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Abstract— This paper is about the autonomous acquisition
of detailed 3D maps of a-priori unknown environments using a
stereo camera - it is about choosing where to go. Our approach
hinges upon a boundary value constrained partial differential
equation (PDE) – the solution of which provides a scalar field
guaranteed to have no local minima. This scalar field is trivially
transformed into a vector field in which following lines of max
flow causes provably complete exploration of the environment
in full 6 degrees of freedom (6-DOF). We use a SLAM system
to infer the position of a stereo pair in real time and fused
stereo depth maps to generate the boundary conditions which
drive exploration. Our exploration algorithm is parameter free,
is as applicable to 3D laser data as it is to stereo, is real time
and is guaranteed to deliver complete exploration. We show
empirically that it performs better than oft-used frontier based
approaches and demonstrate our system working with real and
simulated data.

I. INTRODUCTION

After switching a mobile robot on, where should it go? In
this work we say it should try and look at, and thus map,
every reachable surface. Of course initially only a fraction of
the workspace is visible and plans must be made about where
the robot should move to further increase the extent of its
map. Ideally we would decide upon a smooth path to a new
sensor pose which looks into a “maximally promising” area.
But how do we define promising? How do we assign numbers
to “promising”? It is evidently sensible to try and extend the
boundary between explored and unexplored and in particular,
to plan to view which is in some sense perpendicular to the
boundary, to look directly in to the unseen regions of the
workspace. This then implies we should consider the entire
boundary between free and unexplored space. We cannot
expect a single boundary to exist and so we must entertain
the possibility that there could be a multitude of view points
which would provide information rich views - which one to
choose? Some could be far away and so costly to reach but
resting on an extensive free space boundary, some could be
close but perched on a narrow boundary. How should we
balance these aspects and capture our intuition of a good
exploration strategy given above?

II. APPROACH

In this paper we present a method for the active exploration
of unstructured, a-priori unknown 3D environments using a
stereo camera. There is no other input to the system - the
stereo imagery used to produce depth measurements is also
used to drive a visual SLAM system which provides pose
estimation.
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Fig. 1. Moving a camera to explore the world: A solution to Laplace’s
equation, a harmonic function φ, is calculated over the domain of known
free space. The boundary of free space – ∂S – is either occupied by an
obstacle or is a target for exploration as beyond it lies an unexplored region.
The camera is guided to view these unexplored regions by following the
gradient of ∇φ – two such streamlines are shown.

Our knowledge about the state of the world is encoded in
an octree based occupancy grid – a discretisation of space
into voxels (volumetric pixels). Voxels are classified in one
of three states: occupied, free space, or unknown and we
refer to the sets of these voxels as Λoccupied, Λfree, and
Λunknown resepctively. A frontier voxel is one which lies on
the boundary between explored and unexplored space – a free
space voxel with a neighbouring unknown voxel. The set of
frontier voxels is denoted Λfrontier. The volume of explored
space, Λfree, is enclosed by a boundary ∂S = Λoccupied +
Λfrontier. Beyond this boundary exist only unknown voxels:
Λunknown.

The criterion for exploration termination is the elimination
of all frontier voxels, i.e. Λfrontier = ∅. Assuming that
our sensor can resolve 3D points at a sufficient density
over the surface of the world, then this equates to complete
exploration, up to the resolution of the occupancy grid. The
key to successful exploration is to reposition our sensor such
that ∂S will be expanded outwards into unknown space,
increasing Λfree and reducing Λunknown.

The pertinent steps in our algorithm are as follows:

- Scan Capture stereo images, process into depth map.
- Integrate Raytrace measurements into occupancy grid.
- Boundaries Boundary conditions applied.
- Solve Calculate solution to PDE.
- Plan Path Plan path down gradient of solution.
- Move Sensor is moved along path to new pose.



III. RELATED WORK

A. Mapping

Typical mapping approaches use point clouds[1] or reg-
ular grids of 2D or 3D volumes (voxels)[2]. Point clouds
represent occupied space only and cannot cope easily with
noisy measurements. Regular grids are memory intensive,
prohibitively so at high spatial resolutions.

To explicitly model free, occupied, and unknown space
in 3D, and to do so efficiently requires moving beyond a
simple grid structure. An appropriate alternative is an octree
representation, see [3] and [4]. An octree is an hierarchical
data structure used to partition 3D space by recursively
subdiving into eight octants to a given resolution. This
structure has a number of advantages over regular grids:
lower memory consumption as large contiguous volumes
will be represented by a single leaf node; the extent of the
map need not be known at runtime, the octree can expand
outwards as needed; it is trivial to obtain subdivisions at
different resolutions by traversing the tree to a given depth; it
can cope with noisy sensors or dynamic objects. In this paper
we use OctoMap [5] which is a freely available (GNU-GPL)
library for 3D occupancy grid mapping using an octree.

B. Exploration

1) Frontier-based methods: Exploration in an occupancy
grid is typically accomplished using a variant of the frontier-
based method proposed by [6]. This is typically framed as
an information theoretic problem – where to move the sensor
to maximise information gain? To do this, new camera poses
are randomly hypothesised in the free space of the grid and
the number of frontier cells seen from that pose (a measure
of expected information) are counted. Such an exploration
strategy is employed in [7] in which a voxelised 3D workspace
is fully explored with a high DOF robot arm. An interesting
approach is that of [8] in which exploration of new areas is
balanced with improving localisation and the existing map –
new poses are selected which maxmise expected uncertainty
reduction.

2) Potential methods: Potential methods have a long
history in the path-planning literature, see the early work
of [9], [10], [11]. Assigning a high potential to the start
position, and a low potential to the goal position, a path
can be found by gradient descent through the resulting field,
assuming appropriate boundary conditions have been set.

Little attention has been given to adapting such methods for
exploration, a notable example being [12]. They demonstrate
succesful exploration of a 2D environment with a sonar sensor.
They make use of Dirichlet boundary conditions only, which
can result in scalar potential fields with close-to-zero gradient
in large-scale environments.

IV. HARMONIC FUNCTIONS

The exploration algorithm described in this paper relies
on finding a scalar field in the free space of the map which
contains no local minima and in which all streamlines through
the gradient of this field terminate in boundaries free of
obstacles.

Our method leverages the properties of harmonic solutions
to Laplace’s equation but before describing this formalism
in detail it is helpful to present an informal analogy to what
we are proposing. Imagine that the workspace of the robot is
filled with a gas and a draft flows into unexplored regions. If
the boundary between explored (known to be not occupied)
and unexplored areas is all at the same pressure the flow
will be (largely) perpendicular to the boundary. The far
field effect of a particular boundary will be a flow which
is function to the total flux crossing the boundary and the
distance to it and all other boundaries. This immediately
makes us think of trying to solve a steady state flow problem
over the known workspace. In the absence of an analog to
viscosity, this collapses down to finding a solution to Laplace’s
equation 1. All such harmonic functions have properties that
are advantageous to our cause: they have no local minima
and hence streamlines emanating from the sensor position
are guaranteed to lead us to exploration boundaries.

A. Laplace’s Equation

Laplace’s equation is an elliptic second-order partial
differential equation over a scalar field φ:

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0. (1)

Where ∇2 is the Laplacian operator, ∇2φ = ∇.∇φ. A
function φ which satisfies Laplace’s equation at every point,
x, in the problem domain U is known as a harmonic function.

∇ · ∇φ(x) = 0 ∀x ∈ U. (2)

If U is connected – topologically – then a harmonic
function satisfying (1) on U can be shown to have no local
maxima or minima. We can see that this is true by considering
the three differential terms: ∂2φ

∂x2 , ∂2φ
∂y2 , and ∂2φ

∂z2 . At a local
extremum the three terms would share the same sign – positive
at a minimum, negative at a maximum – and thus not sum
to zero.

B. Setting Boundary Conditions

With no local minima, descending the gradient of a scalar
field satisfying (1) is guaranteed to bring us to a domain
boundary. We wish to apply boundary conditions such that
solving for φ over our occupancy grid results in streamlines
leading from the current sensor position to frontier voxels
thus expanding ∂S.

Exploration boundaries should have a fixed, low value
of φ while the current sensor position should have a fixed,
high value. This will result in streamlines travelling from
sensor source to frontier sinks. Dirichlet boundary conditions
are used to enforce these requirements. Dirichlet boundary
conditions state that the function’s value on the domain
boundary must take a specific value:

φ(x) = f(x) ∀x ∈ ∂Sunknown. (3)

1the inclusion of a viscosity term would further amplify the effect of
known obstacles



(a) Input image from stereo camera (b) Occupancy grid and exploration boundaries (c) Harmonic function gradient, ∇φ

Fig. 2. Exploration in two dimensions: An example left image from the stereo camera is shown in (a). This is processed, producing a depth image which
is used to fill an occupancy grid, shown in (b). 2D exploration is performed in a single plane of this occupancy grid – exploration boundaries are shown in
red. (c) shows the gradient of a harmonic function satisfying ∇2φ = 0 over this domain. The sensor position is a black circle, unexplored space in red, and
occupied space in grey.

The gradient of φ should be orthogonal to ∂Sunknown and
we enforce this by setting f(x) = 0 in (3). This set of fixed
values comprise part of an isosurface of φ, and thus ∇φ is
orthogonal to these boundaries as required.

A Dirichlet boundary condition is also used to force ∇φ
to point directly outwards from the sensor position by setting
f(x) = 1 at the voxel containing the sensor.

Finally we consider obstacle boundaries. The important
difference here is that an exploration boundary is potentially
traversable but an obstacle boundary cannot. For ∇φ to be
parallel to obstacles we require

∇φ · n = 0, (4)

where n is the surface normal vector. This is equivalent
to setting Neumann boundary conditions which specify that
a function’s first derivative must take a given value across
boundaries:

∇φ(x) = g(x) ∀x ∈ ∂Soccupied (5)

Setting g(x) = 0 in (5) ensures that ∇φ is parallel to
∂Soccupied, and (4) is satisfied.

Fig. 2 illustrates the effect of these boundary conditions.
It is difficult to illustrate this in 3D and so we show a 2D
slice through the occupancy grid. Figs 2(a) and 2(b) show
the input image and a horizontal slice through the resulting
occupancy grid. The exploration boundaries are shown in red
– all voxels lying within this boundary are free space, those
outside are unknown. After applying boundary conditions
and calculating a harmonic solution over this grid we can
display ∇φ as a vector field (Fig. 2(c)).

C. Computing φ

To analytically solve Eqn 1 is not feasible for the 3D
irregular domains we are dealing with, but the occupancy
grid structure lends itself perfectly to the application of the
finite difference method (FDM). In FDM the function φ is
represented by a discrete value in each grid cell, and derivates
are approximated by differences between neighbouring cells.
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Fig. 3. FDM in two dimensions: The five-point stencil for the finite
difference calculations is shown in (a). A couple of special cases are shown
in (b) and (c). These situations require fictitious mirror values to enforce
the Neumann boundary conditions. See Section IV-C for more detail.

To apply FDM to Laplace’s equation a finite difference
approximation to the second derivative of φ is required.
Consider Fig. 3(a). It shows a point in a 2D grid with its
four neighbours in the x and y directions, separated by h (
the distance between voxel centres). The value of φ at this
point is denoted by φx,y . Taking a Taylor expansion around
φx,y in the x direction leads us to the second derivative
approximation:

∂2φ

∂x2
≈ φx+1,y − 2φx,y + φx−1,y

h2
+O(h2). (6)

Combining Eqn (6) with the corresponding equation in y
and the two dimensional version of Laplace’s equation (1)
we get:

φx,y ≈
1

4
(φx+1,y + φx−1,y + φx,y+1 + φx,y−1). (7)

This tells us that if φ satisfies Laplace’s equation then at
any point in the problem domain, i.e. at the centre of any
free-space voxel, then the value of φ at that point is simply
the average of the 4 surrounding voxels.

Eqn (7) is trivially extended into three dimensions, and it
is this sum over 6 neighbouring values which is used in our
work:

φx,y,z ≈
1

6
(φx±1,y,z + φx,y±1,z + φx,y,z±1). (8)



Of course this relies on having a regular grid structure
to operate on - not an octree structure which contains
neighbouring cells of different sizes. The conversion to a
regular grid is explained later in Section VI.

Consider again Fig. 3. In (b) and (c) we see that we cannot
use (7) as is – required cells such as φx+1,y lie outside
of the PDE domain. The solution is to use fictitious grid
points lying beyond the boundary which, if they existed,
would result in the specified derivative. The zero derivative
Neumann boundary conditions mean these fictitious values
are simply a reflectance of the interior values and so the
update equation for φx,y in Fig. 3(c) becomes:

φx,y =
1

4
(2φx−1,y + 2φx,y−1), (9)

and similarly in higher dimensions.
The solution to this bounded PDE is now calculated

by iteratively updating each cell. At each timestep (8) is
applied to every voxel. When updating φx,y,z , do we use the
neighbours’ values from the previous timestep, or the values
from this iteration if already computed? Jacobi iteration uses
values from the previous timestep, but faster convergence
can be achieved if we use the latest available values – the
Gauss-Seidel method.

We terminate based on the maximum relative error at each
timestep. The relative error for voxel x, y, z at timestep i is
defined as:

ε(x, y, z) =

∣∣∣∣∣φix,y,z − φi−1
x,y,z

φi−1
x,y,z

∣∣∣∣∣ . (10)

Termination occurs when the largest relative error drops
below a given precision threshold. A precision of εt = 10−4

was found to be acceptable.

D. Choosing a path

The resulting harmonic scalar function φ can be trivially
converted into a vector field by taking its gradient, v = ∇φ.
We choose the streamline following the path of max flow
from the current sensor pose – that is we move down the
steepest gradient. Our boundary conditions ensure that any
such streamline must terminate in a frontier voxel.

V. POSE ESTIMATION AND MAPPING

1) Stereo Processing: To obtain depth measurements from
the stereo images we use an adaptive multi-window local
matching method based on the SAD5 algorithm of [13] –
more details of our implementation can be found in [14].

2) 6 DoF Pose Estimation: Accurate knowledge of the
depth sensor position in a global coordinate frame is vital.
The relative bundle-adjustment visual odometry system of
Sibley et. al.[15] gives us 6 DoF pose estimates for the stereo
camera. This system gives poses of sub-centimetre accuracy
over multi-kilometre scales, and we consider the output to
be error-free for the purposes of this work.

VI. INTEGRATING MEASUREMENTS INTO THE MAP

As the sensor moves along the streamline to its new pose
we integrate new measurements into the existing map. This
description follows the OctoMap paper[5]. Given sensor
measurements z1:t the probability of a given voxel being
occupied is estimated as:

P (n|z1:t) =[
1 +

1− P (n|zt)
P (n|zt)

1− P (n|z1:t−1)

P (n|z1:t−1)

P (n)

1− P (n)

]−1

(11)

and this can be converted to the log-odds notation when
we assume a uniform prior (P (n) = 0.5):

L(n|z1:t) = L(n|z1:t−1) + L(n|zt). (12)

The integration of stereo data into the occpuancy grid uses
a simple beam-based inverse sensor model. For each pixel
in the depth image, a beam is cast from the camera pose to
the 3D world point. Raycasting is done using a 3D variant
of the Bresenham algorithm[16] and voxels traversed by the
ray are updated accordingly:

L(n|zt) =
{
locc - if ray ends in volume
lfree - if ray traversed volume (13)

As suggested in [5], values of locc = 0.85 and lfree = −0.4
were used.

For the purposes of performing the iterative finite difference
calculations we require a regular grid of voxels. To do this a
bounding box is found for the octree which will contain within
it all occupied and freespace voxels. A regular voxel grid is
initialised with corresponding dimensions. If we are interested
in only exploring a constrained part of the workspace, these
dimensions can be set accordingly. A freespace voxel can
easily be identified as a frontier voxel by examining its 6
immediate neighbours (x± 1, y ± 1, z ± 1) – if at least one
is unseen space then this voxel is a frontier.

VII. RESULTS

The exploration algorithm is repeated until exploration
termination, Λfrontier = ∅. When this occurs ∂S consists
entirely of occupied voxels – Λoccupied forms a closed
boundary around Λfree.

We use a simulated environment to obtain repeatable
quantitive results and to rapidly compare different exploration
strategies. We compared our approach with frontier based
exploration described in Section III. Real world results in
which a stereo camera was used to fully explore a lab
environment are also presented. The final occupancy grid
can be display as is, or used as a starting point for further
model refinements such as surface modelling - in this case a
detailed 3D point cloud is shown.

A. Simulation results

The simulated test environment consisted of a 100m3

bounding box with internal horizontal and vertical walls, and
the highest resolution voxels were 20x20x20cm. Fig. 4 shows



(a) (b)

Fig. 4. Paths taken by exploration algorithms in a simulator. The environment explored by both algorithms is identical – it is shown from two different
viewpoints in (a) and (b). (a) shows the result of the frontier based algorithm. (b) shows the path selected by the algorithm described in this paper. Note that
although both algorithms resulted in 100% exploration the path in (b) is much smoother than the path in (a), and is significantly shorter in length (40.4m
compared to 62.1m). The discontinuities in the path in (b) are due to the planned path being obstructed by previously unseen obstacles.

the exploration of this environment using both exploration
methods. Quantitive results are shown in Table 1.

As expected both strategies exhibited complete exploration
– 100% coverage of the environment indicating no remaining
frontier voxels. Our method achieved this using a noticeably
shorter total path length and with fewer scans, but at the cost
of higher computational cost.

The approximate computations listed in Table 1 quantify
and compare the computational cost of these two approaches.
Integration ops is the approximate number of raytracing
operations used to fuse depth measurements into the map –
it scales linearly with the number of scans.

The computational cost of choosing the next camera pose is
harder to compare directly due to the different methodologies
involved. Recall that the frontier method hypothesises a
number of new camera poses and selects that which is likely
to give the highest information gain. To do this for N poses
it must perform N ∗ W ∗ H raytracing operations where
the sensor image resolution is WxH pixels. In addition to
this, once a pose has been chosen a path must be planned
to reach it from the current pose – this is done using the
A* algorithm over the occupancy grid. The cost of A* is
negligible compared to the pose hypothesis step, and so the
value recorded in Table 1 is a reflection of the number of
hypothesised poses only.

The exploration described in this paper is more com-
putationally expensive when it comes to planning. In our
test example we have an occupancy grid with 132651(513)
elements, each of which must be updated iteratively at each
exploration step.

A further consideration is path shape. Subjectively com-
paring Figs 4(a) and 4(b) we see that the explorative path
generated by our approach is considerably smoother than the
angular shapes of the frontier based method. This is beneficial

Frontier This Method
Path length 62.1m 40.4m
Scans taken 130 90
Integration ops 25x106 18x106

Planning ops 51x106 99x106

Explored 100% 100%

TABLE I
QUANTITIVE COMPARISON OF EXPLORATION STRATEGIES.

for mobile robots for which sharp turns are undesirable and
is a direct consequence of the continual field approach.

B. Real world results

Fig. 5 shows the successful exploration of a lab environ-
ment using the 2D version of our exploration algorithm. The
first column is the left image from the stereo camera. The
middle column shows the gradient of the harmonic function
and the streamline chosen for exploration. The third column
shows the occupancy grid map at each stage with remaining
frontiers marked in red.

A colour PointGrey Bumblebee2 stereo camera with 65◦

horizontal field of view was used. Images were captured at
a resolution of 512x384. This experiment was run live on a
laptop, manually moving the camera to follow the streamlines
chosen by our algorithm. A grid resolution of 0.01m2 was
used, covering an area roughly 15mx10m. 66 scans were
taken and Fig. 5 shows a representative sample.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented an exploration and map building
approach which relies on nothing but stereo imagery. The
2D version runs at real-time rates in a laboratory sized



environment, and 3D has been shown to work, but with
a higher computational cost.

On concluding exploration the result is a 3D occupancy
grid of the environment with freespace and obstacles explicitly
marked. This can be used for path planning by a mobile robot,
or combined with colour information from the source stereo
images and displayed.

A GPU implementation may help alleviate some of the
problems with scaling this approach to larger scales or higher
resolutions. Additionally we plan on investigating strategies
for coping with gaps in the stereo disparity images – poorly
textured surfaces pose a problem.
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Fig. 5. Representative images from a sequence of 66 scans taken while
exploring a lab environment. The first column shows the left image from
the stereo camera. The second column shows the gradient of the harmonic
function at that pose, and the streamline chosen for exploration. The final
column shows the updating map of the world – dark points are those seen
from that particular pose. The bottom two images are of the complete map
after exploration has terminated, and a point cloud of the environment from
stereo data collected during the scans.


