
End-to-End Tracking and Semantic Segmentation
Using Recurrent Neural Networks

Peter Ondrúška
Mobile Robotics Group

University of Oxford, UK
ondruska@robots.ox.ac.uk

Julie Dequaire
Mobile Robotics Group

University of Oxford, UK
julie@robots.ox.ac.uk

Dominic Zeng Wang
Mobile Robotics Group

University of Oxford, UK
dominic@robots.ox.ac.uk

Ingmar Posner
Mobile Robotics Group

University of Oxford, UK
ingmar@robots.ox.ac.uk

Abstract—In this work we present a novel end-to-end frame-
work for tracking and classifying a robot’s surroundings in
complex, dynamic and only partially observable real-world en-
vironments. The approach deploys a recurrent neural network
to filter an input stream of raw laser measurements in order to
directly infer object locations, along with their identity in both
visible and occluded areas. To achieve this we first train the
network using unsupervised Deep Tracking, a recently proposed
theoretical framework for end-to-end space occupancy prediction.
We show that by learning to track on a large amount of
unsupervised data, the network creates a rich internal repre-
sentation of its environment which we in turn exploit through
the principle of inductive transfer of knowledge to perform the
task of it’s semantic classification. As a result, we show that only
a small amount of labelled data suffices to steer the network
towards mastering this additional task. Furthermore we propose
a novel recurrent neural network architecture specifically tailored
to tracking and semantic classification in real-world robotics
applications. We demonstrate the tracking and classification
performance of the method on real-world data collected at a busy
road junction. Our evaluation shows that the proposed end-to-end
framework compares favourably to a state-of-the-art, model-free
tracking solution and that it outperforms a conventional one-shot
training scheme for semantic classification.

I. INTRODUCTION

Complete and accurate situational awareness in complex,
dynamic environments is a pivotal requirement for successful
and safe robot operation. Often, however, this remains an
elusive goal due to the limited field of view of the robot’s
on-board sensors and to the complex and usually wide-ranging
occlusions encountered. This limitation can impose significant
challenges on the planner and may lead to otherwise unnec-
essarily conservative robot behaviour [17].

Object detection and tracking modules specifically address-
ing this problem are ubiquitous in robotics. Commonly, how-
ever, they feature multiple individual data-processing steps de-
signed and optimised separately from one another. Traditional
model-free approaches [21, 25, 22] make few assumptions
with regards to the objects involved, such as their shapes
or semantic characteristics, but they are often not robust.
Model-based approaches [1, 15, 28] on the other hand limit
the generality of these frameworks and often require separate
object segmentation and classification steps.

In this paper we address this problem by introducing a
novel, end-to-end trainable approach providing concurrent
object tracking and recognition. It takes as input a stream

sensor input �ltered output

visible area

occluded area

x , x , ...,x1 2 t ty ,

obstacle

robot pedestrian

background bus / car

cyclist

tc

recurrent neural network

Fig. 1. Typical output of the proposed system capturing the situation around
the robot in the form of a semantic map. The stream of raw sensor data
is filtered by a recurrent neural network and produces classification of both
directly visible and occluded space into one of several semantic classes.

of raw sensor scene observations that is often incomplete
due to occlusions, and continuously provides estimates of the
uncovered, occlusion-free scene containing information about
the positions of all of the objects along with their classes as
illustrated in Figure 1.

In doing so, we are inspired by the recently proposed frame-
work of Deep Tracking [11] which leverages neural networks
for end-to-end tracking. However, this framework has as yet
only been deployed on predicting occupancy of comparatively
benign, simulated data and using simple networks. We improve
on this work in two ways. First, we motivate significant
changes to the original Deep Tracking architecture [11] and
demonstrate that these lead to substantial performance gains
on complex, real-world scenarios. In particular, we propose
to use multi-scale convolution to address the need to simulta-
neously track objects of different sizes, dynamic memory to
effectively remember information for long periods of time, and
static memory to learn place-specific information. Secondly, to
effectively learn object semantics, we extend the framework

Raw sensor input

Raw sensor input

Object detection

t-1 t-1

t-1

t

t

Data association Object classi�cation Occupancy mapping

Occupancy mapping

Classical multi-stage pipeline

End-to-end pipeline

Recurrent neural network

Fig. 2. Comparison of a classical multi-stage perception pipeline [top] to the proposed end-to-end framework [bottom]. A multi-stage pipeline requires a
significant amount of design effort, and each step in the pipeline introduces its own simplifying assumptions resulting in restrictions on the general applicability
of the overall system.

by leveraging inductive transfer [12] of knowledge gathered
during the tracking task to efficiently – in terms of annotated
data required – train a classifier of the tracked objects.

We demonstrate the system on data collected from a busy
road intersection, and show that it provides significantly more
accurate scene prediction compared to alternative approaches
The network not only tracks and classifies different objects
through complete occlusion, but also predicts their movements
in a short time horizon.

The main contributions of this paper are:
• A framework to allow end-to-end simultaneous tracking

and semantic classification based on the method of Deep
Tracking and principle of transfer learning.

• A tailored recurrent neural network architecture to enable
tracking and semantic classification in complex, dynamic,
real-world scenarios.

The rest of the paper is structured as follows. After re-
viewing related works in Section II, we present the problem
definition in Section III. Section IV provides an overview
of the Deep Tracking framework and Section V extends the
framework beyond tracking to additionally produce semantic
labels of the output. Section VI proposes a new architecture
to allow effective tracking in complex, real-world scenarios.
Finally, in Section VII, we present an empirical evaluation of
our contributions. We conclude in Section VIII and discuss
our findings.

II. RELATED WORKS

In this work we address the problem of effectively tracking
the state of the environment around the robot. Classical
approaches to this problem such as [9, 22, 26] typically involve

a multi-stage tracking pipeline as illustrated in the top row of
Figure 2. This pipeline features a sequence of explicit and
largely hand-engineered steps consisting of object detection
considering a stream of sensor input, semantic classification,
data association, state estimation (including motion modelling)
and, finally, occupancy grid generation. Instead, here we build
on the recently proposed approach of Deep Tracking [11]
featuring a recurrent neural network which directly maps from
raw laser data to a semantically annotated and unoccluded
occupancy grid. This is illustrated in the bottom row of
Figure 2.

Deep learning approaches have been successful in a number
of domains (see, for example, [6, 4, 23]) where they have
benefited from large amounts of data in order to learn ap-
propriate internal representations leading to significant perfor-
mance gains above and beyond that achievable by classical
methods. In our case the neural network is trained end-to-
end to predict space occupancy and semantic labels directly
from the raw laser data. While doing so it learns to perform
an implicit tracking where the optimal internal representations
about the hypotheses of moving objects and respective update
procedures of classical tracking are inferred directly from the
data.

To successfully apply deep learning, an appropriate neural
network architecture for the task must be chosen. Abundant
literature exists on the topic of finding optimal architectures
for different tasks such as convolutional networks for image
processing [19] and recurrent neural nets such as long short
term memory [5] or gated recurrent units [3] for processing
sequences. We propose a novel neural network architecture
specifically tailored to real-world object tracking. The network

shares similarity with architectures for semantic labelling of
natural images [27] in terms of the ability to produce output of
the same resolution. In addition we provide effective mecha-
nisms to track objects of different sizes over time, learn place-
specific information and recurrent mechanisms to remember
information for long periods of time in order to track objects
effectively even through long occlusions.

A common drawback of deep learning approaches is the
need for large amounts of supervised data for training. We
show that our network can be, in fact, trained very efficiently.
The network first learns to track by just observing a stream of
raw unlabelled sensor data and by trying to predict the next
input. In turn we exploit the fact that the learned representation
captures latent higher-order information in the data such that
we can easily infer semantic labels for the tracked objects,
using only a small amount of labelled data. This is a form
of inductive transfer of knowledge between machine learning
tasks [12]. In the context of neural networks it was success-
fully applied to a range of tasks, in the areas of multi-task
learning [10, 2] and in the form of unsupervised pre-training
and supervised fine-tuning [14, 7].

III. PROBLEM FORMULATION

The input to our problem is a sequence of partially observed
states of the world, computable directly from raw sensor
measurements. We represent this state as a discretised 2D grid
of size M×M , parallel to the ground, built locally around the
sensor. The partially observed state of the world is represented
by two M × M binary matrices, collectively referred to as
xt ∈ {0, 1}2×M×M . The first matrix encodes whether a
cell is directly observable (value of 1, 0 otherwise) by the
sensor at time t, while the second matrix encodes whether
a cell is observed to be free (a value of 0), or occupied (a
value of 1). The output we wish to obtain consists of two
parts. The first part is an occlusion-free state of the world
yt ∈ {0, 1}M×M , represented by an occupancy matrix similar
to the occupancy matrix in xt. The second part is a semantic
map ct ∈ {1, ...,K}M×M , revealing, for each cell, which of
K types of objects (such as pedestrian, bicyclist, car etc.) is
currently occupying it1.

The problem therefore resolves to solving for P (yt, ct|x1:t),
the probability of the complete state of the world and its
semantics at time t, given the observed input at all previous
time steps x1:t. This formulation can also be used to predict a
future state P (yt+n, ct+n|x1:t) by simply providing an empty
input for xt+1:t+n = �.

In the next section we first outline a solution to the partial
problem of estimating P (yt|x1:t) as suggested by the recently
proposed Deep Tracking framework [11] but modified for
operation in complex real-world scenarios. Then in Section V,
we extend our solution to estimate ct via the application of
the principle of inductive transfer.

1Whereas ct is modelled for all the cells in practice, it is ignored for cells
that are not occupied i.e. yit = 0.

IV. DEEP TRACKING FOR ROBOTICS

In this section, we focus on solving the first part of the
problem formulated in Section III, namely uncovering the full,
unoccluded state yt of the environment from the sequence of
partially observed states x1:t. We use the recently proposed
Deep Tracking framework [11] to solve this problem. How-
ever, so far, this framework has been demonstrated only on
simulated scenarios composed of simple geometric objects
using a simple network architecture. A number of improve-
ments to this architecture are needed to scale up its capacity
to deal with complex, dynamic, real-world data encountered
in robotics applications. We first briefly review details of
the framework relevant to our application, then present our
proposed improved architecture.

A. A Brief Review of Deep Tracking

Deep Tracking [11] is a method to model P (yt|x1:t) using
a recurrent neural network [8]. Motivated by Hidden Markov
Models [16], at a time t a latent state ht is assumed to capture
the complete information necessary for predicting yt (e.g.
scene appearance and dynamics, locations of all objects, their
shapes, velocities etc.), thus we have

P (yt|x1:t) = P (yt|ht). (1)

Evolution of this latent state, which includes propagating
model dynamics and integrating new sensor measurements,
is modelled by an update operation

ht = f(ht−1, xt). (2)

The key element is that both the latent state update f(ht−1, xt)
and its decoding to the output P (yt|ht) are modelled as parts
of a single neural network and trained jointly. Equation 2 is
modelled by the forward-propagation of information through
hidden layers of the network, and Equation 1 is modelled by
the decoding (output) layer (cf. Figure 4). Equations 1 and 2
can then be performed repeatedly as a form of recurrent neural
network to continuously update the hidden state ht serving as
a network memory and predict yt, making it suitable for online
stream filtering of sensor input.

When the ground-truth output yt is not easily available, as
in our case, the network can be trained in an unsupervised
fashion. Here, instead of optimising directly P (yt|x1:t), the
network is trained to predict P (y′t+n|x1:t) where y′t+n is the
part of yt+n that is directly observed in xt+n. This is done by
predicting P (yt+n|x1:t) and back-propagating [18] the error
only on the observed part of the scene (cf. Figure 3). In other
words, we train the network to correctly predict the subset
of the ground-truth occupancy present in the future input. As
demonstrated in [11] and also shown in Figure 8, an important
consequence of this training strategy is that, at deployment,
the trained network starts to correctly imagine objects and
their movement in the occluded regions. This is because the
situation with occluded input at deployment is similar to that at
training when no input was provided at all for the future time
t + n, and the network was trained to predict the observable
regions.

Ra
w

 s
en

so
r

in
pu

t
Pr

ed
ic

te
d

ou
tp

ut
Re

cu
rr

en
t

ne
ur

al
 n

et
w

or
k

2

x1 x2

h1h0h

y2 c2y1 c1

y3

c3

- =

- =

x3

x’3

3h

occupancy
error

label
error

predicted
occupancy

sensor
input

labelled
sensor input

predicted
labels

empty input

f (h , x)t-1 t P(y | h)t t P(c | h)t t occupancy error signal label error signal

Fig. 3. Training of the recurrent neural network to produce both space occupancy yt and semantic labels ct. The network is trained to predict output
consistent with future inputs. This allows training without the need of ground-truth information of the full, unoccluded scene. First the network learns how
to track by predicting correct occupancy using large amounts of unlabelled data, then a small set of labelled data is used to induce semantic classification.

V. SEMANTIC CLASSIFICATION
THROUGH INDUCTIVE TRANSFER

In this section, we extend our solution to the partial problem
P (yt|x1:t) presented in Section IV, to the full problem of
simultaneously estimating both occlusion-free occupancy and
scene semantics yt, ct. We show that this can be achieved
relatively easily by exploiting the knowledge the network has
already learned to predict yt, through the principle of inductive
transfer [12]. The significance of this is that only a small
amount of labelled training data is needed to allow the same
network to master this additional task.

The clue resides in the hidden representation ht learned in
the unsupervised training for tracking, which can be viewed as
a universal descriptor of the state of the world. It captures not
only the positions of individual objects, but also their motion
patterns, shapes and other properties necessary for the success-
ful prediction of scene dynamics. Because the network was
trained to perform well in this task a reasonable assumption
to make is that any information necessary for the prediction of
the position of the objects in the near future must be already
contained in this hidden representation. Object semantic class
falls in this category as different objects differ mainly in their
shape and motion patterns. Similar to predicting yt from ht in
Equation 1, extracting ct can be achieved simply by building
a classifier to predict P (ct|ht).

A. Training

Training the classifier to extract semantic information from
ht is not straightforward as a supervisory signal would need
to be provided for all the pixels whether they contain an actual
object or not and for both visible and occluded areas. Such a
supervised dataset would be very difficult to produce if only
occluded raw laser scans are available.

Instead we label only the visible cells of the available raw
input data which contain an actual obstacle. Then we predict
labels for all the pixels but back-propagate the error only
on those with a label. This principle makes intuitive sense,
however could result in the classifier to rely too much on
the part of memory ht affected by presence of visible input
xt and performing well only for directly visible parts of the
scene but poorly for the occluded objects where the prediction
is driven purely by the previously remembered information in
ht. To address this issue a more elaborate training procedure
is necessary.

To ensure good performance of the network on classifying
occluded objects it must be trained in such settings. This can
be achieved using the same principle used to train the network
to predict yt from ht. We train the network to predict the future
semantic label ct+n while providing only input x1:t which
forces the network to use information stored in memory ht
and then back-propagate the error compared to the true label
of xt+n. The entire process is illustrated in Figure 3.

VI. THE NETWORK ARCHITECTURE

The simple recurrent neural network proposed in [11] was
demonstrated to be sufficient for the simulated dynamic sce-
nario evaluated in that work. However, an effective deployment
in real-world robotics applications poses a set of challenges
for which a more appropriate architecture must be chosen. In
particular it requires the ability to simultaneously track objects
of different sizes such as cars and pedestrians, to effectively
remember information for long periods of time to deal with
occlusions, learn and exploit place-dependent information such
as the presence of static obstacles and lastly produce output
for both space occupancy and it’s label. We therefore in this
section present a new network architecture designed to address
the above issues.

An overview of our proposed network is depicted in Fig-
ure 4. The input xt at time t is processed by a multi-layer
network. At each layer the output of the previous layer is
combined with it’s own activations at time t−1 implementing
the recurrence. This allows the network to extract and remem-
ber the information from the past and use it for prediction at
time t. The output of the final layer is then converted into the
resulting output yt through simple convolutional decoder.

Unlike classical convolutional networks such as [20] this
network does not feature max pooling and maintains the
same resolution in each layer. In addition it features four key
elements critical for successful tracking and classification in
realistic scenarios: multi-scale convolution, dynamic memory,
static memory, and pair of decoders which we describe below.

1) Multi-Scale Convolution: For the network to correctly
predict the occupancy and label at location i, such as affected
by the presence of a moving object, this object must fall
in the receptive field of the neuron in the final layer. The
receptive field is the part of the input affecting the value of
the neuron. In the case of classical convolution the receptive
field is the K × K neighbourhood where K is the size of
the convolution kernel. The size of the receptive field however
limits the size of effectively tractable objects in the input which
can be of vastly different sizes in realistic settings. One way
to increase the receptive field is to increase the kernel size or
stack multiple convolutions on top of one other. This however
creates a computational challenge as the number of parameters
and computational complexity grows quadratically with K in
the first case and linearly in the second case.

Instead we use a stack of dilated convolutions [27] where the
receptive field grows exponentially with the number of layers.
The basic idea is to perform the classical 3×3 convolution but
skipping 2k−1− 1 pixels in between convolved pixels at layer
k, as illustrated in Figure 5. This gives a (2K+1−1)×(2K+1−
1) receptive field at final layer K. This dilated convolution is
then used as an elementary computation step to implement the
dynamic memory described below.

2) Dynamic Memory: To be able to track a moving object
through extended periods of occlusion, the network must

4

t - 1x

th t-1

2

16

16

16

t

yt ct
1

x

h

Fig. 4. The proposed architecture for tracking and semantic classification. It
features dilated convolution, enhanced static and dynamic memory capabilities
whereas producing information of both cell occupancy and it’s semantic class.

k = 1 k = 2 k = 3

Stacked convolutions

Stacked dilated convolutions

Fig. 5. Multi-scale context aggregation preserving the image resolution by
stacking dilated convolutions [27]. At layer k the red pixels are convolved
with a skip of 2k−1−1 pixels. This results in exponential growth of the blue
receptive field size [bottom] as opposed to stacking classical convolutions
resulting only in linear growth [top].

remember the location of the object and other properties
such as its shape and velocity. Findings from studies on
recurrent neural networks stress out the importance of spe-
cially dedicated units such as long short term memory [5]
to support information-caching, as otherwise training suffers
from the vanishing gradient problem [13]. Inspired by [24], we
implement a convolutional variant of gated recurrent units [3]
as the processing step at each layer. The output of each unit
is given by the weighted combination of its previous output
at time t− 1 and a candidate memory h̄t computed from the
output of the layer bellow with the forgetting of information
controlled by the reset gate rt:

ft = σ(Wxz ∗ xt +Whz ∗ ht−1 + bz) , (3)
rt = σ(Wxr ∗ xt +Whr ∗ ht−1 + br) , (4)
h̄t = tanh(Wxh ∗ xt + rt ◦Whh ∗ ht−1 + bh) , (5)
ht = ft ◦ ht−1 + (1− ft) ◦ h̄t . (6)

Here ∗ denotes dilated convolution described earlier and ◦
denotes element-wise multiplication.

3) Static Memory: We allow each cell to learn a unique
and universally accessible piece of information different from
all other cells. This is achieved by biases bz , br, and bh in
Equations 3-5 which are not a per-layer constant as in the
case of classical convolution, but are learned individually for
each neuron during the training. As shown in Section VII this
allows the network to learn place-specific information such as
the static occupancy of the cell or the usual motion patterns
and classes in a particular area, which can then be used to aid
the network prediction.

4) Decoders: Finally, we employ pair of simple convo-
lutional decoders to decode output of the final layer to the
cell occupancy yt and class label ct. The difference is that
for the class label we employ softmax (multinomial logistic

regression) output for the K classes instead of a sigmoid
function.

VII. RESULTS

In this section we demonstrate the efficacy of the proposed
system in both tasks of tracking and semantic classification in
a complex, real-world scenario. We show that the trained net-
work is able to track and classify a variety of different objects
even through complete occlusion, and is able to predict the
evolution of the scene in the near future. In particular, we are
interested in the relative performance of the proposed network
architecture in correctly predicting both object positions and
class labels. We show that the achieved tracking accuracy is
superior to the original architecture presented in [11], as well
as to that of an alternative state-of-the-art model-free tracking
solution targeted at the same problem [22].

A. Dataset

We collected a 75 minute long log from a stationary
robotic platform equipped with a Hokuyo UTM-30LX 2D
laser scanner, positioned in the middle of a busy urban
intersection, as depicted in Figure 6. The area features dense
traffic composed of buses, cars, cyclists and pedestrians, which
results in extensive amounts of occlusion. Consequently, at no
point in time the complete scene was fully observable. We
subsampled the dataset at 8Hz and split it into a 65 minute
unsupervised set to train the network, and a 10 minute long
test set to measure the occupancy prediction performance. In
addition, we hand-labelled 800 scans from the training set into
4 classes for the purpose of network semantic training, and
200 scans from the test set for the evaluation of its semantic
classification accuracy. The classes considered are: pedestrian,
car/bus, cyclist and background (static obstacle).

The input to the network xt (the partially observed occu-
pancy grid) is computed from raw 2D laser scans by ray-
tracing. Cells where a laser measurement ends are marked as
occupied, all cells from the sensor origin up to the end of the
ray are marked as free, and cells beyond the ray are marked to

Fig. 6. Location of the experiment from the robot’s point of view with a
superimposed illustration of laser measurements. The area is occupied by a
variety of different dynamic objects such as pedestrians, cyclists and cars.

robot position

predicted obstacle probability

overhead image of the robot environment

Fig. 7. Trained network output when provided no input [bottom] and
corresponding aerial view of the robot environment [top]. The ability of
the network to learn per-pixel information allows adaptation to the training
environment. This allows the network to confidently predict the position of
static obstacles such as buildings, as well as the probability of any given
cell being occupied even without any sensor input. Pavements show higher
probabilities than the centre of the roads. For clarity of visualisation, we show
here the log of the probabilities of occupation.

be unobserved. We build a 100 × 100 grid around the sensor,
and each cell covers a 20 × 20 cm2 area, the input grid thus
spanning a total area of 20× 20 m2.

B. Network training

We tested the proposed network architecture described in
Section VI configured with three hidden layers of 16 channels
per layer. This network has a total number of 1,010,193
parameters and was trained for 72 hours until convergence
on a single Nvidia Titan GPU with 6 GB of memory, using
the unsupervised training procedure described in Section IV-A.
The training sequence was split into mini-batches of length 40
(5 seconds of stream). For every mini-batch, the network is
shown 10 frames and trained to predict the next 10 frames,
leading to two such sequences per mini-batch. This was chosen
to cover the usual length of the occlusions in the scene and
we expect it would need to be increased for longer-lasting
occlusions.

Next, the classifier of P (ct|ht) was trained in just 2 hours
on the semantic classification task using the 2 minute long
labelled dataset. Because the dataset is skewed and contains

visible area occluded area obstacle pedestrianbackground bus / car cyclist

t = 1 t = 2 t = 3 t = 4 t = 5

Sequence 1
In

pu
t

O
ut

pu
t

Sequence 2

O
ut

pu
t

Cl
os

e-
up

 o
ut

pu
t

Fig. 8. Example of produced outputs of the system. As displayed in the highlighted close-up of the output of second sequence the network is able to
propagate assumed motion of the objects (highlighted by circles) even when in complete occlusion.

many more objects of a particular type, e.g. pedestrians, we
used a weighting scheme assigning class weights equal to the
inverse of class frequency.

C. Benchmarking Against an Existing Approach

To compare the performance of the proposed end-to-end
system to more traditional multi-stage pipelines, we evaluate
the ability to predict future movement of dynamic objects of
the proposed framework against a recently proposed state-of-
the-art approach [22] based on model-free tracking of dynamic
objects using a Kalman filter. This method accepts raw laser
scans, performs data clustering and association, as well as
velocity estimation of moving objects. This information is
then used to predict the positions of individual points in the

future. We tuned the parameters of this method on the training
set, then collected results from the test set, and converted the
output into occupancy grids for comparison with the proposed
method.

D. Evaluation

Two typical input sequences and their corresponding pre-
dicted network output are shown in Figure 8. The network
is able to uncover the unoccluded scene including the space
occupancy yt and object labels ct. Moreover it is able to update
the positions of dynamic objects through temporary occlusion
demonstrating that it has learned to track and recognise objects
in the scene.

In what follows, we quantitatively evaluate the performance

of the proposed system to justify these qualitative observations.
1) Occupancy Accuracy: As the ground-truth occupancy

annotations yt of the full unoccluded state was not available
we, instead, measured the accuracy of predicting the future
occupancy yt+n with respect to the visible part of the scene
in xt+n. This is the same metric as the one used to train
the network in Section IV. For binary obstacle prediction, we
show in Figure 9 the computed F1-scores when predicting 10
consecutive frames, averaged over the test set, and compare
to both the original architecture described in [11] (that we
train in a similar manner), and to the state-of-the-art multi-
stage pipeline approach of [22]. The prediction is accurate
in the near horizon and progressively decreases over time.
This is expected, as the uncertainty of the state of the world
increases with the prediction horizon. In both cases our results
outperform the two alternative approaches, demonstrating the
effectiveness of the proposed network architecture and advan-
tages of end-to-end learning.

Another experiment is concerned with measuring the ef-
fectiveness of the desired ability to learn place-specific infor-
mation. One way to evaluate this is to visualise the network
prediction y1 without providing it with any input as displayed
in Figure 7. Even without input sensor information, the net-
work is able to provide an estimate of the expected occupancy
probabilities, which is higher at the locations of static obstacles
and at crowded areas of the scene such as pavements. As no
propagation of the information through the network occur this
is clearly only made possible by the ability of the network to
remember this information in its static memory during training.

2) Semantic Accuracy: To quantify the network’s ability
to classify scene semantics, we compute the confusion matrix
which is shown in Figure 10. As can be seen, the network
is able to produce reliable classification for the object classes
considered. The main source of error lies in distinguishing

0.5 1.0 1.5 2.0 2.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ed

ic
tio

n
pe

rf
or

m
an

ce
 [F

1
sc

or
e]

Prediction time horizont [sec]

Proposed model
Ondruska et al. 2016
Wang et al. 2015

Fig. 9. Network ability to correctly predict the future occupancy of the
scene in the time horizon of 2.5 seconds, measured by consistency with the
future input. As the time horizon increases the quality of prediction degrades.
The proposed neural network architecture performs better than the original
architecture presented in [11] as well as a state-of-the-art multi-stage pipeline
approach [22].

Background

Pedestrian

Car/Bus

Cyclist

Back
gro

und

Pedestr
ian

Car/B
us

Cycli
st

G
ro

un
dt

ru
th

 c
la

ss 95.9%

4.1%

0.0%

0.0%

0.1%

99.5%

0.1%

0.3%

0.0%

2.7%

96.5%

0.8%

0.0%

36.0%

8.4%

55.6%

Predicted class

Background

Pedestrian

Car/Bus

Cyclist

99.8%

1.4%

0.0%

0.0%

0.2%

94.9%

0.5%

5.4%

0.0%

0.5%

95.4%

2.5%

0.0%

3.2%

4.1%

92.1%

Row normalisedColumn normalised

Back
gro

und

Pedestr
ian

Car/B
us

Cycli
st

Fig. 10. The confusion matrix of the semantic classification performance.

cyclists from pedestrians, as they often exhibit similar shapes
in 2D laser data.

To verify the value of the proposed inductive transfer of
knowledge, we compare this result to an alternative approach
of classifying scene semantics, which takes the form of a
one-shot classification of all directly visible obstacles from
a single raw-sensor input. As a representative solution to
such an approach, we trained a three-layer deep convolutional
classifier predicting ct directly from xt. Despite conducting
rigorous parameter tuning, classifying directly the input xt
yields inferior classification accuracy compared to classifying
the hidden representation ht, the negative log likelihood of cor-
rect labels being respectively

∑
t− logP (ct|xt) = 101.967

and
∑

t− logP (ct|ht) = 49.129. This demonstrates that ht
offers a powerful semantic descriptor of the scene and can be
used as input for accurate semantic classification.

3) Timing: The forward propagation of a single input
through the network takes 15ms on an Nvidia Titan GPU and
83ms on a commodity laptop CPU. This is sufficient to enable
real-time processing of the considered stream of laser data at
8Hz.

VIII. CONCLUSIONS

In this work, we presented a novel end-to-end trainable
solution for real-time object tracking and classification in
complex and partially-observable real-world environments.
Leveraging the representational power of recurrent neural
networks and employing efficient training procedures, the
method surpasses a representative state-of-the-art model-free
method, while substantially reducing the requirement for hand-
engineered knowledge.

The method can be extended or applied in a number of
ways. The universal schema of input and output opens up
a possibility to apply the method to situations beyond those
evaluated, such as accounting for robot motion which can
be handled by moving the robot inside the grid, or multi-
sensor or multi-robot fusion. Additionally, the knowledge of
the environment captured in learning to track can be further
exploited to provide different kinds of semantic information
such as bounding boxes. Finally, the inherent ability to predict
the future evolution of the environment around the robot can
be leveraged upon in more far-sighted planning scenarios.

REFERENCES

[1] K.O. Arras, O.M. Mozos, and W. Burgard. Using
Boosted Features for the Detection of People in 2D
Range Data. In Robotics and Automation, 2007 IEEE
International Conference on, pages 3402–3407, April
2007.

[2] Rich Caruana. Learning many related tasks at the
same time with backpropagation. Advances in neural
information processing systems, pages 657–664, 1995.

[3] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase represen-
tations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

[4] George E Dahl, Dong Yu, Li Deng, and Alex Acero.
Context-dependent pre-trained deep neural networks for
large-vocabulary speech recognition. Audio, Speech, and
Language Processing, IEEE Transactions on, 20(1):30–
42, 2012.

[5] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[7] Quoc V Le. Building high-level features using large
scale unsupervised learning. In Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International
Conference on, pages 8595–8598. IEEE, 2013.

[8] LR Medsker and LC Jain. Recurrent neural networks.
Design and Applications, 2001.

[9] Christoph Mertz, Luis E Navarro-Serment, Robert
MacLachlan, Paul Rybski, Aaron Steinfeld, Arne Suppe,
Christopher Urmson, Nicolas Vandapel, Martial Hebert,
Chuck Thorpe, et al. Moving object detection with laser
scanners. Journal of Field Robotics, 30(1):17–43, 2013.

[10] Tom M Mitchell, Sebastian B Thrun, et al. Explanation-
based neural network learning for robot control. Ad-
vances in neural information processing systems, pages
287–287, 1993.

[11] Peter Ondruska and Ingmar Posner. Deep tracking:
Seeing beyond seeing using recurrent neural networks. In
The Thirtieth AAAI Conference on Artificial Intelligence
(AAAI), Phoenix, Arizona USA, February 2016.

[12] Sinno Jialin Pan and Qiang Yang. A survey on trans-
fer learning. Knowledge and Data Engineering, IEEE
Transactions on, 22(10):1345–1359, 2010.

[13] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
On the difficulty of training recurrent neural networks.
arXiv preprint arXiv:1211.5063, 2012.

[14] Jeffrey Pennington, Richard Socher, and Christopher D
Manning. Glove: Global vectors for word representation.
Proceedings of the Empiricial Methods in Natural Lan-
guage Processing (EMNLP 2014), 12:1532–1543, 2014.

[15] Anna Petrovskaya and Sebastian Thrun. Model based
vehicle detection and tracking for autonomous urban
driving. Autonomous Robots, 26(2):123–139, 2009. ISSN
1573-7527.

[16] Lawrence R Rabiner. A tutorial on hidden markov
models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, 1989.

[17] Charles Richter, William Vega-Brown, and Nicholas Roy.
Bayesian Learning for Safe High-Speed Navigation in
Unknown Environments. In Proceedings of the Inter-
national Symposium on Robotics Research (ISRR 2015),
Sestri Levante, Italy, 2015.

[18] David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. Learning representations by back-propagating
errors. Cognitive modeling, 5:3, 1988.

[19] Patrice Y Simard, Dave Steinkraus, and John C Platt.
Best practices for convolutional neural networks applied
to visual document analysis. In null, page 958. IEEE,
2003.

[20] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[21] Trung-Dung Vu, O. Aycard, and N. Appenrodt. Online
Localization and Mapping with Moving Object Tracking
in Dynamic Outdoor Environments. In Intelligent Vehi-
cles Symposium, 2007 IEEE, pages 190–195, June 2007.

[22] Dominic Zeng Wang, Ingmar Posner, and Paul Newman.
Model-free detection and tracking of dynamic objects
with 2d lidar. The International Journal of Robotics
Research, 34(7):1039–1063, 2015.

[23] Tao Wang, David J Wu, Andrew Coates, and Andrew Y
Ng. End-to-end text recognition with convolutional neu-
ral networks. In Pattern Recognition (ICPR), 2012 21st
International Conference on, pages 3304–3308. IEEE,
2012.

[24] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan
Yeung, Wai-kin Wong, and Wang-chun WOO. Con-
volutional lstm network: A machine learning approach
for precipitation nowcasting. In Advances in Neural
Information Processing Systems, pages 802–810, 2015.

[25] Shao-Wen Yang and Chieh-Chih Wang. Simultaneous
egomotion estimation, segmentation, and moving object
detection. Journal of Field Robotics, 28(4):565–588,
2011. ISSN 1556-4967.

[26] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object
tracking: A survey. Acm computing surveys (CSUR), 38
(4):13, 2006.

[27] Fisher Yu and Vladlen Koltun. Multi-scale context
aggregation by dilated convolutions. arXiv preprint
arXiv:1511.07122, 2015.

[28] L. Zhao and C. Thorpe. Qualitative and Quantitative Car
Tracking from a Range Image Sequence. In Proceedings
of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, CVPR ’98, pages 496–,
Washington, DC, USA, 1998. IEEE Computer Society.
ISBN 0-8186-8497-6.

	Introduction
	Related Works
	Problem Formulation
	Deep Tracking for Robotics
	A Brief Review of Deep Tracking

	Semantic ClassificationThrough Inductive Transfer
	Training

	The Network Architecture
	Multi-Scale Convolution
	Dynamic Memory
	Static Memory
	Decoders

	Results
	Dataset
	Network training
	Benchmarking Against an Existing Approach
	Evaluation
	Occupancy Accuracy
	Semantic Accuracy
	Timing

	Conclusions

