
Maximum Entropy Deep Inverse Reinforcement Learning

Markus Wulfmeier and Peter Ondrúška and Ingmar Posner
Mobile Robotics Group

Department of Engineering Science
University of Oxford

Abstract

This paper presents a general framework for employ-
ing deep architectures - in particular neural networks -
to solve the inverse reinforcement learning (IRL) prob-
lem. Specifically, we propose to exploit the represen-
tational capacity and favourable computational com-
plexity of deep networks to approximate complex, non-
linear reward functions in scenarios with large state
spaces. We show that the Maximum Entropy paradigm
for IRL lends itself naturally to the efficient training of
deep architectures. At test time, the approach leads to
a computational complexity independent of the num-
ber of demonstrations. This makes it especially well-
suited for applications in life-long learning scenarios
commonly encountered in robotics. We demonstrate
that our approach achieves performance commensurate
to the state-of-the-art on existing benchmarks already
with simple, comparatively shallow network architec-
tures while significantly outperforming the state-of-the-
art on an alternative benchmark based on more complex,
highly varying reward structures representing strong in-
teractions between features. Furthermore, we extend the
approach to include convolutional layers in order to
eliminate the dependency on precomputed features of
current algorithms and to underline the substantial gain
in flexibility in framing IRL in the context of deep learn-
ing.

1 Introduction
The objective of inverse reinforcement learning (IRL) is to
infer the underlying reward structure guiding an agent’s be-
haviour based on observations as well as a model of the envi-
ronment. This may be done either to learn the reward struc-
ture for modelling purposes or to provide a method to allow
the agent to imitate a demonstrator’s specific behaviour (Ra-
machandran and Amir 2007).

Much of the prior art in this domain relies on parametri-
sation of the reward function based on pre-determined fea-
tures. In addition to better generalisation performance than
direct state-to-reward mapping, this approach enables the
transfer of learned reward functions between different sce-
narios with the same feature representation. A number of
early works from (Ziebart et al. 2008), (Abbeel and Ng
2004) and (Ratliff, Bagnell, and Zinkevich 2006), express
the reward function as a weighted linear combination of
hand selected features. To overcome the inherent limita-

Figure 1: Schema for reward function approximation based
on the feature representation of MDP states

tions of linear models, (Choi and Kim 2013) and (Levine,
Popovic, and Koltun 2010) extend this approach to a lim-
ited set of nonlinear rewards by learning a set of composites
of logical conjunctions of atomic features. Non-parametric
methods such as Gaussian Processes (GPs) have also been
employed to cater for potentially complex, nonlinear re-
ward functions (Levine, Popovic, and Koltun 2011). While
in principle this extends the IRL paradigm to the flexibility
of nonlinear reward approximation, the use of a kernel ma-
chine makes this approach prone to requiring a large number
of reward samples in order to approximate highly varying
reward functions (Bengio, LeCun, and others 2007). Even
sparse GP approximations as used in (Levine, Popovic, and
Koltun 2011) lead to a query complexity time in dependency
of the size of the active set or the number of experienced
state-reward pairs. Situations with increasingly complex re-
ward function leading to higher requirements regarding the
number of inducing points can quickly render this nonpara-
metric approach computationally impracticable. In compar-
ison to (Babes et al. 2011), we focus on a singular expert in
what finally leads to an an end-to-end learning scenario in
section 4 from raw input to reward without compression or
preprocessing on the input representation.

In contrast to prior art, we explore the use of deep ar-
chitectures - in particular neural networks - to approximate
the reward function. Deep Neural Networks (DNNs) already
achieve state-of-the-art performance across a variety of do-
mains such as computer vision, natural language processing,
speech recognition (Bengio, Courville, and Vincent 2012)
and reinforcement learning (Mnih et al. 2013). Their appli-

cation in IRL is attractive due to their compact represen-
tation of highly nonlinear functions through the composi-
tion and reuse of the results of many nonlinearities in the
layered structure (Bengio, LeCun, and others 2007). In ad-
dition, DNNs provide favourable computational complex-
ity (O(1)) at query time with respect to observed demon-
strations, which provides for scaling to problems with large
state spaces and complex reward structures – circumstances
which might render the application of existing prior meth-
ods intractable or ineffective. With the approach represented
in Figure 1, a state’s reward can be determined either solely
based on its own feature representation or – in using con-
volutional layers – analysed in combination with its spatial
context. To our knowledge the only other work considering
a roughly similar approach is given by (Levine et al. 2015),
who focus on directly approximating policies with neural
networks but shortly refer to the possibility of extension for
cost function learning.

Our principal contribution is a framework for Maximum
Entropy Deep Inverse Reinforcement Learning (DeepIRL)
based on the Maximum Entropy paradigm for IRL (Ziebart
et al. 2008), which lends itself naturally for training deep
architectures by leading to an objective that is - without ap-
proximations - fully differentiable with respect to the net-
work weights. Furthermore, we demonstrate performance
commensurate to state-of-the-art methods on a publicly
available benchmark, while outperforming the state-of-the-
art on a new benchmark where the true underlying reward
has complex interacting structure over the feature represen-
tation. In addition, we emphasise the flexibility of the ap-
proach and eliminate the requirement of preprocessing and
precomputed features by applying convolutional layers to
learn spatial features of relevance to the IRL task.

We argue that these properties are important for practical
large-scale applications of IRL as can be seen in life-long
learning approaches with often complex reward functions
and increasing scale of demonstrations requiring high ca-
pacity models and fast computational speeds.

2 Inverse Reinforcement Learning
This section presents a brief overview of IRL. Let a Markov
Decision Process (MDP) be defined asM = {S,A, T , r},
where S denotes the state space, A denotes the set of pos-
sible actions, T denotes the transition model and r denotes
the reward structure. Given an MDP, an optimal policy π∗ is
one which, when adhered to, maximizes the expected cumu-
lative reward. In some cases an additional factor γ ∈ [0, 1]
may be considered in order to discount future rewards.

IRL considers the case where a MDP specification is
available but the reward structure is unknown. Instead, a set
of expert demonstrations D = {ς1, ς2, ..., ςN} are provided
which are drawn from a user policy π, i.e. provided by a
demonstrator. Each demonstration consists of a set of state-
action pairs such that ςi = {(s0, a0), (s1, a1), ..., (sK , aK)}.
The goal of IRL is to uncover the hidden reward r from the
demonstrations.

A number of approaches have been proposed to tackle
the IRL problem (see, for example, (Abbeel and Ng 2004),
(Neu and Szepesvári 2012), (Ratliff, Bagnell, and Zinkevich
2006), (Syed and Schapire 2007)). An increasingly popular

formulation is Maximum Entropy IRL (Ziebart et al. 2008),
which was used to effectively model large-scale user driving
behaviour. In this formulation the probability of user pref-
erence for any given trajectory between specified start and
goal states is proportional to the exponential of the reward
along the path

P (ς|r) ∝ exp{
∑
s,a∈ς

rs,a}. (1)

As shown in Ziebart’s work, principal benefits of the Maxi-
mum Entropy paradigm include the ability to handle expert
suboptimality as well as stochasticity by operating on the
distribution over possible trajectories. Moreover, the Max-
imum Entropy based objective function given in Equation
8 enables backpropagation of the objective gradients to the
network’s weights. The training procedure is then straight-
forwardly framed as an optimisation task computable e.g.
via conjugate gradient or stochastic gradient descent.

Approximating the Reward Structure
Due to the dimensionality and magnitude of the state space
in many real world applications, the reward structure can not
be observed explicitly for every state. In these cases state
rewards are not modelled directly per state, but the reward
structure is restricted by imposing that states with similar
features, x, should have similar rewards. To this end, func-
tion approximation is used in order to regress the feature
representation onto a real valued reward using a mapping
g : RN → R, with N being the dimensionality of the fea-
ture space such that

r = g(f, θ). (2)

This feature representation, f , is usually hand-crafted, but
can be learned based on the proposed framework - as shown
in section 4.

The choice of model used for function approximation has
a dramatic impact on the ability of the algorithm to capture
relationship between the state feature vector f and user pref-
erence. Commonly, the mapping from state to reward is sim-
ply a weighted linear combination of feature values

g(f, θ) = θ>f. (3)

This choice, while appropriate in some scenarios, is subopti-
mal if the true reward can not be accurately approximated by
a linear model. In order to alleviate this limitation (Choi and
Kim 2013) extend the linear model by introducing a map-
ping Φ : RN → {0, 1}N such that

g(f, θ,Φ) = θ>Φ(f). (4)

Here Φ denotes a set of composite features which are jointly
learned as part of the objective function. These composites
are assumed to be the logical conjunctions of the predefined,
atomic features f . Due to the nature of the features used
the representational power of this approach is limited to the
family of piecewise constant functions.

In contrast, (Levine, Popovic, and Koltun 2011) employ
a Gaussian Processes (GP) framework to capture the po-
tentially unbounded complexity of any underlying reward

structure. The set of expert demonstrations D is used in this
context to identify an active set of GP support points, Xu,
and associated rewards u. The mean function is then used to
represent the individual reward at a state described by f

g(f, θ,Xu, u) = K>f,uK
−1
u,uu. (5)

Here Kf,u denotes the covariance of the reward at f with
the active set reward values u located at Xu and Ku,u de-
notes the covariance matrix of the rewards in the active set
computed via a covariance function kθ(fi, fj) with hyper-
parameters θ.

Nevertheless, a significant drawback of the GPIRL ap-
proach is a computational complexity proportional to the
number of demonstrations and the size of the active set of
inducing points, which in turn depends on the reward com-
plexity. While the modelling of complex, nonlinear reward
structures in problems with large state spaces is theoretically
feasible for the GPIRL approach, the cardinality of the active
set will quickly become unwieldy, putting GPIRL at a sig-
nificant computational disadvantage or, worse, rendering it
entirely intractable. These shortcomings are remedied when
using deep parametric architectures for reward function ap-
proximation, as outlined in the next section.

3 Reward Function Approximation with
Deep Architectures

We argue that IRL algorithms scalable to MDPs with large
feature spaces require models, which are able to efficiently
represent complex, nonlinear reward structures. In this con-
text, deep architectures are a natural choice as they explicitly
exploit the depth-breadth trade-off (Bengio, LeCun, and oth-
ers 2007) and increase representational capacity by reusing
the computations of earlier nodes in the following layers.

For the remainder of the paper, we consider a DNN archi-
tecture which accepts as input state features x, maps these
to state reward r and is governed by the network parame-
ters θ1,2,..n. In the context of Section 2, the state reward is
therefore obtained as

r ≈ g(f, θ1, θ2, ..., θn) (6)
= g1(g2(...(gn(f, θn), ...), θ2), θ1). (7)

While many choices exist for the individual building blocks
of a deep architecture, it has been shown that a sufficiently
large DNN with as little as two layers and sigmoid activation
functions can represent any binary function (Hassoun 1995)
or any piecewise-linear function (Hornik, Stinchcombe, and
White 1989) and can therefore be regarded as a universal
approximator. While this holds true in theory, it can be far
more computationally practicable to extend the depth of the
network structure and reduce the number of required com-
putations in doing so (Bengio 2009).

Importantly, in applying backpropagation, DNNs also
lend themselves naturally to training in the maximum en-
tropy IRL framework and the network structure can be
adapted to suit individual tasks without invalidating the main
IRL learning mechanism. In the DeepIRL framework pro-
posed here the full range of architecture choices thus be-
comes available. Different problem domains can utilise dif-
ferent network architectures as e.g. convolutional layers can

remove the dependency on handcrafted spatial features. Fur-
thermore, it is straightforward to show that the linear maxi-
mum entropy IRL approach proposed in (Ziebart et al. 2008)
can be seen as a simplification of the more general deep ap-
proach and can be created by applying the rules of back-
propagation to a network with a single linear output con-
nected to all inputs with zero bias term.

In practice, several factors influence the appropriate struc-
ture of the network. While the complexity of the true under-
lying reward is often unobservable the amount of training
data available is one such factor. As the number of training
data increases, adding hidden layers and increasing the num-
ber of nodes will allow the network to fit more complex fea-
ture dependencies and thus model more complex rewards.
A common design guideline in this context is to increase
network capacity until overfitting occurs and subsequently
regularise.

Training Procedure
The task of solving the IRL problem can be framed in the
context of Bayesian inference as MAP estimation, maxi-
mizing the joint posterior distribution of observing expert
demonstrations, D, under a given reward structure and of
the model parameters θ.

L(θ) = logP (D, θ|r) = logP (D|r)︸ ︷︷ ︸
LD

+ logP (θ)︸ ︷︷ ︸
Lθ

. (8)

This joint log likelihood is differentiable with respect to
the network parameters θ, which allows the application of
gradient descent methods (Snyman 2005). The Maximum
Entropy based objective function given in the data term LD
of Equation 8 is differentiable with respect to the rewards r
and therefore enables backpropagation of the objective gra-
dients to the network’s weights.

The final gradient is given by the sum of the gradients
with respect to θ of the data term LD and the model term Lθ

∂L
∂θ

=
∂LD
∂θ

+
∂Lθ
∂θ

. (9)

The gradient of data term can be expressed in terms of the
derivative of the expert demonstration with respect to re-
wards as well as the derivative of these rewards with respect
to network weights θ, such that

∂LD
∂θ

=
∂LD
∂r
· ∂r
∂θ

(10)

= (µD − E[µ]) · ∂
∂θ
g(f, θ), (11)

where r = g(f, θ)). As shown in (Ziebart et al. 2008), the
gradient of the expert demonstration term LD with respect
to state rewards r is equal to the difference in the state visi-
tation counts exhibited by the expert demonstrations and the
expected visitation counts for the learned systems trajectory
distribution in 1, which depends on the reward approxima-
tion given the corresponding optimal policy.

E[µ] =
∑

ς:{s,a}∈ς

P (ς|r) (12)

Computation of E[µ] usually involves summation over expo-
nentially many possible trajectories. In (Ziebart et al. 2008)
an effective algorithm based on dynamic programming was
proposed computing this quantity in polynomial-time. The
effective computation of the gradient ∂LD

∂θ thus involves first
computing the difference in visitation counts using this al-
gorithm and then passing this as an error signal through
the network using back-propagation. The complete proposed
method is described by Algorithm 1, with the loss and gradi-
ent derivation in lines 6 and 7 given by the linear Maximum
Entropy formulation. The expert’s state action frequencies
µaD, which are needed for the calculation of the loss are sim-
ply summed over the actions to compute the expert state fre-

quencies µD =
A∑
a=1

µaD .

The derivative of the model term Lθ with respect to the
network parameters is expressed as a regularisor. There ex-
ists a variety of choices to prevent over-fitting in deep neural
networks. L1 and L2 regularisation are used as well as drop-
out, which can be seen as a sub-model averaging approach,
or methods corrupting the original training data, for exam-
ple, by adding noise to train for invariance.

Algorithm 1 Maximum Entropy Deep IRL
Input: µaD, f

Output: optimal weights θ∗

1: θ1 = initialise weights()

2: for n = 1 : max iterations do

3: rn = nn forward(f, θn) {compute current reward}
4: πn = solve mdp(rn) {determine optimal policy}
5: E[µn] = propagate policy(πn) { get state

frequencies}
6: LnD = log(πn)× µaD
7: ∂LnD

∂rn = µD − E[µn] { given by (Ziebart et al. 2008)}
8: ∂LnD

∂θnD
= nn backprop(

∂LnD
∂rn) {propagate gradients

through network}
9: θn+1 = update weights(θn,

∂LnD
∂θnD

)

10: end for

4 Experiments
We assess the performance of DeepIRL on an existing as
well as an alternative benchmark task against current state-
of-the-art approaches : GPIRL (Levine, Popovic, and Koltun
2011), NPB-FIRL (Choi and Kim 2013) and the original
MaxEnt (Ziebart et al. 2008) to illustrate the necessity of
non-linear function approximation.

All tests are run multiple times on training and transfer
scenarios for the different settings, while learning is per-
formed based on synthetically generated stochastic demon-
strations based on the optimal policy to evaluate perfor-
mance on suboptimal example sets. This is achieved by pro-

Optimal Policy

Example Reward-building Objects

Reward (low to high)

Example Distractor Objects

Figure 2: Objectworld benchmark. The true reward is dis-
played by the brightness of each cell and based on the sur-
rounding object configuration. Only a subset of colors influ-
ences the reward, while the others serve as distracting fea-
tures.

Groundtruth DeepIRL GPIRL MaxEnt

Figure 3: Reward reconstruction sample in Objectworld
benchmark provided N = 64 examples and C = 2 colours
with continuous features. White - high reward; black - low
reward.

viding a number of demonstrations sampled from the opti-
mal policy based on the true reward structure, but including
30% of random actions.

In our experiments, we employ a fully connected feed-
forward network with two hidden layers and rectified linear
units as activation functions as function approximator be-
tween state feature representation and reward. This rather
shallow networks structure suffices for the application based
on strongly simplified toy benchmarks. However, the whole
framework can be utilised for training networks of arbitrary
capacity. For these benchmarks, we apply AdaGrad (Duchi,
Hazan, and Singer 2011), an approach for stochastic gra-
dient descent with per parameter adaptive learning rates.
Significant parts of the neural network implementation are
based on MatConvNet (Vedaldi and Lenc 2014).

In line with related works, we use expected value differ-
ence as principal metric of evaluation. It is a measure of
the sub-optimality of the learned policy under the true re-
ward. The score represents the difference between the value
function obtained for the optimal policy given the true re-
ward structure and the value function obtained for the op-
timal policy based on the learned reward model. Addition-
ally to the evaluation on each specific training scenario, the
trained models are evaluated on a number of randomly gen-
erated test environments. The test on these transfer exam-
ples serves to analyse each algorithm’s ability to generalise
to the true reward structure without over-fitting.

Objectworld Benchmark
The Objectworld scenario (Levine, Popovic, and Koltun
2011) consists of a map ofM×M states forM = 32 where
possible actions include motions in all four directions as well

as staying in place. Two different sets of state features are
implemented based on randomly placed colours to evaluate
the algorithms. For the continuous set x ∈ RC . Each feature
dimension describes the minimum distance to an object of
one of C colours. Building on the continuous representation
the discrete set includes C ×M binary features, where each
dimension indicates whether an object of a given colour is
closer than a threshold d ∈ {1, ...,M}.

The reward is positive for cells which are both within the
distance 3 of color 1 and distance 2 of color 2, negative if
only within distance 3 of color 1 and zero otherwise. This is
illustrated for a small subset of the state space in Figure 2.

In line with common benchmarking procedures, we eval-
uated the algorithms with a set number of features and in-
creasing demonstrations. Additionally, the learned reward
functions are deployed on randomly generated transfer sce-
narios to uncover any overfitting to the training data.

While the original MaxEnt is unable to capture the nonlin-
ear reward structure well, both DeepIRL and GPIRL provide
significantly better approximations as represented in Figure
3. Evaluation of NPB-FIRL on this benchmark was done
in (Choi and Kim 2013) where it showed a similar level
of performance as GPIRL. GPIRL generates a good model
already with few data points whereas DeepIRL achieves
commensurate performance when increasing the number of
available expert demonstrations. The same behaviour is ex-
hibited when using both continuous and discrete state fea-
tures (Fig. 4). The requirement for more training data will
be rendered unimportant in robot applications based on au-
tonomous data acquisition, while enforcing the lower algo-
rithmic complexity as dominant advantage of the parametric
approach.

Additional tests are performed with increased number of
distractor features to evaluate each approach’s overfitting
tendency. The corresponding figures are left out due to lim-
ited space. Both DeepIRL and GPIRL show robustness to
distractor variables, though DeepIRL shows minimally big-
ger signs of overfitting as the number of distractor vari-
ables is increased. This is due to the DNN’s capacity being
brought to bear on the increasing noise introduced by the
distractors and will be addressed in future work with addi-
tional regularisation methods, such as Dropout (Hinton et al.
2012) and ensemble methods.

Binaryworld Benchmark
In order to test the ability of all approaches to successfully
approximate more complex reward structures, the Binary-
world benchmark is presented. This test scenario is similar
to Objectworld, but in this problem every state is randomly
assigned one of two colours (blue or red). The feature vec-
tor for each state consequently consists of a binary vector of
length 9, encoding the colour of each cell in its 3x3 neigh-
bourhood. The true reward structure for a particular state
is fully determined by the number of blue states in its lo-
cal neighbourhood. It is positive if exactly four out of nine
neighbouring states are blue, negative if exactly five are blue
and zero otherwise. The main difference compared to the
Objectworld scenario is that a single feature value does not
carry much weight, but rather that higher-order relationships
amongst the features determine the reward.

4 8 16 32 64
0

5

10

15

20

25

30

examples

e
x
p

e
c
te

d
 v

a
lu

e
 d

if
fe

re
n

c
e

GPIRL
MaxEnt
DeepIRL

4 8 16 32 64
0

5

10

15

20

25

30

examples

e
x
p

e
c
te

d
 v

a
lu

e
 d

if
fe

re
n

c
e

4 8 16 32 64
0

5

10

15

20

25

examples

e
x
p

e
c
te

d
 v

a
lu

e
 d

if
fe

re
n

c
e

4 8 16 32 64
0

5

10

15

20

25

examples

e
x
p

e
c
te

d
 v

a
lu

e
 d

if
fe

re
n

c
e

GPIRL
MaxEnt
DeepIRL

a) b)

4 8 16 32 64 128
0

5

10

15

20

examples

e
x
p

e
c
te

d
 v

a
lu

e
 d

if
fe

re
n

c
e

GPIRL
MaxEnt
DeepIRL

4 8 16 32 64 128
0

5

10

15

20

examples

e
x
p

e
c
te

d
 v

a
lu

e
 d

if
fe

re
n

c
e

4 8 16 32 64 128
0

5

10

15

20

examples

e
x
p

e
c
te

d
 v

a
lu

e
 d

if
fe

re
n

c
e

GPIRL
MaxEnt
DeepIRL

4 8 16 32 64 128
0

5

10

15

20

examples

e
x
p

e
c
te

d
 v

a
lu

e
 d

if
fe

re
n

c
e

c) d)

Figure 4: Objectworld benchmark. From top left to bottom
right: expected value difference (EVD) with C = 2 colours
and varying number of demonstrations N for training a) and
transfer case b) with continuous and subsequently with dis-
crete features in c) & d) ; As the number of demonstrations
grows DeepIRL is able to quickly match performance of
GPIRL on the task.

The performance of DeepIRL compared to GPIRL, lin-
ear MaxEnt and NPB-FIRL is depicted in Fig. 5. In this in-
creasingly more complex scenario, DeepIRL is able to learn
the higher-order dependencies between features, whereas
GPIRL struggles as the inherent kernel measure can not cor-
rectly relate the reward of different examples with similar-
ity in their state features. GPIRL needs a larger number of
demonstrations to achieve good performance and to deter-
mine an accurate estimate on the reward for all 29 possible
feature combinations.

Perhaps surprising is the comparatively low performance
of the NPB-FIRL algorithm. This can be explained by the
limitations of this framework. The true reward in this sce-
nario can not be efficiently described by the logical conjunc-
tions used. In fact, it would require 29 different logical con-
junctions, each capturing all possible combinations of fea-
tures, to accurately model the reward in this framework.

Fig. 6 shows the reconstruction of the reward structures
estimated by DeepIRL, MaxEnt and GPIRL. While GPIRL
was able to reconstruct the correct reward for some of the
states having features it has encountered before it provides
inaccurate rewards for states which were never encountered.
It produces an overall too smooth reward function due to
assumptions and priors in the GP approximation. On the
other hand, DeepIRL is able to reconstruct it with high accu-
racy demonstrating the ability to effectively learn the highly-

4 8 16 32 64 128
0

5

10

15

20

25

30

35

40

45

examples

e
x
p

e
c
te

d
 v

a
lu

e
 d

if
fe

re
n

c
e

GPIRL
MaxEnt

4 8 16 32 64 128
0

5

10

15

20

25

30

35

40

45

examples

e
x
p

e
c
te

d
 v

a
lu

e
 d

if
fe

re
n

c
e

DeepIRL
NPB-FIRL

4 8 16 32 64 128
0

5

10

15

20

25

30

35

40

45

examples

e
x
p

e
c
te

d
 v

a
lu

e
 d

if
fe

re
n

c
e

4 8 16 32 64 128
0

5

10

15

20

25

30

35

40

45

examples

e
x
p

e
c
te

d
 v

a
lu

e
 d

if
fe

re
n

c
e

GPIRL
MaxEnt
DeepIRL
NPB-FIRL

Figure 5: Value differences observed in the Binaryworld
benchmark for GPIRL, MaxEnt and DeepIRL for the train-
ing scenario (left) and the transfer task (right).

Groundtruth DeepIRL GPIRL MaxEnt

Figure 6: Reward reconstruction sample for the Binaryworld
benchmark providedN = 128 demonstrations. White - high
reward; black - low reward.

varying structure of the underlying function.

Convolutional Feature Learning

While the earlier benchmarks visualise performance com-
pared to current algorithms in the context of precomputed
features, the approach can be extended via the use of con-
volutional neural networks (CNNs) to eliminate the require-
ment of preprocessing or manual design of features. Figure
7 represents the results for both earlier benchmarks, but in-
stead of using the earlier described feature representations,
the CNN builds the reward based on the raw input represen-
tation, which for each state only includes the availability of
each specific object at that specific state. All spatial infor-
mation is derived based on the convolutional filters. Based
on the simplicity of the benchmarks, we employed a five
layer approach with 3x3 convolutional kernels in the first
two layers. By increasing the depth of the network and in-
clude convolutional filters, we add enough capacity to enable
the learning of features as well as their combination into the
reward function in the same architecture and process.

Due to the increasing number of parameters, the approach
requires additional training data to perform at equal accu-
racy but with increasing number of expert samples con-
verges towards the performance with predefined features.
Since the given features in these simplified toy problems are
optimal and the true reward is directly calculated on their
basis, automatically learned features cannot exceed the per-
formance. However, in real-world scenarios, the compres-
sion of raw data - such as images - to feature representations
leads to information loss and the learning of task-relevant
features gains even more importance.

4 8 16 32 64 128
0

5

10

15

20

25

30

35

40

examples

e
x
p

e
c
te

d
 v

a
lu

e
 d

if
fe

re
n

c
e

DeepIRL
DeepIRL&CNN

4 8 16 32 64 128
0

5

10

15

20

25

30

35

40

examples

e
x
p

e
c
te

d
 v

a
lu

e
 d

if
fe

re
n

c
e

4 8 16 32 64 128
0

2

4

6

8

10

12

14

examples

e
x
p

e
c
te

d
 v

a
lu

e
 d

if
fe

re
n

c
e

DeepIRL
DeepIRL&CNN

4 8 16 32 64 128
0

2

4

6

8

10

12

14

examples

e
x
p

e
c
te

d
 v

a
lu

e
 d

if
fe

re
n

c
e

Objectworld Binaryworld

Figure 7: Application of convolutional layers for spatial fea-
ture learning. Convolutional feature learning quickly con-
verges to performance with optimally designed features.

5 Conclusion and Future Work

This paper presents Maximum Entropy Deep IRL, a frame-
work exploiting DNNs for reward structure approximation
in Inverse Reinforcement Learning. DNNs lend themselves
naturally to this task as they combine representational power
with computational efficiency compared to state-of-the-art
methods. Unlike prior art in this domain DeepIRL can there-
fore be applied in cases where complex reward structures
need to be modelled for large state spaces. Moreover, DNN
training can be achieved effectively and efficiently within
the popular Maximum Entropy IRL framework. A further
advantage of DeepIRL lies in its versatility. Custom network
architectures and types can be developed for any given task
while exploiting the same cost function in training.

Our experiments show that DeepIRL’s performance is
commensurate to the state-of-the-art on a common bench-
mark. While exhibiting slightly increased requirements re-
garding training data in this benchmark, a principal strength
of the approach lies in its algorithmic complexity indepen-
dent of the number of demonstrations samples. Therefore, it
is particularly well-suited for life-long learning scenarios in
the context of robotics, which inherently provide sufficient
amounts of training data. We also provide an alternative
evaluation on a new benchmark with a significantly more
complex reward structure, where DeepIRL significantly out-
performs the current state-of-the-art and proves its strong
capability in modeling the interaction between features. Fur-
thermore, we extend the approach to include convolutional
layers in order to eliminate the dependency on precomputed
features and to emphasise the adaptability of framing IRL in
the context of deep learning.

In future work we will explore the benefits of
autoencoder-style pretraining to reduce the increased de-
mand of expert demonstrations when employing convolu-
tional neural networks (CNNs). Especially when based on
high dimensional inputs such as raw image data, the easily
available unsupervised training data will help to learn fea-
tures which then only need to be refined during the super-
vised IRL-based training phase.

References
Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning via
inverse reinforcement learning. In Proceedings of the 21st
international conference on Machine learning, 1. ACM.
Babes, M.; Marivate, V.; Subramanian, K.; and Littman,
M. L. 2011. Apprenticeship learning about multiple inten-
tions. In Proceedings of the 28th International Conference
on Machine Learning (ICML-11), 897–904.
Bengio, Y.; Courville, A. C.; and Vincent, P. 2012. Unsuper-
vised feature learning and deep learning: A review and new
perspectives. CoRR abs/1206.5538.
Bengio, Y.; LeCun, Y.; et al. 2007. Scaling learning algo-
rithms towards AI. Large-scale kernel machines 34(5).
Bengio, Y. 2009. Learning deep architectures for ai. Foun-
dations and trends R© in Machine Learning 2(1):1–127.
Choi, J., and Kim, K.-E. 2013. Bayesian nonparametric
feature construction for inverse reinforcement learning. In
Proceedings of the Twenty-Third international joint confer-
ence on Artificial Intelligence, 1287–1293. AAAI Press.
Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgra-
dient methods for online learning and stochastic optimiza-
tion. The Journal of Machine Learning Research 12:2121–
2159.
Hassoun, M. H. 1995. Fundamentals of artificial neural
networks. MIT press.
Hinton, G. E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.;
and Salakhutdinov, R. 2012. Improving neural networks
by preventing co-adaptation of feature detectors. CoRR
abs/1207.0580.
Hornik, K.; Stinchcombe, M.; and White, H. 1989. Mul-
tilayer feedforward networks are universal approximators.
Neural networks 2(5):359–366.
Levine, S.; Finn, C.; Darrell, T.; and Abbeel, P. 2015. Learn-
ing deep vision-based costs and policies. Robotics: Science
and Systems. WS: Learning from Demonstration.
Levine, S.; Popovic, Z.; and Koltun, V. 2010. Feature con-
struction for inverse reinforcement learning. In Advances in
Neural Information Processing Systems, 1342–1350.
Levine, S.; Popovic, Z.; and Koltun, V. 2011. Nonlinear
inverse reinforcement learning with gaussian processes. In
Advances in Neural Information Processing Systems, 19–27.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013.
Playing atari with deep reinforcement learning. CoRR
abs/1312.5602.
Neu, G., and Szepesvári, C. 2012. Apprenticeship learning
using inverse reinforcement learning and gradient methods.
CoRR abs/1206.5264.
Ramachandran, D., and Amir, E. 2007. Bayesian inverse
reinforcement learning. Urbana 51:61801.
Ratliff, N. D.; Bagnell, J. A.; and Zinkevich, M. A. 2006.
Maximum margin planning. In Proceedings of the 23rd
international conference on Machine learning, 729–736.
ACM.
Snyman, J. 2005. Practical mathematical optimization: an
introduction to basic optimization theory and classical and

new gradient-based algorithms, volume 97. Springer Sci-
ence & Business Media.
Syed, U., and Schapire, R. E. 2007. A game-theoretic ap-
proach to apprenticeship learning. In Advances in neural
information processing systems, 1449–1456.
Vedaldi, A., and Lenc, K. 2014. Matconvnet – convolutional
neural networks for matlab. CoRR abs/1412.4564.
Ziebart, B. D.; Maas, A. L.; Bagnell, J. A.; and Dey, A. K.
2008. Maximum entropy inverse reinforcement learning. In
AAAI, 1433–1438.

