
The Route Not Taken: Driver-Centric Estimation of Electric Vehicle Range
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Abstract

This paper addresses the challenge of efficiently and accu-
rately predicting an electric vehicle’s attainable range. Specif-
ically, our approach accounts for a driver’s generalised route
preferences to provide up-to-date, personalised information
based on estimates of the energy required to reach every pos-
sible destination in a map. We frame this task in the context of
sequential decision making and show that energy consump-
tion in reaching a particular destination can be formulated
as policy evaluation in a Markov Decision Process. In par-
ticular, we exploit the properties of the model adopted for
predicting likely energy consumption to every possible desti-
nation in a realistically sized map in real-time. The policy to
be evaluated is learned and, over time, refined using Inverse
Reinforcement Learning to provide for a life-long adaptive
system. Our approach is evaluated using a publicly available
dataset providing real trajectory data of 50 individuals span-
ning approximately 10,000 miles of travel. We show that by
accounting for driver specific route preferences our system
significantly reduces the relative error in energy prediction
compared to more common, driver-agnostic heuristics such
as shortest-path or shortest-time routes.

INTRODUCTION
According to recent market forecasts the number of elec-
tric vehicles (EVs) on the roads worldwide is set to in-
crease from ca. 150,000 in 2013 to over two million by
2020 (ABI 2013). The adoption of this technology is driven
largely by environmental, economic and political factors.
However, recent studies have shown that one of the pri-
mary impediments to such mass-market adoption is range
anxiety due to inaccurate in-situ estimates of available vehi-
cle range (Nilsson 2011). As a result, many studies now
exist aimed at modelling energy consumption and factors
influencing it such as a driver’s likely acceleration profile
(see, for example, (Karbowski, Pagerit, and Calkins 2012;
Oliva, Weihrauch, and Torsten 2013)). Often, these systems
provide the user with an indication of attainability for a
particular destination queried. However, a significant dis-
advantage of these approaches is the requirement to man-
ually specify a-priori the desired destination – a task which
quickly becomes a nuisance. In addition, even if the desti-
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nation were known, the exact route taken may induce varia-
tions in energy usage of up to 40% (Minett et al. 2011).

Our work aims to address these shortcomings by provid-
ing the driver with a personalised range map, which ex-
haustively specifies attainability for every destination in a
realistically sized map in real-time, without the burden on
the driver to provide route or destination information (see
Fig. 1). Instead of such explicit user-interaction we propose
a life-long learning system, which continuously adapts to
driver-specific energy needs by learning a route preference
model. Attainability estimates are derived by comparing pre-
dictions of likely energy consumption with the current state
of charge of the EV battery. While our work leverages a
commonly employed route preference model, it is the re-
quirement for efficient consideration of all routes to every
possible destination in the map, which sets our endeavour
apart from the otherwise richly studied area of route pre-
diction. In particular, we show that framing this problem in
the context of sequential decision making provides a natural
mechanism not only for the incorporation of driver-specific
information but also allows for an efficient implementation
suitable for real-time deployment. Energy estimates them-
selves are based on a canonical model of vehicle energy
consumption accounting for driving style, route infrastruc-
ture and geography.

To the best of our knowledge this is the first work aimed
at efficiently providing personalised range maps by account-
ing for a driver’s generalised route preferences only based
on observing driving behaviour. Further contributions of our
work are

• the formulation of the prediction of expected energy con-
sumption as policy evaluation in a Markov Decision Pro-
cess,

• an efficient algorithm for providing real-time, person-
alised predictions of attainability for all destinations in
a map,

• a system capable of life-long adaptation to user prefer-
ences.

We demonstrate that continuously accounting for gener-
alised route preferences over time significantly reduces the
error in predicted energy use – and hence improves predic-
tion of attainable range.



Figure 1: Range maps personalised for particular drivers as typically provided by our system. The attainability of every possible
destination is indicated (shaded area) for the same vehicle location (triangle) and battery state of charge. Our work specifically
accounts for the variation of these maps induced by a driver’s route preferences by continuously observing trajectories travelled
by a specific user.
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Figure 2: State-action space of the MDP modelling the road
network. States correspond to oriented road segments and
actions correspond to possible actions at the end of a road
segment.

PROBLEM FORMULATION
Consider a driver who routinely uses an electric vehicle for
transportation in a given area, for which a map is available.
Specifically, we consider a map to consist of a road network
composed of individual road segments si, which are joined
at intersections. Such a road network together with associ-
ated route infrastructure (e.g. number and location of traffic
lights, stop signs, etc) can be readily obtained from com-
munity projects such as OpenStreetMap (Haklay and Weber
2008).

The problem of range map generation can be formulated
as identifying map destinations which are energetically at-
tainable. We model this situation by considering the desti-
nation sg being attainable if the expected energy required to
travel there Eθ(ss, sg) from the current location ss for user-
specific driving preferences θ is less than the current state of
charge of the battery, Esoc.

Our goal, then, is to estimate the expected energy,
Eθ(ss, sg) to every destination, sg . We assume that travel
is restricted to the available road network, i.e. that a driver
will not drive off-road. The map topology thus gives rise to
a set of all available trajectories Ts,g = {ς1, . . . , ςn}, where
each ςi denotes a specific trajectory from ss to sg . These
trajectories can be substantially different and each one has
associated with it a particular energy cost E(ςi). We further

express a driver’s preferences over the set of trajectories as a
conditioning of the likelihood of a particular trajectory being
traversed, pθ(ςi), on the set of user-specific parameters θ. In
this formulation, therefore, we are interested in computing,
for every possible destination sgoal in the map, the expected
energy consumed in getting there from the current location
ss as

Eθ(ss, sg) =
∑

ςi∈Ts,g

pθ(ςi)E(ςi). (1)

While intuitive, this approach to range map computation
suffers from two significant drawbacks. Firstly, the set Ts,g
can consist of exponentially many trajectories, which ren-
ders a direct computation of Eθ(ss, sg) infeasible in a real-
time context. Secondly, this problem is compounded by the
need to compute Eθ(ss, sg) for every possible destination
sg in the map. In the remainder of this paper we set out a
computationally efficient solution to the task of computing
such a driver-specific range map.

RANGE PREDICTION VIA SEQUENTIAL
DECISION MAKING

We consider a model where generalised route preferences
of the driver are encoded as a particular policy in a Markov
Decision Process (MDP). We assume this policy to optimise
an a-priori unknown, user-specific reward structure, which
can be learned and, over time, refined from trajectory data
using Inverse Reinforcement Learning (IRL). Computation
of Equ. 1 for a single destination sg is framed as an eval-
uation of this policy in a related MDP, which has its re-
ward structure replaced with one expressing the energy de-
mand of every action based on a canonical model of energy
consumption. At the end of this section we present an effi-
cient polynomial-time algorithm which allows computation
of Eθ(ss, sg) for every destination at once – a property crit-
ical to real-time range map computation.

Energy Consumption As MDP
Let an MDP be specified by the tuple {S,A,P,R} where
the set of states is composed of all road segments in a



Figure 3: Examples of most likely trajectories between the same start and destination induced by three different route pref-
erences. [left] minimum time traveled (the trajectory mainly follows motorways), [middle] minimum distance traveled and
[right] custom preference learned from observations.

map, S = {s1, s2, . . . , sN}, the set of available actions is
composed of all possible turns at the end of a road seg-
ment, A = {a1, a2, . . . , aM}, the transition model, P , is
deterministic and the reward structure,R, associates one re-
ward with each state-action pair. In fact, the specific MDP
we consider here encompasses all oriented road segments
and associated actions as illustrated in Fig. 2. In this case
the rewards express the energy cost of choosing a partic-
ular action in a particular state, E(si, aj). The determin-
istic transition model implies that a particular state-action
pair leads to a particular next state with certainty, such that
p(sj | si, ak) = 1. Any trajectory in the road network
can then be expressed as a sequence of state-action pairs
ς = {{s0, a0}, {s1, a1}, ..., {sn−1, an−1}, {sn, an}} where
the final state, sn, is an absorbing state where no further re-
ward is accrued independent of actions taken. In this model
every trajectory has an associated total energy cost given by
the sum of the individual costs

E(ςi) =
∑

{st,at}∈ςi

E(st, at). (2)

We assume driver route preferences when driving to sg to
result in a stochastic policy π defining a probability distri-
bution over possible actions pπ(aj | si) at the end of every
road segment. The probability of the user taking a particular
trajectory can be expressed as the probability of observing
the corresponding state-action sequence, such that

pθ(ςi) =
∏

{st,at,st+1}∈ςi

p(st+1 |st, at)pπ(at |st). (3)

Computing Eθ(ss, sg) as per Equ. 1 is now equivalent to
evaluating the value of policy π at state ss.

Eθ(ss, sg) = Vπ(ss). (4)

Several efficient methods for policy evaluation exist. Here
we employ a method where Vπ(ss) can be found as a solu-

tion of a system of linear-equations (Sutton and Barto 1998):

Vπ(si) =
∑
aj

pπ(aj |si)
(
E(si, aj)

+
∑
sk

p(sk |si, aj)Vπ(sk)
)

(5)

Moreover, this method has the advantage that it produces
value Vπ(si) and hence Eθ(si, sg) for all possible starting
states si at once. Computation of a range map however re-
quires the opposite – Eθ(ss, si) for all possible destinations
si - an expected energy to reach every destination. In a sub-
sequent section we show how our formulation makes com-
putation of this quantity feasible at no extra cost. First, how-
ever, the driver-specific policy π has to be learned.

Driver Model
The policy to be evaluated implicitly induces the driver-
specific probability distribution over possible trajectories,
pθ(ςi) considered in Equ. 1. This becomes apparent when
contrasting, for example, the trajectories taken by drivers
who minimise travel time or distance (see Fig. 3) with the
more complex preferences often exhibited in reality. Follow-
ing the work of (Ziebart et al. 2008), here we describe how,
for an individual driver, both pθ(ςi) and pπ(aj | si) can be
derived given a set of trajectories traversed. As in the ex-
amples above we implicitly assume a driver to optimise an
a-priori unknown cost function which leads to a particular
trajectory to a given destination. In particular, we employ
the feature-based IRL formulation proposed by (Ziebart et
al. 2008) and express this cost as a driver-specific reward
structure in an MDP defined over the road network. More
specifically, this MDP is identical to the one described in the
previous section apart from the reward structure, which is
unknown and needs to be recovered. The reward for a given
state-action pair, Rθ(si, aj), is assumed to be a weighted
linear combination of features, fsi,aj , such that

Rθ(si, aj) = θ>fsi,aj , (6)

where θ denotes the weight vector. The features express
various properties encountered when transitioning from one



road segment to another, such as the segment length, the time
required to traverse it, the road class (e.g. motorway, dual
carriage way, residential, etc.) and number of lanes, angle
of turn as well as the number of full stops required due to,
for example, the presence of traffic lights or stop signs. The
overall reward for a given trajectory, Rθ(ςi), is computed as
the sum of the rewards of the state-action pairs encountered
along it,

Rθ(ςi) =
∑

{st,at}∈ςi

Rθ(st, at). (7)

For given weights θ the probability of a driver taking trajec-
tory ςi is considered to be proportional to a function expo-
nential in its total reward,

pθ(ςi) ∝ eRθ(ςi). (8)

This preference model gives rise to an equivalent stochastic
policy in the MDP specifying the probability of taking action
aj in state si, which is proportional to the sum of probabili-
ties of trajectories starting with the given action, such that

pπ(aj |si) ∝
∑

ςk:{si,aj}∈ςk:t=0

pθ(ςk). (9)

Maximum Entropy Inverse Reinforcement Learning can
then be used to find the weight vector θ for a given driver
based on observed trajectories. This, as well as the computa-
tion of the driver specific policy can be carried out efficiently
using the forward-backward algorithm described in (Ziebart
et al. 2008).

An important attribute of this model is that it does not
suffer from the label-bias problem (Lafferty, McCallum,
and Pereira 2001). This ultimately leads to a computational
shortcut when evaluating this policy as discussed in a subse-
quent section.

Efficient Range Map Computation
As described above, policy evaluation approaches can
be used to compute the expected energy requirement
Eθ(ss, sg) in reaching a destination sg from the current lo-
cation ss. The generation of a range map, however, in princi-
ple requires the application of such a policy evaluation step
for every possible destination, which is computationally in-
feasible. Instead we present a computational shortcut, which
allows for the simultaneous evaluation of Eθ(ss, si) for ev-
ery possible goal si in a map.

In particular, instead of the original MDPs used to model
trajectory preferences and energy consumption we now con-
sider related MDPs consisting of the same set of states, ac-
tions and rewards but with a transition model P ′ which en-
codes the transpose of the original road graph. Effectively,
therefore, the outcome of every action is reversed, such that
p′(sk | si, aj) = p(si | sk, aj). Note that every trajectory ςi
in the original MDPs is also feasible in these new MDPs but
that it is traversed in reverse (see Fig. 4). Importantly, as the
reward structure remains the same, Equ. 8 implies that the
probability distribution over trajectories Ts,g from ss to sg in
the original MDPs is the same as the probability distribution
over trajectories T ′g,s from sg to ss in the new MDPs. It fol-
lows, therefore, that Eθ(ss, sg) in the original road network

Algorithm 1 Efficient Range Map Computation.
Input: ss position of the car

Esoc battery charge
fsi,aj segments features
θ routing preferences
E(si, aj) segments energy consumption

Output: drivable(si) destinations attainability
Compute road segment rewards

1. Rθ(si, aj) = θ>fsi,aj

Transpose the road network
2. p′(sk |si, aj) = p(si |sk, aj)

Compute driver policy π to reach state ss
3. Zss = 1

Recursively compute for N iterations:
4. Zsiaj =

∑
sk
p′(sk |si, aj)eRθ(si,aj)Zsk

5. Zsi =
∑
aj
Zsiaj + 1{si=ss}

6. p′π(aj |si) =
Zsiaj

Zsi

Solve system of linear equations for V ′π(si)

7. V ′π(si) =
∑
aj
p′π(aj |si)

(
E(si, aj)

+
∑
sk
p′(sk |si, aj)V ′π(sk)

)
Compute resulting drivability map

8. Eθ(ss, si) = V ′π(si)

9. drivable(si) =

{
true if Eθ(ss, si) ≤ Esoc
false otherwise

and E′θ(sg, ss) in the transposed version are equivalent,

Eθ(ss, sg) =
∑

ςi∈Ts,g

pθ(ςi)E(ςi)

=
∑

ςi∈T ′
g,s

p′θ(ςi)E(ςi) = E′θ(sg, ss).(10)

As a result, Eθ(ss, si) can be computed for every si at once
by first constructing MDPs based on the transposed road net-
work and then solving for the expected energy consumption
E′θ(si, ss) from every starting state si to the destination ss
as described previously.
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Figure 4: A trajectory spanning states and actions in the orig-
inal road network (a) and the same trajectory in the trans-
posed network (b).



The algorithm is summarised in Algorithm 1. Computa-
tion of Eθ(ss, si) consists of three steps. First, we transpose
the road network. Then we compute a policy to reach state si
based on a particular driver’s route preferences in the trans-
posed route network using the backward pass described by
(Ziebart et al. 2008). The value of this policy for every state
is then computed by solving a system of linear equations.
The final range map is obtained by thresholding the energy
consumption predictions against the current state of charge
of the vehicle battery, Esoc.

VEHICLE ENERGY MODEL

The energy consumed over the course of a trajectory, E(ς),
is modelled as the sum of energy costs of state-action pairs
along the trajectory and given by Equ. 2. This cost incor-
porates events specific to the transition, such as potentially
stopping at an intersection or changing velocity according
to the law of the land, as well as the energy required while
traversing road segment st+1 itself. To estimate these values
we combine a canonical model of an expected velocity pro-
file with a physical model of the resulting energy demand of
the vehicle.

Velocity Profile

We model a driver’s chosen velocity, v, and acceleration, v̇,
as a road segment is traversed by adapting the Intelligent
Driver Model (IDM) by (Treiber, Hennecke, and Helbing
2000). The IDM was originally applied in the context of a
car-following scenario. It can, however, be employed here
by assuming the end of the road segment to be a car moving
at velocity vt equivalent to the desired velocity at the end
of the segment. Given the road speed limit v0 and distance
to the end of the segment s, the acceleration of the driver is
then given by the ordinary differential equation

v̇ = v̇max

(
1−

(
v

v0

)δ)
+ v̇min

(
(v − vt)2

4s2

)
. (11)

Values of speed limits, positions of stop signs and traffic
lights can be extracted from sources such as OpenStreet map
(Haklay and Weber 2008). δ denotes a smoothness parame-
ter. The values used are summarised in Table 1.
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Figure 5: The forces acting on a car (Guzzella and Sciarretta
2007).
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Figure 6: Velocity, acceleration and power demand profile
for three adjacent road segments containing a speed limit, a
stop sign and a slight elevation.

Physical Model
The energy cost of an action E(si, aj) is obtained by inte-
grating the vehicle’s power demand Pcar during action aj ,

E(si, aj) =

∫
Pcar(t)dt. (12)

The power demand of the car is the sum of the engine power
Peng and the auxiliary power demand Paux due to car ac-
cessories such as lights, air conditioning, etc, such that

Pcar = Peng + Paux. (13)

The engine power demand, Peng , is a function of velocity
and acceleration. We assume an efficient system such that

Peng = Feng · v, (14)

where Feng is the force produced by the engine required to
overcome forces acting on the vehicle at a given speed. As
depicted in Fig. 5, these forces decompose into components
due to acceleration, friction, air resistance and gravitation
(Guzzella and Sciarretta 2007).

Feng = Facc + Ffriction + Fair + Fg, (15)

where

• Facc = m · v̇ is the force needed to accelerate the vehicle,

• Ffriction = crr ·m · g is the rolling resistance,

• Fair = 1
2cd ·Af ·ρ·v

2 is the aerodynamic resistance force,

• Fg = m · g · sin(α) is the hill-climbing force.

The physical constants required to compute these quantities
are inspired by those for a Nissan Leaf and are detailed in Ta-
ble 1. Fig. 6 shows an example of the resulting acceleration,
velocity and power demand profile of a vehicle traversing a
typical segment of the road network.



Constant Description Value
v̇max maximum acceleration 1m/s2

v̇min comfortable deceleration −3m/s2
δ smoothness coefficient 4
m vehicle mass 1521kg
crr rolling friction coefficient 0.015
cd aerodynamic drag coefficient 0.25
Af frontal area 2.846m2

ρ air density 1.22kg/m3

Paux auxiliary power consumption 490W

Table 1: Physical quantities and values used to model energy
consumption.

EXPERIMENTS
This section explores the efficacy of the method proposed
and provides benchmarking with respect to alternative ap-
proaches. In particular, we set out to demonstrate that inte-
gration of driver-specific route preference information pro-
vides a significant performance gain in terms of reduced pre-
diction error as compared to more standard, driver agnos-
tic methods assuming, for example, shortest path or traver-
sal time models. As range map generation crucially depends
on the accuracy of the underlying estimates of energy con-
sumption we will focus our evaluation on the relative error
incurred in Eθ(ss, sg).

For evaluation we use Microsoft’s GeoLife dataset (see,
for example, (Zheng et al. 2008; 2009; Zheng, Xie, and
Ma 2010)) containing GPS traces collected from a num-
ber of different users. Specifically, our experiments consider
50 different users, each having on average 100 trajectories
spanning the urban area of Beijing, China. The road net-
work and infrastructure information for this region cover-
ing about 100km2 was obtained from the OpenStreetMap
project (Haklay and Weber 2008). This road network is
very dense and contains a multitude of possible routes be-
tween any two places. The resulting MDP contains 80,000
states and 130,000 actions. As the dataset contains GPS
traces only, these were segmented into individual trajecto-
ries based on time and position information. Next, the Hid-
den Markov Model-based method described in (Newson and
Krumm 2009) was used to match the GPS trajectories to the
traversed road segments. Following this preprocessing step,
for every user considered 30 trajectories were sampled ran-
domly from the set of trajectories available. The remainder
were used for testing. Across all users this resulted in to-
tal training and test set sizes of 1500 and 3500 trajectories,
respectively.

Prediction Accuracy
For each driver individually a subset of the training set tra-
jectories were used to learn the preference weights, θ. The
prediction accuracy of the learned model was then evaluated
using all trajectories in the test set. In particular, for every
{s, g} pair observed in the test set a prediction is made of
the expected energy expense incurred by that driver for that
trip, Eθ(ss, sg). This value is then compared against the en-
ergy requirement computed for the actual trajectory taken.

As evaluation metric we thus employ the relative prediction
error, ε(ςi|θ), for trajectory ςi given the learned weight vec-
tor, θ, as compared to ground-truth

ε(ςi|θ) = 100 ·
∣∣∣Eθ(ss, sg)

E(ςi)
− 1
∣∣∣. (16)

Fig. 7 shows the relative prediction error for 50 users as the
amount of training data is increased. This is akin to more
trajectory information becoming available over time. The
figure indicates that the prediction error decreases rapidly
from that obtained using the initial model as the number
of training trajectories is increased. As information is added
to the model beyond 16 training trajectories improvements
are more marginal until, at 28 training trajectories, the over-
all prediction error reaches ca. 6.5%. In our formulation we
compute Eθ(ss, sg) as an expectation over the entire set of
possible trajectories from start to goal state. The benefit of
this approach over considering, for example, only the most
likely trajectory given a driver’s preferences is also shown
in Fig. 7. The trajectory from start to goal state correspond-
ing to the maximum-likelihood estimate (MLE) is found by
computing the shortest path through the road network using
the learned segment cost. While the trend of the MLE solu-
tion is similar to that found when computing the full expec-
tation in that the prediction error decreases as information
is added to the system, the results suggest overall a perfor-
mance decrease of ca. 1% compared to using the entire dis-
tribution. In contrast, our approach computes an expectation
over the entire distribution over trajectories.

We further consider two alternative models for path cost:
travel time and distance. Results for both of these are also
shown in Fig. 7, which indicates that these commonly used
estimates result in considerably higher overall prediction er-
ror. This is confirmed by a statistical sign test (Gibbons and
Chakraborti 2011) at 99% confidence level and suggest that
drivers indeed exhibit more complex preferences as to which
route is taken.

Timing
The experiments reported here were carried out using code
implemented in MATLAB executed on a laptop containing
a 2.6GHz i7 processor and 8GB of RAM. With this config-
uration map updates – i.e. energy usage predictions to ev-
ery destination for any given starting position – for a map
containing 80,000 states were computed at ca. 0.5Hz. De-
spite running unoptimised code this performance is already
sufficient for real-time deployment as map updates can be
computed significantly faster than road segments are tra-
versed by the vehicle. We emphasise that this degree of map
complexity already encompasses a realistic area of opera-
tion. However, as map complexity increases, for example
either due to a more elaborate (denser) road network or a
greater area covered, map sparsification could be performed
in which adjacent road segments could be merged to obtain
similar performance.

RELATED WORKS
Not least due to the significant economic implications cou-
pled to a large scale adoption of battery electric vehicles, the
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Figure 7: Mean predictive error as the number of training
trajectories increases for a variety of models. The approach
proposed considers preference learning on a per-driver ba-
sis and accounts for the entire distribution over potential
trajectories. It achieves the lowest overall prediction error
compared to the maximum-likelihood trajectory estimate as
well as more common modelling assumptions such as pref-
erences for minimum travel time or distance.

prediction of electric vehicle range is an active area of re-
search. Often, considerable effort is expended in generating
predictive models for the vehicles’ future energy consump-
tion as a proxy for range.

A common way of approaching this problem is to pre-
dict a single number – miles to empty – independent of
road topology, infrastructure or geography. The approaches
by (Ceraolo and Pede 2001), (Chen et al. 2012) and (Oliva,
Weihrauch, and Torsten 2013), for example, provide on-line
range estimation by extrapolating future energy-use based
on that observed in the recent driving history, often of the or-
der of minutes. The accuracy of the prediction at any point in
time therefore relies on the implicit assumption that the rate
of energy consumption remains relatively constant through-
out the journey. This assumption is overly optimistic since
the energy consumption of a vehicle varies significantly with
factors like acceleration and speed profile, a route’s eleva-
tion profile, route infrastructure such as traffic lights and
stop signs as well as traffic volume (all potentially leading
to start-stop behaviour).

A number of works can be considered to overcome these
shortcomings. Work by (Karbowski, Pagerit, and Calkins
2012) and (Kim, Lee, and Shin 2013), for example predict
the energy consumption of the vehicle along a user-specified
trajectory accounting for common factors of influence. In
cases when the destination is known but the route is left un-
specified a heuristic, such as shortest path or travel time, can
be used to obtain an expected route for which energy re-
quirements can then be estimated (see, for example, (Gonza-
lez et al. 2007)). As our results indicate, however, such pre-
dictions are inaccurate because people tend to exhibit more

complex route preferences than are captured by these heuris-
tics.

Several works have also considered the more complex
prediction problem encountered when neither the destina-
tion nor the route are known. (Froehlich and Krumm 2008)
and (Joseph, Doshi-Velez, and Roy 2010), for example use
anonymised GPS trajectory records of drivers traversing an
area to predict the expected trajectory in the near future. Al-
though this method is powerful in some scenarios it requires
a good coverage of prior GPS trajectories and can often re-
liably provide only short-distance predictions.

One way of avoiding altogether the requirement to esti-
mate a destination is to make predictions of energy usage
for every possible destination in a map. This results in a
map indicating attainable destinations similar to the range
maps considered in this work, which provide an intuitive vi-
sual reference as to whether a driver’s intended destination
is reachable or not. (Ferreira, Monteiro, and Afonso 2012)
provide a cloud-based solution based on querying an exter-
nal route planning engine to estimate expected trajectories
to nearby destinations. Energy usage estimates are then ob-
tained for a sparse subset of possible destinations by em-
ploying trajectory-based models as above. This approach is
computationally costly as every destination requires a sepa-
rate query.

Our work shares the aspiration of providing a driver with
a map indicating attainable driving range. Above and be-
yond prior art, however, our approach accounts for driver-
specific route preferences as well route-specific factors by
integrating over driver-specific distributions over possible
trajectories to every possible destination. Our results show
that this leads to more accurate predictions of energy usage
over driver-agnostic approaches. Further, and in contrast to
(Ferreira, Monteiro, and Afonso 2012), we generate dense
maps indicating attainability for every possible destination
at a speed suitable for on-line deployment.

To the best of our knowledge this is the first work combin-
ing route preference modelling with energy usage prediction
for electric vehicles. However, our work is closely related to
that by (Vogel et al. 2012) who also use IRL to learn route
preferences in order to optimise the powertrain controller of
a hybrid car, leading to fuel saving of 1.22% over a tradi-
tional approach. In contrast to this work, the estimation of
an attainable range map poses significant algorithmic chal-
lenges – most notably the requirement to efficiently compute
estimates for every possible destination and not only short-
term behaviour.

CONCLUSIONS AND FUTURE WORK
Previous work in range estimation for electric vehicles has
largely ignored driver preferences in terms of route selec-
tion. In this work we propose an efficient framework to ac-
count for such preferences and show that our approach can
reduce the error in predicted energy use to almost one half of
that obtained when predicting energy consumption based on
common heuristics such as shortest travel time. We leverage
an Inverse Reinforcement Learning approach to provide a
life-long learning system in a manner entirely transparent to
the user – simply by observing the trajectories along which



a vehicle travels.
While the results obtained in this work are promising in-

deed, several avenues are apparent for potential further in-
vestigation. Firstly, while an average relative prediction er-
ror of 6.5% is achieved using a training set of 28 trajecto-
ries per driver we have not as yet investigated the degree to
which this error evolves as further information is added to
the system. More training trajectories are an obvious candi-
date for expansion. Furthermore, while the work presented
here makes use of a canonical vehicle energy model we hope
in the future to be able to use real energy data from a bat-
tery electric vehicle. Our approach also does not currently
consider second-order effects whereby driving behaviour is
influenced by a driver’s knowledge of the current state of
charge of the battery. In order to explore both of these direc-
tions we are currently engaged in obtaining a dataset of real
energy usage recorded with a Nissan Leaf.
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