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Abstract— Appearance-based localization can provide loop 
closure detection at vast scales regardless of accumulated metric 
error. However, the computation time and memory requirements 
of current appearance-based methods scale not only with the size 
of the environment but also with the operation time of the 
platform. Additionally, repeated visits to locations will develop 
multiple competing representations, which will reduce recall 
performance over time. These properties impose severe 
restrictions on long-term autonomy for mobile robots, as loop 
closure performance will inevitably degrade with increased 
operation time. In this paper we present a graphical extension to 
CAT-SLAM, a particle filter-based algorithm for app earance-
based localization and mapping, to provide constant computation 
and memory requirements over time and minimal degradation of 
recall performance during repeated visits to locations. We 
demonstrate loop closure detection in a large urban environment 
with capped computation time and memory requirements and 
performance exceeding previous appearance-based methods by a 
factor of 2. We discuss the limitations of the algorithm with 
respect to environment size, appearance change over time and 
applications in topological planning and navigation for long-term 
robot operation. 
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I.  INTRODUCTION 

Appearance based mapping provides the means to create 
useful topological and metric maps on resource limited robots 
by using appearance signatures to identify places, rather than 
relying on accurate metric sensing. Appearance based methods 
are popular as a method of detecting loop closure in range 
based metric maps [1, 2], and also for generating complete 
topological maps that can be used for path planning and 
navigation [3]. Appearance may refer more broadly to a robot’s 
sensor signatures [4], but most often refers to a snapshot image 
of a location from a camera mounted on the robot. 

The computer vision community has provided much of the  
initial impetus in the advent of appearance based SLAM. 
Advances in image retrieval techniques, such as visual bag-of-
words [5], have produced impressive results, but there is an 
opportunity to take advantage of the robotic context of the 
appearance based mapping problem. Robots on the move 
typically have readily available odometric information, or can 
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easily derive odometry from visual information. The 
incorporation of a motion model into the image retrieval 
process has the potential to greatly enhance the performance of 
an appearance based system. In CAT-SLAM [6, 7], the local 
movement information of the robot is fused with appearance 
information using a particle filter to dramatically improve the 
recall of location over the use of appearance information alone. 

In this paper, we address the problem of using appearance 
based methods when revisiting the same location multiple 
times. Typical appearance-based methods have linear growth in 
the number of representations as locations are re-visited over 
and over. Consequently, both computation time and memory 
usage have unbounded growth over time. This problem is 
compounded with a corresponding fall in recall performance as 
multiple representations of a single place compete to be the 
“correct” or best representation.  

The new method, called CAT-Graph, uses a combination of 
visual appearance and local odometry data as in CAT-SLAM, 
but fuses multiple visits to the same location into a topological 
graph-based representation. Localization is performed by 
propagating particles along the edges in the graph using local 
motion information and updating particle weights based on 
local appearance information. Mapping is performed by adding 
new motion and observation information to the graph as the 
robot visits new locations. Locations that are revisited are 
explicitly connected to the most recent location, and particles 
can traverse these connections to simultaneously evaluate 
multiple representations of a single place. The number of nodes 
in the graph is limited by a pruning scheme that maintains the 
map at constant memory requirements while minimizing 
information loss and maintaining performance. 

Importantly, the algorithm does not rely on global metric 
information, or attempt to relax the measurements between 
nodes for global metric consistency. Instead, the topology 
maintains relative representations between nodes to provide 
local metric information to provide improvement in recall 
performance. We illustrate that global metric accuracy is not 
required to incorporate appearance and motion into our 
mapping and localization algorithm. 

The paper proceeds with a review of recent work in 
appearance-based mapping and localization systems, before 
presenting the details of the CAT-Graph algorithm. The 
performance of the algorithm is demonstrated using the well-
known New College dataset [8], illustrating marked 



 

 

improvements in recall performance with capped memory and 
computation costs. 

II. RELATED WORK 

Graphical representations in metric SLAM have been 
studied extensively for many years [9], and pose-graph 
optimization remains an active area of research [10, 11]. 
GraphSLAM [12] and other well-known topological SLAM 
methods form a pose graph of observations connected by edges 
constrained using relative motion information. However, the 
goal of these graphical methods is to create an optimal metric 
map in a global Euclidean frame. The use of relative 
representations without global embedding has been explored in 
the VO community [13], where only local metric accuracy is 
required. Notably, [14] combines local relative geometry 
without a global frame with topological appearance-based 
localization using FAB-MAP. 

A number of recent algorithms in the field of probabilistic 
topological mapping approach loop closure and map 
construction as two parts of the same problem. The approach of 
[15] finds the optimal set of local metric and appearance 
information in the current map that best matches the current set 
of observations and local motion. [16] describes a system 
where both local metric maps and topological position are used 
to determine the current location within the hybrid map. A 
general formulation of this approach is presented in [17] using 
a Rao-Blackwellised particle filter across a probabilistic 
topology. However, these approaches have only been 
demonstrated in small environments. 

Appearance-based localization systems do not typically 
address data association when revisiting locations multiple 
times, instead creating multiple representations for each 
location. [18, 19] describes a data association procedure upon 
loop closure detection, but the later approach adopted in [20] 
simply adds multiple representations. Large scale appearance-
based localization is typically only demonstrated on trajectories 
that only feature one loop closure for each location [21], which 
does not address the persistence problem. Attempts to improve 
the recall performance of appearance-based SLAM algorithms 
such as FAB-MAP typically require additional information not 
provided by descriptor-based image similarity alone; [1] uses 
RANSAC to compare feature geometry, [6] requires vehicle 
odometry information and [22] uses additional laser or stereo 
image sensors for 3D geometric verification.  

Constant computation time and memory requirements for 
mapping systems have been addressed most extensively in the 
metric mapping domain. Submaps have been used to achieve 
constant time map convergence in the approach by [23], with 
the assumption of repeated robot visits to all parts of the 
environment. Dynamic submaps have also been used to achieve 
a constant map update time in the approach by [24]. Occupancy 
grid mapping approaches typically scale linearly in terms of 
memory requirements with the area of the map: [25] builds on 
the occupancy grid approach by forming multiple occupancy 
maps in parallel, each representing a different timescale, and 
demonstrated it over a period of five weeks.  

Relatively little work on constant memory or computation 
time mapping has occurred in the appearance-based mapping 
space. [26] describes a short/long term memory approach to 
limiting visual bag-of-words location growth, and [27] outlines 

a clustering-based approach to identify unnecessary views and 
remove them from the map. [28] presented an information-
based approach to node pruning, which removes nodes based 
on local visual saliency relative to its neighbors. This method 
provided constant-memory loop closure detection using CAT-
SLAM when operating in a fixed size environment, but did not 
address frequent location revisiting. 

In this paper we will explore the challenges of achieving 
constant computation time and memory requirement mapping 
and localization during repeated revisits in a fixed size 
environment using an appearance based system. 

III. ALGORITHM DETAILS 

The proposed algorithm outlined in this section extends the 
linear ‘trajectory-based’ representation of [7] to a generalised 
graph-based representation. The steps of the algorithm for each 
new update of control input uk and visual bag-of-words 
observation zk are as follows: 

1. Add uk and zk to the graph G as node Nk. 

2. Update all particle locations in the graph using 
control input uk; match to best existing location in 
the graph. 

3. Update all particle weights using observation zk: 
match to expected appearance at particle location. 

4. Normalise particle weights along with an ‘unvisited 
location’ weight to represent the likelihood of a new 
place. 

5. Determine if the particles indicate a loop closure has 
occurred; if so, create a link from Nk to the particle 
location. 

6. Resample the particles if necessary. Distribute 
‘unvisited location’ particles to random locations in 
the graph (to combat particle deprivation). 

7. If the number of nodes exceeds the maximum, 
determine node information content and remove the 
least informative node. 

The graph G defines a connected manifold which is locally 
Euclidian but not embedded in a global Euclidean frame. 
Nodes Ni in the graph are associated with observations zi, 
which take the form of a visual bag-of-words representation of 
features visible at location i. Edges eij connect node Ni to Nj and 
are associated with the control input uij (and associated 
covariance matrix Σij) experienced at location i. Localization is 
performed using a set of np particles which represent the 
likelihood of revisiting the previously visited location at 
fractionα (i ) (between 0 and 1) along associated edgeeij

(i )at time 
k. Each particle is also associated with a Boolean direction 
variabled (i ) along with a weightwk

(i ) . 

A. Local Graph Construction 

To perform local operations on the graph we adopt a 
relative representation, which constructs the local 
neighbourhood of the graph from the reference frame of 
particle to a maximum radius of r. A standard non-linear 
motion model f(x,u) generates 3DOF Euclidean changes in 
local pose x from control input u, defined as follows: 

pk

(i )

pk

(i )



 

 

(a) (b)
Figure 1 – Local graph and particle update diagram. (a) illustrates the local 
graph of particle pk

(i ) . The graph is constructed from the reference frame of 
the particle to a fixed radius r. (b) illustrates the local particle update 
procedure for particlepk

(i ) . The particle is locally propagated by control input 
uk (plus additive Gaussian noise wk) to generate proposed local position
Each edge is then tested to find the locationx
Mahalanobis distance to the proposed particle location
matrix Σk. The updated particle location is set to the most likely edge 
fractionα̂ .  

 x = [x y θ ]T , uk = [∆x ∆y ∆

The first step in constructing the local graph is to determine 
the local positionx i

L of node Ni relative to particle
there a breadth-first search (with fringe F) 
all nodes Nn (and associated local positions
and enm within a distance r of particle
Algorithm 1. Note that the first node and associated edge to f
outside distance r is still added to the list 
edges even partly within the local graph radius are included in 
EL. The direction variable d(i) reverses the initial position
represent a particle in a reverse orientation along edge 
sample local graph is illustrated in Fig. 1 (a)

B. Particle Position Update 

To follow a localization hypothesis
propagated along edges in the graph according to the current 
control input uk. The proposed local change in pose
particle is generated by adding Gaussian noise
covariance Σk to the position generated by the non
motion model f(0,uk). However, the proposed current location 
will rarely correspond to a location along an existing edge in 
the local graph, therefore particles are assigned to the most 
likely location along an edge in the local graph
seek a location̂xk

L at fractionα̂ along edge 
minimizes the Mahalanobis distance (using covariance matrix 
Σk) to the proposed particle locationx̂k

( i)

minimum by differentiating the Mahalanobis distance 
edge eij with respect to fraction̂α and solving for 
α̂  is between 0 and 1 a local minimum lies along edge e
weight of each particle is updated based on 
likelihood function P x̂k

L | x̂k

(i ),Σk( ) . This process is 
Fig. 1 (b) and outlined in Algorithm 
computational complexity the graph is only built to the size 
required to include any edge near the most likely particle 
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edge near the most likely particle  

Algorithm 1  Local Graph Construction
function localGraph pk

(i ),r( ) :

N L is a list of nodes and local positions
E L is a list of edges 

x i

L := −α i( ) f 0,uij( ) or xi

L := −α
push Ni,xi

L{ }to fringe F 

until  fringe F is empty 
      pop Nn,xn

L{ } from fringe 

      add Nn,xn

L{ } to N L  (if N

      for  every edge emn andenm

            xm

L := f xn

L,unm( ) orxm

L

            push emn orenm to E L  

            if  xm

L < r then 

                  push Nm,xm

L{ }to fringe 

            else 
                  add Nm,xm

L{ }to N
            end if 
      end for 
end until 
return  N L , E L  

 
locationx̂k

( i ) . The local graph radius is set to the length of the 
proposed pose changex̂k

(i ) plus a multiple 
eigenvalueλ1of covariance matrix 
standard deviations or more). 
scenario for the difference between the proposed pose change
x̂ k

( i ) and nearest edge location

C. Appearance-based Observation 

The observation update weights particles based on the
likelihood of the current observation 
appearance. The likelihood is calculated by comparing the 
current visual bag-of-words 
interpolating between observations 

 
Algorithm 2 Particle Position Update
function updateParticlePosit

( ) ( )kk

i

k Nf Σ+= ,0,:ˆ )( u0x  

N L, E L := localGraph pk−1

( i ) , x̂k

((
for  every edge eij in E L  from 

      solve 
∂

∂α̂
xi

L + α̂ x j

L − xi

L( )


      if  0 ≤ α̂ ≤1then 
            ̂xk

L := xi

L +α̂ x j

L − x i

L( )  

            P x̂k

L | x̂k

(i),Σk( ) := exp(
            store ̂α , i, j for maximum 
      end if 
end for 
αk

( i ) := max
P

α̂, , ek

(i) := max
P

eij,

pk

(i )

pk

(i )

Local Graph Construction 
: 

is a list of nodes and local positions 

−α i( ) f [0 0 π ], uij( ) if d (i ) = 1 

from fringe F 

Nn not already present) 

m linked to Nn do 

:= f xn

L,−umn( )  

 

to fringe F 

N L  

. The local graph radius is set to the length of the 
plus a multiple s of the maximum 

of covariance matrix Σk (typically set to 3 
standard deviations or more). This represents a worst-case 
scenario for the difference between the proposed pose change

and nearest edge locationx̂ k

L . 

Observation Update 

The observation update weights particles based on the 
likelihood of the current observation given the expected local 

The likelihood is calculated by comparing the 
 zk to the appearance generated by 

interpolating between observations zi and zj, given particle  

Particle Position Update 
tion pk−1

( i) ,uk,Σk( ) : 

k

(i ) + sλ1 Σk( ))  

from x i

L to x j

L in N L do 

)
T

Σk

−1 xi

L + α̂ x j

L − xi

L( )



= 0 for α̂  

 

− 1
2 x̂k

L − x̂k

(i ) 
T

Σk

−1 x̂k

L − x̂k

(i ) ( )  

for maximum P 

, ŵk

(i ) := wk−1

( i) max
P

P x̂k

L | x̂k

(i),Σk( )  

pk

(i )



 

 

is at fraction α (i ) on edge eij at time k. The weight of each 
particle is updated as follows: 

 ŵk

(i ) := ŵk

(i )P zk |zi,z j,α
( i)( )  (3) 

The form of this likelihood function is derived from FAB-
MAP and illustrated in full in [7]. 

D. New Place Detection 

Since the particle set pk is constrained to exist only along 
edges e in the graph, they can only represent location 
hypotheses for previously visited locations. To determine if the 
current set of observation and motion information indicates the 
vehicle is in a previously unvisited location we sample from an 
‘unvisited’ locationG not on the graph G.  

 P G |zk,uk( ) = P zk |G( ) P G |uk( )  (4) 

The observation and motion distributions for an unvisited 
locationG can be approximated using information from 
training data as follows: 

 P zk |G( ) P G |uk( ) ≈ P zk |zavg( ) P uavg |uk( )  (5) 

zavg represents an ‘average’ observation and uavg an 
‘average’ control input. These are determined using the mean 
field approximation or a sampling method, both presented in 
[8]. The proposed weighting assigned to a location not on the 
graph is given as follows: 

 ŵk

new = 1
n P zk |zavg( ) P uavg |uk( )  (6) 

The new location weight is denoted by wnew. Note that it is 
not recursively updated; this represents a uniform likelihood of 
departing the graph at any point in time. 

E. Resampling and Loop Closure Detection 

Particle resampling is performed using the Select with 
Replacement method as in [7]. Any particles selected to replace 
the new location weight are sampled to a random edge on the 
graph (with a random direction). This serves to counteract the 
effects of particle deprivation since the proportion of particles 
sampled to random locations on the graph increases as the new 
place likelihood increases, thereby increasing the probability of 
detecting loop closures without requiring evaluation of every 
previously visited location. 

To determine the most likely location hypothesis from the 
distribution of particles a spatially selective method is used, 
equivalent to integrating the probability distribution over a 
local area in the graph. For every particlepk

(i ) , the location 
hypothesisP pk

( i )( ) is equal to the sum of the weights of all 
particles within distance dh of the current particle within its 
local graph. The value of dh is selected based on the desired 
resolution of loop closure detection, and as such the location 
hypothesis is not subject to arbitrary location discretization due 
to local visual saliency. If the maximum location hypothesis 
exceeds a threshold T, a new graph edge is added between the  

(a)    (b)   
Figure 2 – Node information content and node pruning diagram. (a) illustrates 
the calculation of most likely local position̂x i

L at fractionα̂ on the 
hypothetical edge ejk between node Nj and Nk. This location is used to generate 
an expected appearance which is compared to observation zi at node Ni to 
determine the information content Ii. (b) illustrates the connectivity of the 
local graph after node Ni has been removed.  

Algorithm 3 Loop Closure Detection 
for  every particlepk

(i ) do 

      N L, E L := localGraph pk

(i ),dh( )  

      for  every particlepk

( j ) on every edge eij in E L do 

         P pk

(i )( ) := wk

( j )∑  

      end for 
end for 
if  max P pk

( i )( ) > T then 

      create edge eki using uk −αk

(i )uij, Σk + Σij  
end if 

 
current and matched location. This process is outlined in 
Algorithm 3. 

The addition of a new edge on a loop closure event is 
crucial for increasing recall on repeated traverses of a route; it 
allows particles to simultaneously evaluate multiple 
representations of a location while recognising that all 
representations correspond to the same physical location (since 
the local graph construction will connect both locations). 

F. Local Information-based Pruning 

To limit the map to a fixed maximum size we extend the 
information-based trajectory pruning approach of [28] to a 
graphical representation. The pruning stage is performed before 
each particle update process. For each new node added to the 
graph, if the total number of nodes in the graph exceeds a 
preset number, the node with the lowest information content 
relative to its neighbors is removed and replaced with a direct 
link between its neighbors.  

To find the information content of a node Ni relative to its 
neighbors Nj and Nk we compare the observation zi to that 
generated by interpolating neighboring observations zj and zk 
along a proposed edge ejk that bypasses node Ni. If the proposed 
edge ejk produces an adequate representation for observation zi, 
then node Ni can be removed with minimal loss of information. 
This process is illustrated Fig. 2 (a) and outlined in Algorithm  



 

 

Algorithm 4 Node Information Content 
for every node Ni do 
      for every edge pair eji from Nj and eik to 
            x j

L := f (0,−u j i ), xk

L := f (0,u ik ), Σ

            solve 
∂

∂α̂
x j

L + α̂ xk

L − x j

L( )





T

Σ jk

−1 x j

L +


            x̂i

L := x j

L +α̂ xk

L − x j

L( )  

            P x̂i

L |x j

L,xk

L( ) := exp − 1
2 x̂i

L 
T

Σ jk x̂i

L(
            I i = − logP zi |z j,zk,α̂( ) P x̂i

L |x j

L,xk

L(
      end for 
end for 

 
Algorithm 5 Node Pruning 
if  k > nn then 
      find Ni with minimum Ii between nodes 
      create edge ejk between Nj and Nk using 
      for  every edge eni from Nn to Ni where n
            create edge enj using u ji − uni, Σ ji + Σ
      for  every edge eim from Ni to Nm where 
            create edge ekm using uim − uik, Σim +
      end for 
      delete node Ni and observation zi, edges 
end if 

 
4. The information content Ii of node N
negative log-likelihood of the odometric and appearance
match between node Ni and the proposed location
proposed edge between Nj and Nk. Unlike in 
have multiple neighbors due to explicit loop closure events, and 
therefore the information content of all proposed edges 
between neighbors must be evaluated to find the bypassing 
edge with highest information content. 

To avoid unbounded growth in storage requirements, nodes 
are removed from the graph once the total number of nodes 
exceeds a threshold nn. The node Ni with minimum information 
content Ii is deleted from the graph, and the proposed e
between neighbors Nj and Nk is added. All other nodes 
connected to Ni are re-routed to neighbors N
the connectivity of the graph. Particles previously on edges 
connected to Ni are relocated to the new edges. 
illustrated in Fig. 2 (b) and outlined in Algorithm 

IV. EXPERIMENTAL SETUP

To facilitate a direct comparison to 
previous implementations of CAT-SLAM, 
evaluation dataset as that presented in [6].
algorithms we refer to the novel representation
paper as a Continuous Appearance-based Topological Graph, 
or CAT-Graph. 

A. Testing Environment 

The urban dataset used for this evalua
[8]. It consists of 8127 panoramic images from a Point Grey 
Ladybug2 camera with accompanying wheel odometry (from 
shaft encoders on the Segway RMP) and GPS data logged at 
5Hz. The route taken is a 2.5km tour of the grounds of Ne

to Nk do 
Σ jk := Σ ji + Σik  

+ α̂ xk

L − x j

L( )= 0 

L)  

k

L )  

between nodes Nj and Nk 
using u ji + uik, Σ ji + Σik

 
n ≠ j do 
Σni

 
where m ≠ k do 

+ Σik  

, edges eji and eik 

Ni, is defined as the 
likelihood of the odometric and appearance-based 

and the proposed locationx̂ i

L along the 
Unlike in [28], nodes may 

have multiple neighbors due to explicit loop closure events, and 
therefore the information content of all proposed edges 

to find the bypassing 

To avoid unbounded growth in storage requirements, nodes 
once the total number of nodes 

with minimum information 
is deleted from the graph, and the proposed edge ejk 

is added. All other nodes 
Nj and Nk to preserve 

Particles previously on edges 
new edges. This process is 

and outlined in Algorithm 5. 

ETUP 

To facilitate a direct comparison to FAB-MAP and 
SLAM, we use the same 

. To differentiate the 
representation presented in this 

based Topological Graph, 

The urban dataset used for this evaluation is presented in 
panoramic images from a Point Grey 

Ladybug2 camera with accompanying wheel odometry (from 
shaft encoders on the Segway RMP) and GPS data logged at 
5Hz. The route taken is a 2.5km tour of the grounds of New 

College, Oxford, pictured in 
each location in both forward and reverse directions (a total of 
5 traversals of the quadrangle area). Ground truth is 
provided by GPS locations; however, the signal is degraded i
many locations throughout the urban dataset (particularly 
through a tunnel between courtyards). Approximately 45% of 
the panoramic images have an associated valid GPS position; 
recall data for the precision recall curves is 
hand-corrected trajectory from wheel odometry and manual 
loop closures, which provides a 
for every frame.  

B. Algorithm Parameters

As FAB-MAP, CAT-SLAM 
appearance information, no camera calib
registration is required. Feature descriptors are extracted using 
SURF [29], and a fast approximate
[30] was used to find the corresponding visual word for each 
descriptor. 

The FAB-MAP implement
openFABMAP [31], which produces results comparable to 
those presented in [2]. Parame
FAB-MAP were taken from 
for CAT-SLAM on the same dataset are 

Figure 3 – Aerial view of test environment wi

TABLE 1 – ALGORITHM 

openFABMAP 

p(zi =1|ei = 0)  

p(zi = 0 |ei =1)  

)Z|( 1−k
newLp  

CAT-SLAM 

p(zi =1|ei = 0)  

p(zi = 0 |ei =1)  
Number of Particles N 

ESS Threshold 
Distribution Radius r 

CAT-Graph 

p(zi =1|ei = 0)  

p(zi = 0 |ei =1)  

Number of Particles np 
Number of Nodes nn 

Particle Update Graph Size s 
ESS Threshold 

Distribution Radius dh 
Hypothesis Threshold T 

College, Oxford, pictured in Fig. 3, with multiple traversals of 
each location in both forward and reverse directions (a total of 
5 traversals of the quadrangle area). Ground truth is nominally 
provided by GPS locations; however, the signal is degraded in 
many locations throughout the urban dataset (particularly 
through a tunnel between courtyards). Approximately 45% of 
the panoramic images have an associated valid GPS position; 
recall data for the precision recall curves is instead based on a 

from wheel odometry and manual 
, which provides a topologically correct location 

Algorithm Parameters 

SLAM and CAT-Graph only require 
appearance information, no camera calibration or image 
registration is required. Feature descriptors are extracted using 

, and a fast approximate nearest neighbour algorithm 
was used to find the corresponding visual word for each 

MAP implementation used for comparison is 
, which produces results comparable to 

Parameters for the detector functions of 
MAP were taken from [19]. The parameters and results 

SLAM on the same dataset are taken from [6]. The  
 

 
Aerial view of test environment with route overlaid. 

LGORITHM PARAMETERS 

 
0 

0.61 

0.9 

 
0 

0.61 
2000 
0.25 
2.5m 

 

0 

0.61 
1000 
2000 

 3σ 
0.25 
2.5m 
0.9 



 

 

codebook was generated using modified sequential clustering 
[32] yielding 5000 visual words. Parameters for the three 
algorithms are presented in Table 1. 

V. RESULTS 

A. Precision-Recall Performance 

To assess the performance of the CAT-Graph algorithm in 
comparison to openFABMAP and CAT-SLAM, we examine 
the precision-recall curves they produce for the test 
environment. Expected matches are defined as previously 
visited locations within 7.5m of the current location. The 
desired performance is high recall at 100% precision. 

Fig. 4 presents the precision-recall curves produced by 
openFABMAP, CAT-SLAM and two variants of the CAT-
Graph algorithm; one using 1000 particles and one with 1000 
particles and a limit of 2000 nodes. Both CAT-Graph variants 
provide almost double the recall of CAT-SLAM and 7 times 
the recall of openFABMAP at 100% precision, but do not 
differ significantly from each other despite the difference in 
memory scaling. This demonstrates the effectiveness of the 
information-based node-pruning algorithm; for this 
environment, localization performance is not significantly 
affected despite the removal of approximately 5000 
observations from the graph. 

B. Loop Closure Distribution 

To assess the effects of using loop closure events to inform 
the topological graph construction (and therefore to examine 
the improvement gained over other appearance-based SLAM 
algorithms which do not explicitly perform data association) 
we examine the loop closure distribution for all four 
algorithms. Fig. 6 shows the loop closures detected at 100% 
precision projected onto the hand-corrected ground truth. 

Both variants of CAT-Graph detect a significant number 
more loop closures than openFABMAP and CAT-SLAM, and 
the distribution of loop closures are uniform (they are not 
concentrated at any particular location but rather spread across 
the environment).   

 
Figure 4 – Precision-Recall curve for four algorithm variants on the New 
College dataset. The two CAT-Graph variants provide greatly increased recall 
performance over CAT-SLAM and openFABMAP despite the differences in 
computational and memory scaling. 

  

  

  
 (a) Ii = 27.64                                       (b) Ii = 6.71 

Figure 5 – Information content illustration. (a) illustrates a sequence of nodes 
with high information content. In this case, close proximity to buildings and 
trees cause a high degree of difference between sequential frames, yielding 
high relative information. (b) illustrates a sequence through a tunnel, with very 
little visual change between successive frames and therefore a low information 
content. 

C. Node Information Content 

Fig. 5 illustrates a pair of frame sequences at different 
locations in the environment. The first sequence involves the 
robot moving under an overhanging tree and passing a 
distinctive building, while the second involves the robot 
travelling through a dark, featureless tunnel. As shown below 
the sequences, the information content for the central frame in 
the second sequence is significantly lower than that calculated 
for the central frame in the first sequence. 

D. Computational and Memory Scaling 

Fig. 7 presents the computation and storage requirements for 
openFABMAP, CAT-SLAM and the two CAT-Graph variants. 
The computation time does not include feature extraction and 
visual word classification (on average 800ms per frame), as 
these will be identical for all three algorithms. The difference 
in computational scaling is clear, with openFABMAP reduced 
to update rates below 1Hz by the end of the dataset due to the 
linear increase in computational requirements. The CAT-Graph 
configuration with 2000 nodes requires the greatest amount of 
time per update (as the information content of each node is 
assessed), but still remains approximately constant over the 
length of the dataset. Spikes in the computation graph are due 
to the evaluation of nodes with multiple neighbors, as the 
information content between every combination  of neighbors 
is assessed. 

The storage requirements scale linearly with operation time 
for all but the CAT-Graph configuration with limited nodes. 
All algorithms require the codebook and Chow-Liu tree from 
training data, which contribute to the initial ~4MB at the start 
of the dataset. Storage requirements initially increase linearly 
for both algorithms; CAT-SLAM requires additional storage 
for location and odometry information for the continuous 
trajectory as well as particle locations, weights and directions. 
However, once the number of locations reaches 2000, CAT-
Graph with limited nodes does not require more storage, 
whereas openFABMAP and CAT-SLAM memory 
requirements continue to increase linearly with the number of 
frames. 

 



 

 

(a)  

(b)  

(c)  

(d)  
Figure 6 – Loop closure distribution at 100% precision overlaid on hand-
corrected ground truth based on wheel odometry information. CAT-Graph 
detects consistently more loop closures than both openFABMAP and CAT-
SLAM in all areas of the environment. 

 
Figure 7 - Computation time and memory requirements for openFABMAP, 
CAT-SLAM and CAT-Graph. All CAT-SLAM and CAT-Graph variants 
provide constant computational time scaling, and the CAT-Graph variant with 
limited nodes provides constant memory scaling over time.  

Loop closure events in CAT-Graph also increase the 
number of edges in the map and therefore memory 
requirements. However, the worst case memory requirement 
for storage of edges is when an edge exists for every node pair, 
making it O(N2) in number of nodes; the worst case edge 
storage requirements do not grow over time if the number of 
nodes is fixed. 

VI. DISCUSSION 

The use of a topological graph and local metric 
representations along with loop-closure-informed graph links 
provide CAT-Graph with significant performance increases 
over CAT-SLAM and openFABMAP. In this section we 
discuss the key insights gained from this work and directions 
for future work. 

A. Improved Loop Closure Through Hypothesis Aggregation 

The ability to combine multiple hypotheses for multiple 
representations of the same location is crucial for long-term 
operation in a fixed-size environment. CAT-Graph consistently 
detects more loop closures over successive revisits to the same 
location, whereas CAT-SLAM develops multiple separate 
representations of the same trajectory but does not identify that 
all correspond to the same location. Unlike CAT-SLAM, where 
location hypotheses compete upon revisiting a location, by 
creating explicit links between locations when loop closures are 
detected, multiple hypotheses from multiple representations of 
the same location support, rather than complete with, each 
other. 

B. Saliency-based Map Pruning 

The node pruning scheme enables localization and mapping 
in a fixed size environment without memory requirements 
increasing linearly with operation time. Nodes are removed 
based on visual saliency, with less distinctive areas of the 
environment generating fewer nodes. The selection of the 
maximum number of nodes nn depends on the memory 
available to the robot and the visual saliency of the 
environment. Experiments presented in [28] for the CAT-
SLAM algorithm illustrate a graceful degradation of recall 
performance with reduced numbers of nodes and particles; 
however, determining the absolute minimum number of nodes 



 

 

sufficient to fully represent a particular fixed-size environment 
remains an open problem, and the constant-memory approach 
will fail if the robot continuously explores new locations. When 
maintaining a constant memory map in a fixed-size 
environment, removing the least informative nodes ensures 
future localization performance is minimally affected. 

C. Future Work 

Incorporating loop closure events into graph construction 
provides performance benefits when repeatedly traversing the 
same location. However, in order for the loop closure events to 
be detected, the appearance of the environment cannot change 
significantly between visits. While FAB-MAP provides a level 
of robustness, matching still fails over large changes in 
environmental appearance, such  as experienced during the 
course of a day [33]. Explicit modeling of appearance change 
over time as in [34] could enable persistent localization and 
mapping over longer time periods.  

Along with its mapping and localization capabilities, the 
graph-based representation of CAT-Graph forms a suitable 
basis for mobile robot path planning and navigation. A world 
representation which is globally topological and locally metric, 
such as that provided by CAT-Graph, is suitable for 
autonomous robot operations as demonstrated in [3]. To use the 
global topological plan for robot navigation, it must be 
integrated with a local planning mechanism. This can be 
accomplished by generating the local metric graph 
representation at the current location, and planning a local 
metric path towards the nodes selected by the global 
topological planner, such as in [28]. 

In conclusion, we believe that the use of loop closure events 
to inform future appearance-based matches, along with a 
framework for constant computational and memory resource 
usage, are important steps towards persistent robot autonomy.  
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