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1 Introduction

This proposal describes a new paradigm for building intelligent robots based on novel usage of modern end-to-end
machine learning methods as a substitution for traditional multi-stage robotics pipelines.

One of the major problems with the traditional robotics pipeline designs (Figure 1) is that they require a
significant amount of hand-engineering, which imposes strong restrictions on the robot’s capabilities. This is
because every step of the pipeline (e.g. sensing, managing internal world representation or planning) is usually
designed separately, and includes it’s own simplifications, prior knowledge and assumptions which often do not hold
in the real world. This results in a sub-optimal system which in many cases is unable to robustly handle the high
complexity of the robot’s operating environment.
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Figure 1: An example of a traditional robotics pipeline. Several hand-designed data processing stages necessary for
the operation of the robot result in the sub-optimality of the whole system.

Here we propose a replacement for the traditional robotics pipelines. Our novel approach uses highly expressive
machine learning methods for learning how to plan and perceive, thus avoiding the restrictions normally imposed
on the internal representations of the robotic systems as described above. Our approach allows the robot to infer
optimal procedures for sensing, internal world model updates and planning directly from the sensory data. The
main benefit of our approach is that it reduces the amount of hand-engineering and prior knowledge injected into
the pipeline, thus removing the constraints that come with them. This allows us to build more capable and powerful
robots.

The key element of our solution is DeepTracking [Ondruska and Posner, 2016], which is a recurrent neural
network architecture that is capable of learning world dynamics and predicting future world states directly from
raw sensory data. We propose using this network as an oracle, which would determine feasible plans and later
rank them using the objective function inferred from the human demonstrations using Deep Inverse Reinforcement
Learning [Wulfmeier, Ondruska and Posner, 2015]. We believe that our solution can be an important milestone
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towards building more intelligent machines by overcoming the most daunting limitations of the current robotics
designs.

2 Deep Tracking

DeepTracking [Ondruska and Posner, 2016] is the first end-to-end object tracking approach which directly maps
from raw sensory input to object trajectories in the sensory space without requiring any feature engineering or
system identification (e.g. plant or sensor models). Specifically, the system accepts a stream of raw sensory data at
one end and, in real-time, produces an estimate of the entire state of the environment, including occluded objects,
at the output (Figure 2).
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Figure 2: Robot’s sensors provide only partial observations of the surrounding environment. DeepTracking leverages
a recurrent neural network to effectively reveal occluded parts of a scene by learning to track objects from raw sensor
data – thereby effectively reversing the sensing process.

This is achieved by framing the problem as a deep learning task and exploiting sequence models in the form of
recurrent neural networks to learn a mapping from sensory measurements to object trajectories. In order to learn
this mapping the network must learn to capture the dynamics of the world, before exploiting this information to
simulate the occluded parts of the visual scene. Our model is able to learn the correct mapping without access to
the ground-truth annotations, using an unsupervised learning method based on spatio-temporal dropout and raw
occluded sensory data. This means that in order to train our model we only require the easily available raw sensory
data, rather than the more expensive to attain supervised ground truth labelled data.

The success of our proposed method was demonstrated using a synthetic dataset designed to mimic a common
task within robotics - tracking objects in 2D laser data: https://www.youtube.com/watch?v=pG3BBzGGgew The
video demonstrates that the network learnt to track many dynamic objects despite occlusions and the presence of
sensory noise. The network also learnt to predict the future states of the world at any point in time using the raw
occluded sensory observations as input.

We expect that adding robot control signal as an additional input to the network will enable the model to learn
the consequences of the robot’s actions. In other words, the network will learn to predict the state of the world
in response to the robot’s actions. This step is critical to building an end-to-end machine learning-based robotics
pipeline, and is discussed in the next section.

3 Neural Pipeline

The proposed pipeline builds on top of the Deep Tracking algorithm described above. Deep Tracking learns to act
as an oracle that can predict the future world states. Such predictions effectively act as a world simulator capable
of evaluating any possible robot plan, thus providing the robot with a simple yet effective planning paradigm.
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The basic idea is to generate a large number of feasible kinematic plans for a robot to perform. This can be
done through either an exhaustive generation of all possible sequences of control signals, or by using more elaborate
methods. These plans would in turn be evaluated using the Deep Tracking network, whereby the network would
generate a sequence of future world states st+1, st+2, st+3, ... when following any given plan of actions. Finally, the
cost of each sequence would be computed, hence capturing the feasibility and value of the plan and determining its
ranking. The entire system is displayed in Figure 3.
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Figure 3: Proposed Neural Robotics pipeline. The Plan Generator synthesises a set of possible plans of actions.
Deep Tracking Network acts as an oracle capable of predicting the future world states in response to any given plan
of actions. The plan with the lowest cost as evaluated by the Deep Inverse Reinforcement Learning (IRL) network
is then selected for execution.

We propose using Deep Inverse Reinforcement Learning (IRL) [Wulfmeier, Ondruska and Posner, 2015] for
evaluating the different plans of actions as described above. Using deep IRL would avoid the need for designing
such an evaluation function by hand. Instead, a separate neural network would be specifically trained to infer the
desired objective function using a supervised dataset of demonstrations, where a human in the charge of the control
signal.

The advantage of our proposed robotics pipeline design is that the Deep Tracking network can be trained using
vast amounts of purely unsupervised data to learn how the world works and how to remove occlusions. Then the
network for Deep IRL can exploit the outputs of the Deep Tracking framework to be trained only how to identify
which world states are desirable without considering occlusions. This is a much simpler task, which can be learnt
using relatively little amount of supervised data.
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