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Abstract— Appearance-based localization can provide loop easily derive odometry from visual information. The

closure detection at vast scales regardless of aceculated metric
error. However, the computation time and memory regirements
of current appearance-based methods scale not onlith the size
of the environment but also with the operation timeof the
platform. Additionally, repeated visits to locations will develop
multiple competing representations, which will redwe recall
performance over time. These properties impose saee
restrictions on long-term autonomy for mobile robos, as loop
closure performance will inevitably degrade with ircreased
operation time. In this paper we present a graphickextension to
CAT-SLAM, a particle filter-based algorithm for app earance-
based localization and mapping, to provide constantomputation
and memory requirements over time and minimal degrdation of
recall performance during repeated visits to locatins. We
demonstrate loop closure detection in a large urbaenvironment
with capped computation time and memory requiremerg and
performance exceeding previous appearance-based metls by a
factor of 2. We discuss the limitations of the algithm with

respect to environment size, appearance change ovéme and
applications in topological planning and navigationfor long-term

robot operation.
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l. INTRODUCTION

incorporation of a motion model into the image iestal
process has the potential to greatly enhance ttierpance of
an appearance based system. In CAT-SLAM [6, 7],Idlcal
movement information of the robot is fused with e@@nce
information using a particle filter to dramaticaliypprove the
recall of location over the use of appearance métion alone.

In this paper, we address the problem of using ajgpee
based methods when revisiting the same locationtipteul
times. Typical appearance-based methods have limeath in
the number of representations as locations aresied over
and over. Consequently, both computation time amtnary
usage have unbounded growth over time. This prokiem
compounded with a corresponding fall in recall perfance as
multiple representations of a single place competbe the
“correct” or best representation.

The new method, called CAT-Graph, uses a combimatfo
visual appearance and local odometry data as in-SI8AM,
but fuses multiple visits to the same location iattopological
graph-based representation. Localization is perdrnby
propagating particles along the edges in the gregitg local
motion information and updating particle weightssdxh on
local appearance information. Mapping is perforrhgédding
new motion and observation information to the graghthe
robot visits new locations. Locations that are sied are

Appearance based mapping provides the means ttecrea,pjicitly connected to the most recent locationd @articles

useful topological and metric maps on resourcetdichirobots
by using appearance signatures to identify placgher than
relying on accurate metric sensing. Appearancedbasethods
are popular as a method of detecting loop closareange
based metric maps [1, 2], and also for generatmgplete

topological maps that can be used for path planrdang

navigation [3]. Appearance may refer more broadlg robot’s
sensor signatures [4], but most often refers toagpshot image
of a location from a camera mounted on the robot.

The computer vision community has provided muckhef
initial impetus in the advent of appearance basedNS
Advances in image retrieval techniques, such asalisag-of-
words [5], have produced impressive results, baetethis an
opportunity to take advantage of the robotic contaefx the

can traverse these connections to simultaneousiuate
multiple representations of a single place. The bemof nodes
in the graph is limited by a pruning scheme thaintains the
map at constant memory requirements while miningizin
information loss and maintaining performance.

Importantly, the algorithm does not rely on gloladtric
information, or attempt to relax the measuremergtveen
nodes for global metric consistency. Instead, tbgology
maintains relative representations between nodeprdwide
local metric information to provide improvement mecall
performance. We illustrate that global metric aacyris not
required to incorporate appearance and motion ioto
mapping and localization algorithm.

The paper proceeds with a review of recent work i

appearance based mapping problem. Robots on thee moyy,earance-based mapping and localization systbefere

typically have readily available odometric inforioat or can
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presenting the details of the CAT-Graph algorithfirhe
performance of the algorithm is demonstrated usiregwell-
known New College dataset [8], illustrating marked



improvements in recall performance with capped mgnaod
computation costs.

1. RELATED WORK

a clustering-based approach to identify unnecessawys and
remove them from the map. [28] presented an inftona
based approach to node pruning, which removes nioalssd
on local visual saliency relative to its neighborkis method

Graphical representations in metric SLAM have beerprovided constant-memory loop closure detectiongiSIAT-

studied extensively for many years [9], and posghr
optimization remains an active area of research [MI0.
GraphSLAM [12] and other well-known topological SMA
methods form a pose graph of observations connéstedges
constrained using relative motion information. Hoae the
goal of these graphical methods is to create aimapimetric

map in a global Euclidean frame. The use of rdiativ

representations without global embedding has beploeed in
the VO community [13], where only local metric amy is
required. Notably, [14] combines local relative etry
without a global frame with topological appearabesed
localization using FAB-MAP.

A number of recent algorithms in the field of prbbiatic

SLAM when operating in a fixed size environmentt gl not
address frequent location revisiting.

In this paper we will explore the challenges ofiaeimg
constant computation time and memory requiremergping
and localization during repeated revisits in a dixsize
environment using an appearance based system.

I1l.  ALGORITHM DETAILS

The proposed algorithm outlined in this sectioreagt the
linear ‘trajectory-based’ representation of [7]acgeneralised
graph-based representation. The steps of the #igofor each
new update of control inputk and visual bag-of-words
observatiorg, are as follows:

topological mapping approach loop closure and map Addu, andz to the graplG as nodé\,.

construction as two parts of the same problem.afpeoach of
[15] finds the optimal set of local metric and ap@ace
information in the current map that best matchesctirrent set
of observations and local motion. [16] describesyatem
where both local metric maps and topological posiare used
to determine the current location within the hybndap. A
general formulation of this approach is presentefl¥] using
a Rao-Blackwellised particle filter across a pralistic
topology. However,
demonstrated in small environments.

Appearance-based localization systems do not tpica
address data association when revisiting locationstiple
times, instead creating multiple representations éach
location. [18, 19] describes a data associatiorgaore upon
loop closure detection, but the later approach tdbm [20]
simply adds multiple representations. Large scpfeearance-
based localization is typically only demonstratadmjectories
that only feature one loop closure for each locaff1], which
does not address the persistence problem. Attetmptsprove
the recall performance of appearance-based SLAMrighgns
such as FAB-MAP typically require additional infaation not
provided by descriptor-based image similarity ajojii¢ uses
RANSAC to compare feature geometry, [6] requirebicle
odometry information and [22] uses additional laseistereo
image sensors for 3D geometric verification.

Constant computation time and memory requiremenits
mapping systems have been addressed most extgnisivtale
metric mapping domain. Submaps have been usedhievac
constant time map convergence in the approach Bly ydth
the assumption of repeated robot visits to all gpat the
environment. Dynamic submaps have also been usachteve
a constant map update time in the approach by 2eédupancy
grid mapping approaches typically scale linearlytérms of
memory requirements with the area of the map: [Bds on
the occupancy grid approach by forming multiple upancy
maps in parallel, each representing a differenesicale, and
demonstrated it over a period of five weeks.

Relatively little work on constant memory or congtign
time mapping has occurred in the appearance-basgqing
space. [26] describes a short/long term memory caupr to
limiting visual bag-of-words location growth, an2i7] outlines

these approaches have only been

2. Update all particle locations in the graph using
control inputu,; match to best existing location in
the graph.

3. Update all particle weights using observatign
match to expected appearance at particle location.

Normalise particle weights along with an ‘untési
location’ weight to represent the likelihood of ewn
place.

5. Determine if the particles indicate a loop chesbhas
occurred; if so, create a link froM, to the particle
location.

6. Resample the particles if necessary. Distribute
‘unvisited location’ particles to random locatioims
the graph (to combat particle deprivation).

7. If the number of nodes exceeds the maximum,
determine node information content and remove the
least informative node.

The graphG defines a connected manifold which is locally
Euclidian but not embedded in a global Euclideaamte.
Nodes N; in the graph are associated with observatinns
which take the form of a visual bag-of-words repréation of
features visible at locatidn Edgess; connect nodé; to N; and

f are associated with the control inpuf (and associated

covariance matrix;) experienced at locatidn Localization is

performed using a set af, particlesp”’ which represent the
likelihood of revisiting the previously visited laton at
fractiong”’ (between 0 and 1) along associated eitat time
k. Each particle is also associated with a Booleaection

variabled®” along with a weighiv®.

A. Local Graph Construction

To perform local operations on the graph we adopt a
relative  representation, which constructs the local
neighbourhood of the graph from the reference framfie
particlep!” to a maximum radius of A standard non-linear
motion modelf(x,u) generates 3DOF Euclidean changes in
local posex from control inpuu, defined as follows:



(a) (b,
Figure 1 — Local graph and particle update diagram. (a) ilatss the loce
graph of particlep”. The graph is constructed from the reference frafr
the particle to a fixed radius r. (b) illuates the local particle upde
procedure for particl@(’. The particle is locally propagated by controlun
Uk (plus additive Gaussian noigg) to generate proposed local posi x
Each edge is then tested to find the Iocah@rwhrch minimizes 'the
Mahalanobis distance to the proposed particle |lmux using covariance
matrix X. The updated particle location is set to the ntigely edgeey at
fractiondr .

x=[xyél', u, =[AxAy Ad]' @

The first step in constructing the local graphoislétermine
the local positiorx' of nodeN; relative to particl p’. From
there a breadth-first search (with fringeis performed to find
all nodesN, (and associated local positic x-) and edgegm
and e,, within a distancer of particle p(" outlined in
Algorithm 1.Note that the first node and associated edgall
outside distance is still added to the lis— this ensures all
edges even partly within the local graph radiusimciided in
E". The direction variable® reverses the initial positiix- to
represent a particle in a reverseeatation along edge;. A
sample local graph is illustrated in Fig(al.

B. Particle Position Update

To follow a localization hypothesi, each particle is
propagated along edges time graph according to the curr
control inputu,. The proposed local chge in pos X! for each
particle is generated by adding Gaussian 1W,with
covarianceX, to the position generated by the -linear
motion modelf(O,u,). However, theproposed current locatic
will rarely correspond to a location along an erigtedge ir
the local graphtherefore particles are assigned to the 1
likely location along a edge in the local gra. Formally, we
seek a locatior, at fractiongalong edgee; in E- which
minimizes the Mahalanob|s distan@sing covariance matr
%)) to the proposed particle locatigff. We solve for the
minimum by differentiatinghe Mahalanobis distan@long an
edgeeJ with respect to fractiofrand solving ford/da = 0: if
a is between 0 andd local minimum lies along edgij. The
weight of each part|cle is updated based the Gaussian
likelihood function P(x;: |X", %, ). This process iillustrated in
Fig. 1 (b) and outlrned |n Algorithm 2. To reduce
computational complexity the graph aly built to the siz
required to include angdge near the most likely partic

Algorithm 1 Local Graph Constructic

function localGrapt{p{’,r):

N‘is a list of nodes and local positic
E'is a list of edges

xt==-a"f(0,u,) or x; =~
push {N,,x;} to fringeF
until fringeF is empty
pop {N,,x, } from fringeF
add {N,,x;}to N* (if N, not already present)
for every edgeg,,,ande,, linked toN, do
Xp, = £ (x5, u,, ) orxg, = f (xg,-u,,)
push e, ore, to E"
if [x;,|<r then

Ut(007u,)if d¥=1

push {N
else

add {N,,x;}to N*
end if

end for
end until

return N, E"

-Xan} to fringeF

locationX!”. The local graph radius is set to the length ef
proposed pose chadg@ |plus a multiples of the maximum
eigenvaluel,of covariance matrixZ, (typically set to 3
standard deviations or moreThis represents a worst-case
scenario for the difference between the proposes phang
x{"and nearest edge locatX; .

C. Appearance-based Observation Update

The observation update weights particles based ha
likelihood of the current observaticgiven the expected local
appearanceThe likelihood is calculated by comparing -
current visual bag-of-wordg, to the appearance generated by
interpolating between observaticz; andz, given particlep;’

Algorithm 2 Particle Position Upda

function updateParticlePaton(p{’,u,.2,):
%0 :=f(o,u,)+N(0,%,)
N, E':= IocaIGrapI( P IR

k-11

(2)

for every edge; in E" from x| to Xj in N*do
0 L A L L -1 L A~ L _yL —_ ~
solve E[Xi +Ci'(Xj Xi )T z [Xi +0’(Xj X; )}—0 for a

if 0<a <1then
X, =X +éf(x,L —x,L)

P(R1X0,5,) = exp(—l[x 50T 53 X(k')])

store, i, j for maximumP

end if

end for

a=maxd, ,e’:=maxe, W’ =wmaxP(% |X.Z)
K " s ) l . p i k " k-1 P k k 15k




is at fraction a”on edgee; at timek. The weight of each
particle is updated as follows:

W ::Mi)P(Zk |Zi’zi’a(i)) o

The form of this likelihood function is derived froFAB-
MAP and illustrated in full in [7].

D. New Place Detection
Since the particle sqi is constrained to exist only along

edges e in the graph, they can only represent location

hypotheses for previously visited locations. Tcoed®ine if the
current set of observation and motion informatiodicates the
vehicle is in a previously unvisited location wengde from an
‘unvisited’ locationG not on the grapks.

P(Glz.u,)=P(zIG)P(G|u,) @

The observation and motion distributions for an isited

locationGcan be approximated using information from

@ ™
Figure 2 — Node information content and node pruning diagr@) illustrates
the calculation of most likely local positioffat fractiongon the
hypothetical edge between nod#); andN. This location is used to generate
an expected appearance which is compared to oliserza at nodeN, to
determine the information conteht (b) illustrates the connectivity of the
local graph after nods; has been removed.

Algorithm 3 Loop Closure Detectic

training data as follows:

P(2,1G)P(GU,) = P(2,12,,) P(Un IU,) (5)

Zag represents an ‘average’ observation amg, an
‘average’ control input. These are determined usiregmean
field approximation or a sampling method, both prged in
[8]. The proposed weighting assigned to a locatiohon the
graph is given as follows:

W:M = % P(Zk |Zavg) P(uavg | uk)

(6)

for every particlgy’ do
N', E" :=localGrapH{p{’,d,)
for every particlgy” on every edge; in E"do
P(p0) =X
end for
end for
if max P(p{")> T then
create edga; usingu, —a’u
end if

T+,

ij?

The new location weight is denoted W{". Note that it is
not recursively updated; this represents a unifidtelinood of
departing the graph at any point in time.

E. Resampling and Loop Closure Detection

Particle resampling is performed using the Seleith w
Replacement method as in [7]. Any particles setetdeeplace
the new location weight are sampled to a randone exigthe
graph (with a random directionThis serves to counteract the
effects of particle deprivation since the proportif particles
sampled to random locations on the graph increasdise new
place likelihood increases, thereby increasingptiobability of
detecting loop closures without requiring evaluataf every
previously visited location.

To determine the most likely location hypotheswirthe
distribution of particles a spatially selective hmt is used,
equivalent to integrating the probability distritmut over a
local area in the graph. For every partigfé, the location

current and matched location. This process is redliin
Algorithm 3.

The addition of a new edge on a loop closure event
crucial for increasing recall on repeated traverdes route; it
allows particles to simultaneously evaluate mudtipl
representations of a location while recognisingt tlael
representations correspond to the same physicalidoc(since
the local graph construction will connect both limas).

F. Local Information-based Pruning

To limit the map to a fixed maximum size we extehd
information-based trajectory pruning approach o8][20 a
graphical representation. The pruning stage isopad before
each particle update process. For each new nodedaddthe
graph, if the total number of nodes in the grapbeers a
preset number, the node with the lowest informationtent
relative to its neighbors is removed and replacéd & direct
link between its neighbors.

To find the information content of a nodik relative to its

hypothesid(p{’)is equal to the sum of the weights of all |
particles within 'distancel, of the current particle within its neighborsN; and N, we compare the observatian to that
local graph. The value af, is selected based on the desiredgenerated by interpolating neighboring observatrend z

resolution of loop closure detection, and as siehlbcation
hypothesis is not subject to arbitrary locatiorcoitization due
to local visual saliency. If the maximum locatiogpbthesis

along a proposed edgg that bypasses nodi. If the proposed
edgegy produces an adequate representation for obsemztio
then nodeN; can be removed with minimal loss of information.

exceeds a threshold a new graph edge is added between the This process is illustrated Fig. 2 (a) and outlimedlgorithm



Algorithm 4 Node Information Conte

for every nod N, do
for every edge paig; from N, andey to N, do

le_ = f(oi_uji)’ XL- = f(ovuik)' zjk = zji +zik
solve %[XJF + d(x; —xJ.L)]T ijkl[ij + Er(xt - xf)} =0
E=xs+a(x, -xt)

P(X Ix;,x;) =ex
|, ==10gP(z 12,2, 4)P(X X, x,)

end for
end for

|
N
By
.
™
—
0
o

Algorithm 5 Node Prunin

if k> n,then
find N; with minimum|; between nodeN; andN,
create edgey betweerl; andNy using u, +u,, 2, +Z,
for every edge gfrom N, to N, wheren #j do
create edgg usingu, —u , 2, +2
for every edge, from N; to N, wherem # k do
create edgeq, usingu,, —U,, 2, +2,
end for

delete nodé\; and observation, edgesg; andey
end if

4. The information contenk of nodeN;, is defined as the
negative logikelihood of the odometric and appears-based
match between nods and the proposed locatiX; along the
proposed edge betwedh andN,. Unlike in [28], nodes may
have multiple neighbors due to explicit loop cl@sawents, an
therefore the information content of all proposedges
between neighbors must be evaluatedfind the bypassin
edge with highest information content.

To avoid unbounded growth in storage requiremerddes
are removed from the grapgince the total number of noc
exceeds a threshoigl. The node\; with minimum informatior
contentl; is deleted from the graph, and the proposdge ey
between neighbord\; and Ny is added. All other node
connected td\; are re-routed to neighboks andNy to preserve
the connectivity of the graptRarticles previously on edg
connected td\; are relocated to theew edgesThis process is
illustrated in Fig. 2 (band outlined in Algorithn5.

IV. EXPERIMENTAL SETUF

To facilitate a direct comparison tFAB-MAP and
previous implementations of CASLAM, we use the same
evaluation dataset as that presented inT6] differentiate the
algorithms we refer to the novwepresentatic presented in this
paper as a Continuous Appearabesed Topological Grap
or CAT-Graph.

A.  Testing Environment

The urban dataset used for this evtion is presented in
[8]. It consists of 812°panoramic images from a Point Gi
Ladybug2 camera with accompanying wheel odometgmn(
shaft encoders on the Segway RMP) and GPS datadoat
5Hz. The route taken is a 2.5km tour of the grouoidilew

College, Oxford, pictured iFig. 3, with multiple traversals of
each location in both forward and reverse diresti@mtotal o'
5 traversals of the quadrangle area). Ground teunominally
provided by GPS locations; however, the signaleigrddedn
many locations throughout the urban dataset (pdatiy
through a tunnel between courtyards). Approximat&9o of
the panoramic images have an associated valid GBi#op;
recall data for the precision recall curvedinstead based on a
hand-corrected trajectorfrom wheel odometry and mant
loop closureswhich provides dopologically correct location
for every frame.

B. Algorithm Parameters

As FAB-MAP, CAT-SLAM and CAT-Graph only require
appearance information, no camera «ation or image
registration is required. Feature descriptors ateeted using
SURF [29] and a fast approxim: nearest neighbour algorithm
[30] was used to find the corresponding visual wordefach
descriptor.

The FABMAP implemenation used for comparison is
openFABMAP [31] which produces results comparable
those presented in [2Paramters for the detector functions of
FAB-MAP were taken fron[19]. The parameters and results
for CAT-SLAM on the same dataset ¢aken from [6]. The

Figure 3 —Aerial view of test environment th route overlaid.

TABLE 1—-ALGORITHM PARAMETERS

openFABMAP
p(z =1le =0) 0
Pz =0]e=1) 0.61
P(Loey [Z°7) 0.9
CAT-SLAM
p(z=1le=0) 0
Pz =0]e=1) 0.61
Number of Particledl 2000
ESS Threshold 0.25
Distribution Radius 2.5m
CAT-Graph
P(z=1le =0) 0
Pz =0]e =1) 0.61
Number of Particles, 1000
Number of Nodes, 2000
Particle Update Graph Sis 30
ESS Threshold 0.25
Distribution Radiusl, 2.5m
Hypothesis ThresholT 0.




codebook was generated using modified sequentiatering
[32] yielding 5000 visual words. Parameters for tineee
algorithms are presented in Table 1.

V.

A. Precision-Recall Performance
To assess the performance of the CAT-Graph algorith

RESULTS

comparison to openFABMAP and CAT-SLAM, we examine

the precision-recall curves they produce for thest te
environment. Expected matches are defined as pglyio
visited locations within 7.5m of the current locati The
desired performance is high recall at 100% pregisio

Fig. 4 presents the precision-recall curves produlcg
openFABMAP, CAT-SLAM and two variants of the CAT-
Graph algorithm; one using 1000 particles and oite %000
particles and a limit of 2000 nodes. Both CAT-Grajalniants
provide almost double the recall of CAT-SLAM andimes
the recall of openFABMAP at 100% precision, but ot
differ significantly from each other despite thdfelience in
memory scaling. This demonstrates the effectivera#sthe
information-based  node-pruning  algorithm;  for
environment, localization performance is not sigaifitly

(@)l =27.64

(¥ 6.71

Figure 5 — Information content illustration. (a) illustrata sequence of nodes
with high information content. In this case, clggeximity to buildings and
trees cause a high degree of difference betweementgl frames, yielding
high relative information. (b) illustrates a seqeethrough a tunnel, with very
little visual change between successive framesdtaréfore a low information
content.

C. Node Information Content
Fig. 5 illustrates a pair of frame sequences aftemint

this |ocations in the environment. The first sequenamlires the

robot moving under an overhanging tree and passing

affected despite the removal of approximately 500Qyjstinctive building, while the second involves thebot

observations from the graph.

B. Loop Closure Distribution

To assess the effects of using loop closure everit§orm
the topological graph construction (and therefareexamine
the improvement gained over other appearance-b&kéd/
algorithms which do not explicitly perform data @gstion)
we examine the loop closure distribution for allurfo
algorithms. Fig. 6 shows the loop closures deteetet00%
precision projected onto the hand-corrected grdrutt.

Both variants of CAT-Graph detect a significant tuem
more loop closures than openFABMAP and CAT-SLAMd an
the distribution of loop closures are uniform (thage not
concentrated at any particular location but raipread across
the environment).

1
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Figure 4 — Precision-Recall curve for four algorithm vatsmmon the New
College dataset. The two CAT-Graph variants progdeatly increased recall
performance over CAT-SLAM and openFABMAP despite thifferences in

computational and memory scaling.

travelling through a dark, featureless tunnel. Asven below
the sequences, the information content for therakframe in
the second sequence is significantly lower than ¢akculated
for the central frame in the first sequence.

D. Computational and Memory Scaling

Fig. 7 presents the computation and storage regaines for
openFABMAP, CAT-SLAM and the two CAT-Graph variants
The computation time does not include feature etita and
visual word classification (on average 800ms pamf), as
these will be identical for all three algorithmsheTdifference
in computational scaling is clear, with openFABMAdtuced
to update rates below 1Hz by the end of the dathseto the
linear increase in computational requirements. TAd-Graph
configuration with 2000 nodes requires the greaesbunt of
time per update (as the information content of eacte is
assessed), but still remains approximately constaet the
length of the dataset. Spikes in the computati@plyrare due
to the evaluation of nodes with multiple neighboas, the
information content between every combination eighbors
is assessed.

The storage requirements scale linearly with opmrdtme
for all but the CAT-Graph configuration with limdenodes.
All algorithms require the codebook and Chow-Lieetrfrom
training data, which contribute to the initial ~4M#B the start
of the dataset. Storage requirements initially éase linearly
for both algorithms; CAT-SLAM requires additionaiosage
for location and odometry information for the comius
trajectory as well as particle locations, weightsl directions.
However, once the number of locations reaches 20@Q;-
Graph with limited nodes does not require more agfer
whereas openFABMAP and CAT-SLAM  memory
requirements continue to increase linearly with nlbenber of
frames.



openFABMAP: 100% Precision, 9.78% Recall
T T T T

10l ! fd
200 - . f l’\
N
'  ——
0N ~
20
> 40 : >
ARy
60 {

-80 : : A : 4

¥ (m)
-
\

Ground Truth S

-100 True Positive
i

0 20 40 60 80 100 120 140 160 180
X (m)

@)

CAT-SLAM: 100% Precision, 38.24% Recall

40

20 Y I e

y (@
-/
\\

-40
-601 f / s

Ground Truth S
True Positive i

-100

i | i
0 20 40 60 80 100 120 140 160 180
(b) X (m)

CAT-Graph: 100% Precision, 71.98% Recall
T T T T T T

of T I
200
ol

-20

v (m)

40 : . 4

-60 7/

-80- : H d

Ground Truth
True Positive
i

-100
i L

i i i i
0 20 40 60 80 100 120 140 160 180

X (m)
(©

CAT-Graph n, = 2000:100% Precision, 70.43% Recall

40 : ]
200, | ]

0

20+ H H d

Yy (m)

-40
60+ H : 4

-80

Ground Truth /
-100 True Positive | 7
i i 1 | i

0 20 40 60 80 100 120 140 160 180
(d) X (m)

Figure 6 — Loop closure distribution at 100% precision daielr on hand-
corrected ground truth based on wheel odometryrimdition. CAT-Graph
detects consistently more loop closures than bpmBABMAP and CAT-
SLAM in all areas of the environment.
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Figure 7 - Computation time and memory requirements fornép&8MAP,
CAT-SLAM and CAT-Graph. All CAT-SLAM and CAT-Graplvariants
provide constant computational time scaling, armd@AT-Graph variant with
limited nodes provides constant memory scaling tines.

Loop closure events in CAT-Graph also increase the
number of edges in the map and therefore memory
requirements. However, the worst case memory reaugnt
for storage of edges is when an edge exists fayewae pair,
making it O(N?) in number of nodes; the worst case edge
storage requirements do not grow over time if thenber of
nodes is fixed.

VI. DISCUSSION

The use of a topological graph and local metric
representations along with loop-closure-informedpdr links
provide CAT-Graph with significant performance ieases
over CAT-SLAM and openFABMAP. In this section we
discuss the key insights gained from this work dirdctions
for future work.

A. Improved Loop Closure Through Hypothesis Aggregation

The ability to combine multiple hypotheses for ripht
representations of the same location is crucialléog-term
operation in a fixed-size environment. CAT-Graphgistently
detects more loop closures over successive retisitee same
location, whereas CAT-SLAM develops multiple separa
representations of the same trajectory but doegeatify that
all correspond to the same location. Unlike CAT-8LAvhere
location hypotheses compete upon revisiting a iosatby
creating explicit links between locations when l@igsures are
detected, multiple hypotheses from multiple repnest@ons of
the same location support, rather than completé, véach
other.

B. Saliency-based Map Pruning

The node pruning scheme enables localization arppbimg
in a fixed size environment without memory requiess
increasing linearly with operation time. Nodes aeenoved
based on visual saliency, with less distinctiveaaref the
environment generating fewer nodes. The selectibrthe
maximum number of nodes, depends on the memory
available to the robot and the visual saliency ok t
environment. Experiments presented in [28] for tDAT-
SLAM algorithm illustrate a graceful degradation wcall
performance with reduced numbers of nodes and cesti
however, determining the absolute minimum numbemnazfes



sufficient to fully represent a particular fixed=sienvironment
remains an open problem, and the constant-memamoagh
will fail if the robot continuously explores newdations. When
maintaining a constant memory map
environment, removing the least informative nodesuees
future localization performance is minimally affedt

C. Future Work

Incorporating loop closure events into graph cacsiion
provides performance benefits when repeatedly tsawg the
same location. However, in order for the loop ctesevents to
be detected, the appearance of the environmenbtahange
significantly between visits. While FAB-MAP provisie level
of robustness, matching still fails over large e in
environmental appearance, such as experiencedgdtie
course of a day [33]. Explicit modeling of appeamrchange
over time as in [34] could enable persistent |@eion and
mapping over longer time periods.

Along with its mapping and localization capabiktiethe
graph-based representation of CAT-Graph forms #aldei
basis for mobile robot path planning and navigati&drworld
representation which is globally topological andalty metric,
such as that provided by CAT-Graph,
autonomous robot operations as demonstrated iff §3jise the
global topological plan for robot navigation, it stube
integrated with a local planning mechanism. This dze
accomplished by generating the local metric
representation at the current location, and plapraniocal

in a fixed-size

graph

[10]M. Kaess et al., "iISAM2: Incremental smoothing anapping with fluid
relinearization and incremental variable reorderingEEE International
Conference on Robots and Automation. 2011. ShanGhaia.

11]R. Kummerle et al., "g20: A general framework foagh optimization"
in IEEE International Conference on Robots and Auattion. 2011.
Shanghai, China.

[12]S. Thrun and M. Montemerlo, "The graph SLAM aldonit with
applications to large-scale mapping of urban stmest. The
International Journal of Robotics Research, 206@6-8): p. 403.

[13]D. Nister, O. Naroditsky, and J. Bergen. "Visuaboetry" 2004: IEEE.

[14]G. Sibley et al., "Vast-scale Outdoor NavigatioringsAdaptive Relative
Bundle Adjustment." The International Journal ofbRtics Research,
2010:

[15]E. Olson, "Robust and efficient robotic mapping"DPfrhesis. 2008,
Massachussets Institute of Technology.

[16]J. Blanco, J. Fernandez-Madrigal, and J. Gonzdlesyard a Unified
Bayesian Approach to Hybrid Metric-Topological SLAM IEEE
Transactions on Robotics, 2008. 24(2): p. 259-270.

[17]A. Ranganathan and F. Dellaert, "Online Probahilistopological
Mapping". The International Journal of Robotics &esh, 2011.

[18]M. Cummins and P. Newman. "Probabilistic appeardased navigation
and loop closing." in IEEE International Confererme Robotics and
Automation. 2007. Rome, Italy.

[19]M. Cummins and P. Newman, "FAB-MAP: Probabilisticélization and
mapping in the space of appearance." The Intemetidournal of
Robotics Research, 2008. 27(6): p. 647.

is suitable fonM20]M. Cummins and P. Newman, "Appearance-only SLAMaagie scale

with FAB-MAP 2.0." The International Journal of Ruilts Research,
2010.
[21]M. Cummins and P. Newman. "Highly scalable appezgamly SLAM—
FAB-MAP 2.0." in Robotics: Science and Systems @oerfice. 2009.
Seattle, Washington.
[22]R. Paul and P. Newman. "FAB-MAP 3D: Topological Mam with

metric path towards the nodes selected by the globa Spatial and Visual Appearance." in IEEE Internagio@onference on

topological planner, such as in [28].

In conclusion, we believe that the use of loop wlesvents
to inform future appearance-based matches, alorny wi
framework for constant computational and memorypuese
usage, are important steps towards persistent satbohomy.
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