graphs for both 

FAB-MAP and CAT-SLAM. When a location is revisited 

multiple times, illustrated in the inset at 1000 frames, FAB-

MAP recalls frames from all previous traversals, whereas 

CAT-SLAM matches only to a single previous visit. 

Maintaining multiple partial location hypotheses 

simultaneously reduces FAB-MAP’s ability to match a 

single location with certainty. 

The insets at 4500 frames in Figure 3 illustrate the process 

of matching along a long sequence of revisited locations. 

CAT-SLAM maintains a strong location hypothesis 

throughout the path, while FAB-MAP, which uses only a 

naïve motion model, does not maintain strong matches 

across the full loop closure sequence. 

C. Loop Closure Detection 

Figure 4 shows loop closures detected by both systems at 

100% precision projected onto the GPS ground truth (at 

locations where GPS signals were valid). At this precision, 

FAB-MAP recalls only a small fraction of possible loop 

closures; large visually indistinct areas around (120, 20) are 

not recognized even when revisited twice. The inset in 

Figure 4 a) reveals inconsistent matching even in visually 

distinct locations. The advantages of performing trajectory-

based matching in CAT-SLAM are particularly evident in 

Figure 4 b). Parts of the trajectory that are not visually 

distinct in isolation are correctly localized given a sufficient 

number of partial matches in the correct order over a period  
 

a)  

b)  

Fig. 3 – Frame recall sequence graphs for a) FAB-MAP and b) CAT-

SLAM. Darker colors indicate higher likelihoods. Insets illustrate sequential 

frame recall performance. 

a)  

b)  

Fig. 4 – Loop closures projected on GPS ground truth for a) FAB-MAP and 

b) CAT-SLAM. Lighter green points indicate true positives and darker blue 

points false negatives. Insets illustrate sequential loop closure performance. 

 

 

Fig. 2 – Precision-recall curve for FAB-MAP and CAT-SLAM on the 

New College dataset.  
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of time. The inset illustrates the sequential loop closures in 

detail; in contrast to FAB-MAP, almost every location is 

correctly matched to a previously visited location in the 

correct order. 

VI. DISCUSSION 

Appearance based SLAM systems, such as FAB-MAP, 

represent the map using the appearance observed at discrete 

locations. CAT-SLAM models the appearance at all 

locations along a continuous trajectory, which allows 

odometric information to be used to improve the recall of 

loop closure events. By making use of odometric 

information that appearance-based SLAM systems typically 

discard, spurious false positives can be rejected, and location 

hypotheses can be maintained with only partial visual 

matches. The results of the mapping experiment 

demonstrated that the combination of both appearance and 

motion information in CAT-SLAM provides a clear 

advantage over appearance-based SLAM systems in terms of 

recall at 100% precision. In this case CAT-SLAM provided 

three times the recall rate of FAB-MAP at 100% precision. 

 Since CAT-SLAM is built upon the same underlying 

appearance-based matching system as FAB-MAP, its 

performance at identifying an initial loop closure is 

approximately equal. Due to the trajectory following 

properties of the particles, CAT-SLAM can maintain a 

hypothesis across a number of frames when supporting 

visual information above the hypothesis threshold is not 

available for all frames, as is required for FAB-MAP. This 

greatly increases the recall rates as entire sections of 

trajectories can be matched.  

However, the requirement for a sequence of familiar 

visual and odometric information reduces the speed at which 

CAT-SLAM is able to generate a new location hypothesis. 

While FAB-MAP can localize using only a single frame, 

CAT-SLAM requires a number of particle update (and 

possibly resample) stages; revisiting short sections of a path 

(such as crossing an intersection from a different approach) 

may not be detected by CAT-SLAM.  

A. Future Work 

We are currently modifying the method to accommodate 

holonomic vehicles which do not necessarily revisit a 

previously traversed trajectory with an identical orientation, 

Explicit decoupling of orientation with trajectory will be 

required to support holonomic vehicles and similar 

platforms. We are also working to improve interpolation of 

appearance along the trajectory using a more sophisticated 

method that incorporates feature-based optical flow without 

evaluating 3D feature geometry. The next stage of the 

project is to generate topological maps that can be used and 

maintained for autonomous navigation tasks. 
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