
Image Processing for

Multiple-Target Tracking on a

Graphics Processing Unit

THESIS

Michael A. Tanner, Second Lieutenant, USAF

AFIT/GCE/ENG/09-11

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCE/ENG/09-11

Image Processing for

Multiple-Target Tracking on a

Graphics Processing Unit

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Michael A. Tanner, BSCE

Second Lieutenant, USAF

March 2009

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCE/ENG/09-11

Image Processing for

Multiple-Target Tracking on a

Graphics Processing Unit

Michael A. Tanner, BSCE

Second Lieutenant, USAF

Approved:

/signed/ March 2009

Dr. Yong C. Kim, PhD
(Chairman)

date

/signed/ March 2009

Lt Col Gregory J. Toussaint, PhD
(Member)

date

/signed/ March 2009

Lt Col Michael J. Veth, PhD
(Member)

date

AFIT/GCE/ENG/09-11

Abstract

Multiple-target tracking (MTT) systems have been implemented on many dif-

ferent platforms, however these solutions are often expensive and have long devel-

opment times. Such MTT implementations require custom hardware, yet offer very

little flexibility with ever changing data sets and target tracking requirements. This

research explores how to supplement and enhance MTT performance with an existing

graphics processing unit (GPU) on a general computing platform. Typical computers

are already equipped with powerful GPUs to support various games and multimedia

applications. However, such GPUs are not currently being used in desktop MTT

applications.

This research explores if and how a GPU can be used to supplement and en-

hance MTT implementations on a flexible common desktop computer without requir-

ing costly dedicated MTT hardware and software. A MTT system was developed in

MATLAB to provide baseline performance metrics for processing 24-bit, 1920×1080

color video footage filmed at 30 frames per second. The baseline MATLAB imple-

mentation is further enhanced with various custom C functions to speed up the MTT

implementation for fair comparison and analysis. From the MATLAB MTT imple-

mentation, this research identifies potential areas of improvement through use of the

GPU.

The bottleneck image processing functions (frame differencing) were converted

to execute on the GPU. On average, the GPU code executed 287% faster than the

MATLAB implementation. Some individual functions actually executed 20 times

faster than the baseline. These results indicate that the GPU is a viable source to

significantly increase the performance of MTT with a low-cost hardware solution.

iv

AFIT/GCE/ENG/09-11

To my wife

v

Acknowledgments

First, I offer my thanks to my wife for her love and support throughout my time at

AFIT. She always encouraged me, even when I thought I would not be able to make

it through the academic program. And of course, the lunches she packed for me were

ever so appreciated. I love you.

I would not have gotten to this point if it were not for my adviser, Dr. Kim. Not

only did he teach many of my classes, but he also was always willing to give advice

no matter what time I dropped by his office. We spent many hours talking about my

research to determine where it would go next. Without his support, I would not have

completed this research.

Lt Col Toussaint was the one who helped me learn about multiple-target track-

ing. He was very patient and flexible with me as we studied original papers and

modern textbooks. I greatly appreciated the amount of time and effort he put in to

teaching me even though I was the only student in the target-tracking course.

One of the first professors I met at AFIT was Lt Col Veth. He helped me choose

my thesis research path, and also suggested a number of courses to provide me with

the proper background.

Finally, I would like to thank my fellow research students for making the time

at AFIT much more enjoyable than it would be otherwise. Roy, Hiren, and Tom were

always willing to lend an ear whenever I was frustrated with my research.

Michael A. Tanner

vi

Table of Contents
Page

Abstract . iv

Dedication . v

Acknowledgments . vi

Table of Contents . vii

List of Figures . x

List of Tables . xi

List of Algorithms . xii

List of Symbols . xiii

List of Abbreviations . xiv

I. Introduction . 1
1.1 Research Goals . 1
1.2 Assumptions . 2

1.3 Contributions . 3
1.4 Thesis Organization . 3

II. Background . 4

2.1 Image Processing Background 4

2.1.1 Color to Grayscale Transformation 4

2.1.2 Background Subtraction 5

2.1.3 Convert to Binary Image 6

2.1.4 Connected Component Labeling 6

2.1.5 Blob Analysis 8

2.1.6 Example of Image Processing 9

2.2 Multiple-Target Tracking (MTT) Background 10

2.2.1 Sensor Observations 11
2.2.2 Gating . 11

2.2.3 Data Association 12
2.2.4 Track Maintenance 13
2.2.5 Filtering and Prediction 14

2.3 Graphics Processor Unit (GPU) Background 17

vii

Page

2.3.1 Programming Languages 17

2.3.2 GPU versus CPU 18
2.3.3 CUDA Terminology 20

2.3.4 Thread Hierarchy 20

2.3.5 Memory Hierarchy 21

2.3.6 Synchronization 23

2.3.7 Performance Notes 23
2.4 Literature Review . 24

2.4.1 GPGPU Image Processing Libraries 24

2.4.2 Parallel CCL Algorithms 25

2.4.3 Fast Radial Blob Detector 26
2.5 Summary . 26

III. Methodology . 27

3.1 MTT Software Development (MATLAB) 27

3.1.1 Input Data . 27

3.1.2 Output Data 28

3.1.3 Image Processing 29

3.1.4 Gating . 29

3.1.5 Data Association 30
3.1.6 Track Maintenance 30
3.1.7 Filtering and Prediction 30

3.1.8 Profile . 30
3.2 C MEX Implementation 31

3.2.1 Overview of MEX Files 32
3.2.2 Image Processing 32

3.2.3 Profile . 33
3.3 GPU Implementation . 35

3.3.1 Implementable Functions 35

3.3.2 Performance Considerations 35
3.3.3 Compute Capability 36

3.3.4 Color to Binary Image 36

3.3.5 Connected Component Labeling 37

3.3.6 Blob Analysis 40

3.4 Summary . 42

viii

Page

IV. Results . 43
4.1 Limitations . 43
4.2 Functions Not Implemented on the GPU 43

4.2.1 Read Video Data 43
4.2.2 Tracking Algorithms 45

4.3 Experimental Setup . 46

4.4 Scenario Descriptions . 47

4.4.1 Scenario 1 . 47
4.4.2 Scenario 2 . 48
4.4.3 Scenario 3 . 48
4.4.4 Threshold Value for Scenarios 49

4.5 Results . 49
4.6 Interpretation of Results 52

4.7 Modification of Results 54
4.8 Summary . 55

V. Conclusions . 57
5.1 Research Contribution 57
5.2 Future Work . 57

5.2.1 Function Improvements 58

5.2.2 Image Processing Algorithm Changes 59

5.2.3 Miscellaneous Research Ideas 59
5.3 Summary . 59

Bibliography . 61

Index . 63

ix

List of Figures
Figure Page

2.1. Image Processing Stages . 5

2.2. Example of CCL . 7

2.3. Example of Blob Analysis . 9

2.4. Image Processing Stages - Example 10

2.5. MTT Block Diagram . 10

2.6. Gating Example (Two-Targets, Four-Observations) 11

2.7. CPU vs. GPU Functional Layout 19

2.8. CUDA Thread Hierarchy . 21

2.9. CPU, GPU, RAM, and Northbridge Communication 24

3.1. MTT Software Flowchart . 28

3.2. Implementation Difficulty vs. Performance 42

4.1. MTT Software Timing Breakdown 44

4.2. Scenario 1 Sample Frame . 47

4.3. Scenario 2 Sample Frame . 48

4.4. Scenario 3 Sample Frame . 49

4.5. Scenario Results Summary . 52

x

List of Tables
Table Page

2.1. Calculating x-Coordinate of Centroid 8

2.2. Calculating y-Coordinate of Centroid 8

2.3. Assignment Matrix Example 13

2.4. Coalescing Memory Writes . 22

3.1. Summary of MATLAB Image Processing Implementation . . . 29

3.2. MATLAB Software Time Profile 31

3.3. MATLAB C MEX Software Time Profile 34

3.4. Comparison of Compute Capabilities 37

4.1. Computer Hardware/Software Summary 50

4.2. Scenario Results Summary . 51

4.3. Alternative Scenario Results Summary 55

xi

List of Algorithms
Algorithm Page

2.1. Calculate c = a + b on the CPU 19

2.2. Calculate c = a + b on the GPU 19

2.3. Parallel Implementation of CCL 25

3.1. Generalized Structure of MATLAB MEX Files 32

3.2. Two-Pass CCL . 34

3.3. Parallel Implementation of CCL on CUDA 38

3.4. CCL Label Reduction . 39

xii

List of Symbols
Symbol Page

pg Grayscale Pixel . 5

pc Color Pixel . 5

pcr Color Pixel (Red Component) 5

pcg Color Pixel (Green Component) 5

pcb
Color Pixel (Blue Component) 5

pd Grayscale Difference Pixel 6

pb Binary Threshold Pixel 6

bth Binary Threshold Value 6

x(k) State Vector . 14

Φ State Transition Matrix 14

q(k) Zero-Mean, White, Gaussian Process Noise 14

Q Process Noise Covariance Matrix 14

f(k) Deterministic Input . 14

y(k) Measurement Vector . 15

H Measurement Matrix . 15

v(k) Zero-Mean, White, Gaussian Measurement Noise 15

R Measurement Noise Covariance Matrix 15

K(k) Kalman gain . 15

P (k) Process Covariance Matrix 15

I Identity Matrix . 15

p Target Position . 16

v Target Velocity . 16

a Target Acceleration . 16

α Reciprocal of Maneuver Time Constant 16

w(t) Singer Zero-Mean, White, Gaussian Noise 16

T Singer KF Sample period 16

xiii

List of Abbreviations
Abbreviation Page

MTT Multiple-Target Tracking 1

CPU Central Processing Unit 1

GPU Graphics Processing Unit 1

MEX MATLAB Executable . 2

RGB Red Green Blue . 5

CCL Connected Component Labeling 6

NN Nearest Neighbor . 12

GNN Global Nearest Neighbor 12

LR Likelihood Ratio . 14

KF Kalman Filter . 14

FOGM First-Order Gauss-Markov 16

GPGPU General Purpose Computing on GPUs 17

CTM Close To Metal . 17

CUDA Compute Unified Device Architecture 18

OpenCL Open Computing Language 18

CPI Clocks Per Instruction . 18

ALU Arithmetic Logic Unit . 18

SIMD Single Instruction Multiple Data 19

SIMT Single Instruction Multiple Thread 23

GpuCV GPU Computer Vision . 24

OpenCV Open Computer Vision . 24

FRBD Fast Radial Blob Detector 26

FPS Frames Per Second . 31

JIT Just-in-Time . 33

MHT Multiple Hypothesis Tracking 45

xiv

Image Processing for

Multiple-Target Tracking on a

Graphics Processing Unit

I. Introduction

Multiple-target tracking (MTT) is a well-defined problem that has been re-

searched since the 1970’s. Due to recent availability of MTT related modules

in MATLAB or similar high-level programming environments, MTT implementation

is not as difficult as it once was.

Since the image processing portion of MTT is such a computationally-intensive

process, much research has been done to optimize code and algorithms. Some ap-

proaches include using signal-processing chips, custom hardware, or expensive central

processing units (CPUs) for marginal performance gains. Money and time can be

saved if a relatively inexpensive graphics card can be used to improve image process-

ing performance.

Running a high-level programming language implementation of MTT on a serial

processor, like a microcontroller or CPU, has the limitation of handling only serial

data. They lack the parallel support needed to fully optimize MTT. On the other

hand, a graphics processing unit (GPU) is poor at processing data serially, but is

very efficient at solving highly-parallel problems. Using a high-level language that

is able to execute code on both a CPU and GPU could, if done correctly, improve

the performance of a MTT implementation. Parallel portions of the code (i.e., image

processing) can be efficiently executed by the GPU, while the CPU handles the serial

algorithms.

1.1 Research Goals

The main goal of this research is to determine if the performance of image

processing for MTT can be improved by using a GPU. In order to achieve this goal,

1

a number of intermediate steps need to be accomplished. The MTT software first

must be implemented in a high-level mathematical language. After this, the image

processing functions can be converted into C code and then into code that runs on

the GPU. Each progressive stage of development should be perform better (faster

execution speed) than the previous.

The high-level mathematical language used will be MATLAB, an ideal choice

since it is used commonly as an algorithm prototype language. The MTT software

must be able to take a series of input images, find the targets within the images,

track them, and output the results. All important parameters within the software

should be easily accessible to simplify modifications. Also, the code must be well

documented in order to aid in future research using the same software. The speed of

this software implementation will be the baseline by which all other implementations

are compared.

Second, the slowest portions of the MTT image processing code will be con-

verted into C code. The C code can then be compiled to integrate with existing code

as a MATLAB executable (MEX) file, thereby removing the MATLAB computing

overhead.

Finally, the image processing functions will be converted to execute on the GPU

and the performance will be compared with the MATLAB and C implementations.

1.2 Assumptions

A number of assumptions are made to facilitate the development of the MTT

software. First, the sensor used by the MTT software is an imaging device (video

or still camera). The data processed by the software is 24-bit RGB color images.

Assuming the images are in RGB format is necessary to correctly parse and process

the inputs (e.g., convert from color to grayscale).

The frame rate from the camera must be constant (i.e., not variable-rate video

compression). This simplifies the calculations to predict and update target locations.

2

The camera is stationary to make the image processing more manageable. On a

moving platform, an optical-flow algorithm would have to be implemented to create

a common coordinate system for all sequential video frames. Implementing such an

algorithm goes beyond the scope of the research goals of this thesis.

Finally, the target motion tracked by this system is assumed to be approxi-

mately linear. This makes the filtering and prediction more tractable for the MTT

application.

1.3 Contributions

There are two contributions this research provides. First, it delivers a self-

contained MTT software system that is well-documented so future researchers do not

have to redevelop the code. Also, this research determines if augmenting MTT image

processing systems with a GPU improves performance. If so, more research can be

done to find other MTT applications for GPUs.

1.4 Thesis Organization

This thesis is organized into five chapters. This first chapter provides a brief

overview of the problem, states the research goals, and also explains any major as-

sumptions made in the research. Chapter II details background material needed to

understand the research. In particular, it explains image processing, MTT, and GPU

programming. A brief summary of related work is also provided. Chapter III ex-

plains how the MTT software was developed. It explains how the different stages

of the software work and explains the specific algorithms used or developed for each

implementation. Chapter IV analyzes the performance of the software. The tests

for the software are described, and the performance of each implementation is pro-

vided. In-depth reasons are provided for any results that are not intuitive. Finally,

Chapter V summarizes the entire research project and suggests future research ideas.

3

II. Background

A few fundamental concepts must be covered to properly understand this re-

search. There are three general areas of study this thesis builds on: (1) im-

age processing, (2) multiple-target tracking, and (3) graphics processing units. Sec-

tions 2.1, 2.2, and 2.3 cover these areas, respectively. This chapter concludes with a

brief overview of similar research in the literature.

2.1 Image Processing Background

The goal of image processing in MTT is to take an input from a sensor and

produce a list of potential targets and their attributes. For example, the sensor input

may be an image from a camera and the list of target attributes may be the centroid,

area, and bounding box associated with each target in the image. Figure 2.1 shows

the flowchart process for a simple MTT image processing algorithm. This section

explains how each colored box in Figure 2.1 works.

2.1.1 Color to Grayscale Transformation. The input is a 24-bit color image,

which means it has 8-bits for the red, green, and blue intensity of each individual

pixel [1]. Using this encoding method, a total of 16.8 million different colors can be

represented in each pixel. Images stored in this format are called true color because

they can represent nearly all the visible colors seen in nature.

Many real-time and embedded image processing systems handle only grayscale

or binary images since color image algorithms are too computationally expensive.

Therefore, the first step is to convert this color image into a grayscale image. Grayscale

images only contain overall intensity information about the original image (in shades

of gray). Equation 2.1 shows the calculation used to convert a color pixel to grayscale

intensity. The scaling constants for each color component are taken from the rgb2gray

function in the MATLAB Image Processing Toolbox. The output grayscale pixel is

only 8-bits with

4

Color to

Grayscale

Background

Subtraction

Convert to

Binary Image

Connected

Component

Labeling
Blob Analysis

RGB Color Image Blob #1: (Centoid, Area)

Blob #1: (Centoid, Area)

…

Blob #N: (Centoid, Area)

Figure 2.1: The image processing chosen for this MTT application takes five stages.
A single color image input is processed, and the final output is a list of the attributes
calculated for each potential target found in the image. The attributes calculated are
area and centroid.

pg = 0.2989 · pcr + 0.5870 · pcg + 0.1140 · pcb
(2.1)

where pg is the grayscale pixel, pc is the color pixel with red, green, and blue (RGB)

color components pcr , pcg , and pcb
, respectively.

2.1.2 Background Subtraction. Removing the background from a grayscale

image results in an image that only contains light gray pixels for portions of the

picture that have changed (i.e., potential targets). Conversely, dark gray pixels in the

new image are portions that have not changed. There are a variety of methods used

to subtract the background, ranging from simple methods like frame differencing to

more complex but robust methods such as background modeling.

The simplest method of background subtraction is frame differencing [2]. As-

suming a background image is available (or can be calculated), this method finds

the absolute difference between the background image and the current image. Equa-

tion 2.2 shows the calculation for each pixel.

pd = |pg1 − pg2| (2.2)

5

where pd is the grayscale difference pixel, pg1 is the grayscale pixel calculated in

Equation 2.2, and pg2 is the grayscale background pixel.

A slightly more robust method for subtracting the background is N -frame dif-

ferencing [3]. The average of the previous N video frames is subtracted from the

current video frame. This requires more computation, but it is well suited for track-

ing slow-moving targets relative to the frame rate.

Many other methods have been developed for estimating the background includ-

ing running Gaussian average, temporal median filter, and kernel density estimation.

Detailed descriptions of these methods are available in [4].

2.1.3 Convert to Binary Image. The next step is to convert the current

grayscale image (with the background removed) into a binary image. A binary image

is purely black and white; it can be thought of as an image where each pixel either is

part of a target or is not.

The key to converting the image is to choose an 8-bit threshold value. Each

pixel in the grayscale image is compared to the threshold value, if it is less than that

value then it is not part of a target, otherwise it is part of a target. Equation 2.3

presents this mathematically.

pb =

1 pd ≥ bth

0 pd < bth

(2.3)

where pb is the binary threshold pixel, and bth is the binary threshold value (between

0 and 255).

2.1.4 Connected Component Labeling. Connected component labeling (CCL)

is the process of assigning each potential target, or blob, in the image a unique la-

bel, as shown in Figure 2.2. A blob is a group of connected identical pixels within

a binary image. This labeling is essential in the next step (Section 2.1.5) in image

processing, blob analysis. CCL is a well-known graph problem with a number of so-

6

Figure 2.2: The goal of CCL is to assign a unique label to each blob. In this figure,
the unique labels are represented as different colors.

lutions [5] [6] [7]. These solutions generally fall into one of two categories, multi-pass

and two-pass algorithms [7].

2.1.4.1 Multi-Pass Algorithms. In these algorithms, each pixel in the

binary image is processed in sequence. If the pixel is part of a blob and has not been

assigned a label, then it is assigned the minimum label of its neighbor pixels. In a

4-connected solution, only the cardinal neighbor pixels (north, south, east, and west)

are processed; an 8-connected solution processes all eight neighbors. If a pixel has no

labeled neighbors, then it is assigned with a new unique label.

These algorithms continue to loop over the image until no pixels have changed

their label. This is the simplest but most inefficient algorithm because it can require

a significant number of iterations to propagate all of the labels.

2.1.4.2 Two-Pass Algorithms. Two-pass algorithms use a method

called equivalence labeling. On the first pass, each pixel is assigned a new unique

label or the minimum of its neighbors as in the multi-pass algorithm. Before moving

on to the next pixel though, an equivalence between the neighboring pixels is stored in

an equivalence set (typically implemented in a union-find structure). An equivalence

means that two labels are synonymous. For example, imagine there are two pixels in

a row that are part of the same blob. If they are labeled a and b, respectively, then

7

Table 2.1: Table to calculate the x-coordinate of the centroid for the blob in Fig-
ure 2.3. The final weighted sum should be divided by the area (in pixels).

Column Number of Pixels Product
1 0 0
2 2 4
3 0 0

Sum: 4

Table 2.2: Table to calculate the y-coordinate of the centroid for the blob in Fig-
ure 2.3. The final weighted sum should be divided by the area (in pixels).

Row Number of Pixels Product
1 0 0
2 1 2
3 1 3
4 0 0

Sum: 5

the labels a and b are equivalent since they are in the same blob. After the first pass

is completed, then each pixel is assigned the minimum label of its equivalence set.

These algorithms tend the be the most efficient [7]. The performance bottleneck

of two-pass algorithms is the random memory access caused by set logic. Each time

two label sets are marked as equivalent, their lists need to be merged in dynamic

memory. Also, on the second pass each label must be found by searching through

the equivalence lists. Dynamically allocating, deleting, and traversing heap memory

takes significantly more time than using simple stack-based data structures.

2.1.5 Blob Analysis. The final stage of image processing is to perform a

blob analysis on the image [6]. The centroid (geometric center) and area of each blob

are calculated. Calculating the area is straightforward. After only one pass over the

image, the area for each blob can be calculated. While iterating through the image,

the blob’s area is incremented when the pixel and blob have the same label.

Calculating the centroid can also be completed in one pass, but it requires more

calculations [8]. For each blob, a table is generated that stores the number of pixels

8

1 2 3

1

2

3

4

Figure 2.3: Blob analysis is the process of calculating attributes for blobs within
an image. In this simple image, the blob has a centroid located at (2, 2.5) with an
area of 2 pixels.

the blob has in each row and column. Tables 2.1 and 2.2 provide an example of

how these tables are built for the image in Figure 2.3. The number of pixels in each

row/column must be weighted by the index of that row/column. Then the sum of all

the weighted values is calculated. Finally, this sum is divided by the area to calculate

the x- and y-coordinates for the centroid.

For example, the final sum for the rows in Figure 2.3 is 4 with a total area of 2.

Therefore the x-coordinate is 4/2 = 2. Following the same process for the columns

will result in an y-coordinate of 2.5. Therefore the centroid is located at (2, 2.5).

2.1.6 Example of Image Processing. A real example is useful to fully under-

stand the steps in image processing. Figure 2.4 provides real images and data from

one frame in a MTT video sequence. The figure is structured identically to Figure 2.1

to show the real image that is associated with each image processing block.

The input is a simple color image, and the final output is a list of coordinates

and centroids for each blob detected in the image. In order to produce this output,

the input image is first converted to grayscale to make the processing more tractable.

Then the background is subtracted to determine what has changed in the scene. Next,

a threshold is used on the image to mark each pixel as unchanged or changed (i.e.,

black or white). In CCL, the blobs in the binary image are labeled with unique

identifiers. The labels are represented as colors in this example. Finally, the blobs

are analyzed to find their centroids and areas.

9

Background

Subtraction

Color to Grayscale Convert to Binary

Image

Connected

Component Labeling

RGB Color Image

Blob Analysis

Blob Area Centroid

130 (384, 175)

119 (398, 169)

153 (421, 191)

162 (442, 166)

Figure 2.4: This figure is analogous to Figure 2.1, but instead of a generic block
representing each stage, the real image/data is shown. As can be seen, the input color
image is processed, and the final output is a list of the coordinates and centroids for
each blob. The blob labels are represented as colors in this figure for simplicity and
clarity, in a real application they would be numbers.

Sensor

Observations
Gating Data Association

Track

Maintenance

Filtering and

Prediction

Figure 2.5: A block diagram depicting the recursive flow for a simple modern MTT
system. This assumes that tracks have been formed before gating occurs. [9]

2.2 Multiple-Target Tracking (MTT) Background

MTT is a long-standing problem that has been well-researched in the literature.

This section will provide a very brief overview of the different stages of a simple

modern tracking system, as outlined in Figure 2.5. More in-depth information can be

found in [9].

There are two basic terms related to MTT that must be understood before

covering the individual blocks in Figure 2.5. An observation is one data point that

10

O1

O4

O3 O2

P1 P2

Gate

Figure 2.6: A simple gating example with two predicted target locations (P1, P2)
and four observation locations (O1, O2, O3, O4). [9]

represents the location of a potential target. In order to track a target over time it is

necessary to create a track, which is a historical record of observations and predictions

associated with a particular target.

Unless otherwise stated, all the information for this section is from [9].

2.2.1 Sensor Observations. The first step of any tracking system is to

observe the environment with one or more sensors. If multiple sensors are involved,

those data need to be combined (called data fusion) into one coherent format. The

ultimate goal of this stage is to produce a list of locations where potential targets

have been observed.

2.2.2 Gating. Modern tracking systems can cover a large area with many

different targets. In order to increase the accuracy of the tracks and decrease the

computational complexity of data association, the number of potential observations

per target must be limited. Gating is the process of selecting observations that are

statistically close to the predicted target location.

11

A simple way to understand this process is to imagine data from an imaging

target-tracking system. In Figure 2.6, two target tracks exist from previous sensor

data and MTT loop iterations. There are four observations, but only two of them

will ultimately be assigned to the targets. In order to remove unlikely observations,

a gate is drawn around each predicted target location. Any observations inside the

gate (represented by colored circles in Figure 2.6) can be assigned to that track, while

any observations outside the gate cannot.

The size and shape of a gate are important. If a Kalman filter implementation is

used for the filtering and prediction, then the covariance matrix can aid in calculating

the gate size. The most common gate shapes are rectangular and ellipsoidal. The

rectangular gates are simpler to implement, but ellipsoidal gates are more accurate.

2.2.3 Data Association. This is the most important and difficult stage of

target tracking. Data association is the process of selecting an observation to be

assigned to each track. Sometimes it is appropriate for no observation to be assigned

to a track; for example, when a target moves under a bridge it cannot be observed by

an airborne camera. One of the difficulties is when observations fall within the gates

of multiple tracks (e.g., O1 in Figure 2.6). There must be a way to calculate which

track is the best match. A number of different data association algorithms have been

developed to solve this problem, including nearest neighbor (NN), greedy algorithm,

and global nearest neighbor (GNN).

The simplest solution is using an algorithm called NN. In this method all

tracks are assigned to the observation closest to them. Under this scheme, the same

observation can be assigned to multiple tracks.

A greedy algorithm performs slightly better. Each track is processed one at

a time, assigning it the closest observation that has not already been assigned to a

track. This algorithm still is not accurate enough for many modern tracking systems.

One of the most widely used algorithms is GNN. This method seeks to find

the most likely association of observations to tracks. It does so by minimizing the

12

Table 2.3: This table provides an example of an assignment matrix. The columns
represent the observations, the rows represent tracks, and each cell represents the
statistical distance between that track and observation. [9]

Tracks O1 O2 O3 O4
T1 d1,1 d1,2 d1,3 d1,4

T2 d2,1 d2,2 d2,3 d2,4

T3 d3,1 d3,2 d3,3 d3,4

overall distance between track-to-observation assignments. While this seems to be a

straight-forward problem to solve, finding an optimal solution is very difficult. One

elegant solution found to date is called the Auction Algorithm which [9] covers in

detail.

The Auction Algorithm requires an assignment matrix as the input. Each col-

umn in the matrix represents one observation, while each row represents one track.

The matrix cell value dM,N represents the distance between track M and observation

N . If an observation is outside the track’s gate, then it is assigned an infinite value.

An example matrix is provide in Table 2.3.

Many additional methods of solving the data association problem exist. Detailed

descriptions of such additional methods are provided in [9].

2.2.4 Track Maintenance. Track maintenance refers to the process of cre-

ating, confirming, and deleting tracks. A simple and commonly used method is to

create a track for every observation that is not assigned to a track after gating and

assignment. Once created, there are two different methods used to confirm and delete

this track.

A sliding window is commonly used for track maintenance. In this method, the

track is confirmed if it has been observed Kc of the last M observations, where Kc

and M are parameters set by the tracking engineer. Larger values with a high ratio

for Kc : M decrease the number of false tracks, but they also increase the time it

takes to confirm a track. Tracks are deleted if they have not been observed in the last

Kd frames. While this method is simple, it is effective.

13

Scoring is a more complicated and usually more accurate approach to track

confirmation and deletion. In this method a probabilistic likelihood ratio (LR) is

defined to be the ratio between the probability the track is a true track and the

probability it is a false track. A track is confirmed once the LR rises above a predefined

threshold level T1, and it is deleted when it falls below a predefined threshold level

T2.

2.2.5 Filtering and Prediction. As can be inferred from the name, filtering

and prediction is a two-stage process. Filtering is the process of statistically combining

the predicted state of the target with its observed state. Prediction is the process of

propagating that filtered state one step forward in time. If no observation is assigned

to a target, then the filtering stage is skipped, but the target state estimate is still

propagated.

2.2.5.1 Kalman Filter. A number of different methods exist for fil-

tering and predicting, but the most common is the Kalman filter (KF) [9]. The KF

is a linear estimator. It is able to optimally combine observations and predictions

into an overall optimal estimate of the actual state of a given system (e.g., a target).

Along with a state estimate, the KF also has a covariance matrix which represents

the uncertainty of its state estimate.

A KF only works as well as its model represents reality. A model is a set of

differential equations that describe how a system works. The KF uses current system

state information to estimate a future state. Equation 2.4 shows how to propagate a

discrete model’s state one step forward in time.

x(k + 1) = Φx(k) + q(k) + f(k + 1|k) (2.4)

Here, x(k) is the state vector, Φ is the state transition matrix, q(k) is the zero-mean,

white, Gaussian noise with a covariance matrix Q, and f(k) is the deterministic input.

14

In order to update the model with a target’s location, a measurement must be

taken, as shown in Equation 2.5.

y(k) = Hx(k) + v(k) (2.5)

where y(k) is the measurement vector, H is the measurement matrix, and v(k) is the

zero-mean, white, Gaussian measurement noise with a covariance matrix R.

Once the model has been created, as in Equation 2.4, and a measurement has

been taken, as shown in Equation 2.5, the first KF step is to use Equation 2.6 to

update the model with the measurement.

x̂(k|k) = x̂(k|k − 1) + K(k) [y(k)−Hx̂(k|k − 1)]

K(k) = P (k|k − 1)HT
[
HP (k|k − 1)HT + R

]−1

P (k|k) = [I −K(k)H]P (k|k − 1)

(2.6)

where K(k) is the Kalman gain, P (k) is the process covariance matrix, and I is an

identity matrix.

Finally, the last KF step is to propagate the estimate forward in time with

Equation 2.7 and then repeat the process (update and propagate).

x̂(k + 1|k) = Φx̂(k|k) + f(k + 1|k)

P (k + 1|k) = ΦP (k|k)ΦT + Q
(2.7)

More advanced filters (e.g., extended Kalman filter, unscented filter, particle

filter, etc.) can provide better estimates for nonlinear systems, however they are

beyond the scope of this research.

2.2.5.2 Singer Model. Any filter and prediction method is only as

good as the model it uses. A model is a set of differential equations used to predict

the state of a system (with known inputs) over time.

15

A very popular model used in target tracking systems is the Singer model [10].

It is a linear model that can handle targets with different performance envelopes (e.g.,

commercial airplane versus military fighter). Since acceleration is modeled as white

noise, constant velocity tracking performance is degraded. However, this acceleration

model quickly detects target maneuvers.

The Singer model uses the simple one-dimensional state vector shown in Equa-

tion 2.8. Tracking a target in two or three dimensions is possible by using two or

three decoupled models. Since the models are decoupled, this approach does not take

advantage of the relationship between the states of the different dimensions. For ex-

ample, in a coordinated turn, the x and y states can be better predicted by using

knowledge of the radius of the turn.

The second part of Equation 2.8 shows the differential equations that describe

the motion of the target over time. The maneuvers are modeled as a First-Order

Gauss-Markov (FOGM) process.

x =
[
p v a

]T

ẋ =

0 1 0

0 0 1

0 0 −α

x +

0

0

1

 w(t)

(2.8)

where p is the position, v is the velocity, a is the acceleration, α is the reciprocal of

the maneuver time constant, and w(t) with a covariance matrix Q,

Q ≈

T 5/20 T 4/8 T 3/6

T 4/8 T 3/3 T 2/2

T 3/6 T 2/2 T

 (2.9)

where T is the Singer KF sample period.

The state transition matrix in Equation 2.4 simplifies to a Newtonian matrix

when αT is sufficiently small.

16

Φ =

1 T T 2/2

0 1 T

0 0 1

 (2.10)

The KF can be initialized by Equation 2.11 after a target has been observed at

least twice.

x̂0 =

y(1)

[y(1)− y(0)]/T

0

P0 =

σ2
R σ2

R/T 0

σ2
R/T 2σ2

R/T 2 0

0 0 0

(2.11)

where y is a vector with the observed positions for the target, and σ2
R is the variance

of the measurements.

2.3 Graphics Processor Unit (GPU) Background

The parallel nature of GPUs make them more efficient to solve a large set of

scientific and engineering problems. Traditionally, GPUs have been very difficult to

use for general purpose programming, called general purpose computing on GPUs

(GPGPU). In order to be solved on the GPU, algorithms had to be reduced into a

sequence of polygon translations and rotations. Random memory access for reading

or writing was not allowed.

2.3.1 Programming Languages. Recently two main graphics card manufac-

turers, ATI and NVIDIA, released software development kits that allow a programmer

to access the GPU’s power using general purpose code with random memory access

rather than formulating problems in the graphics paradigm. ATI called their solution

Close To Metal (CTM), which has since been renamed Stream SDK [11]. NVIDIA’s

17

solution is called Compute Unified Device Architecture (CUDA) and currently dom-

inates the GPGPU market [12].

Stream SDK and CUDA are vendor-specific solutions to the GPGPU problem.

Apple saw the potential to bridge this gap and pushed for an open standard to be

created which would allow GPGPU programming for any vendor. On December 8,

2008 the specification for Open Computing Language (OpenCL) 1.0 was released by

the Khronos Group (who also created the OpenGL standard). OpenCL standardizes

a GPGPU language, based on the modern dialect of C, which will allow the same

code to be executed on any type of GPU. Apple is releasing an implementation of

OpenCL in Mac OS 10.6, expected out in mid to late 2009.

2.3.2 GPU versus CPU. CPUs are highly optimized for serial processing of

data. In general, the CPU processes one command at a time and operates on only

one unit of data. Large amounts of die area are dedicated to control logic and cache

to decrease the overall clocks per instruction (CPI). The memory cache is able to

prefetch data because of spatial and temporal locality within the code. Elaborate

control logic allows instructions to be executed out-of-order and branch logic to be

predicted. Very little overall die space is dedicated to arithmetic logic units (ALU)

since only one thread can execute at a time. The most modern CPUs (with up to 16

cores on a chip) simply create multiple copies of this basic architecture on one chip.

GPUs take a significantly different approach to computing. Instead of using a

large area for cache and control logic, GPUs have very small control logic and cache

blocks for a large number of threads. A CPU is saturated with only a few threads,

whereas a GPU needs to have threads in the thousands before saturation occurs.

This comes at a cost though; individual threads will invariably perform worse than

the same one on a CPU. Therefore, the performance gained from the GPU is from

executing highly parallelized code.

GPUs are efficient at solving data-parallel problems. Data-parallel means that

a single task operates identically and independently on a set of data. In computer

18

Control

Cache

DRAM

CPU

ALU

ALU

ALU

ALU

DRAM

GPU

Figure 2.7: CPUs use large amounts of transistors for cache and control logic for
a very limited number of threads. On the other hand, GPUs have very little thread
overhead but have many ALUs for numerous threads. [13]

Algorithm 2.1: Calculate c = a + b on the CPU

for i ⇐ 1 to HEIGHT do1

for j ⇐ 1 to WIDTH do2

ci,j = ai,j + bi,j3

end4

end5

Algorithm 2.2: Calculate c = a + b on the GPU

i ⇐ current row1

j ⇐ current column2

ci,j = ai,j + bi,j3

architecture terms, it is equivalent to Single Instruction Multiple Data (SIMD) in-

structions. Figure 2.7 provides a graphical depiction of the difference between GPUs

and CPUs.

To illustrate the difference between CPUs and GPUs, consider matrix addition.

For a CPU the algorithm would look something like Algorithm 2.1. This algorithm

processes each element one at a time in series. This can be a very slow process when

the matrices become large. If the matrix has n elements, the algorithm will take n2

iterations of the loop to complete.

19

On the other hand, the GPU code in Algorithm 2.2 creates one thread for each

matrix element, adds that element from a and b, and then stores that value into the

proper element in c. A GPU can execute hundreds of threads simultaneously. For

example, if a GPU can process 1,000 threads at a time, it will take n2/1, 000 iterations

to complete. In practice, speedups for GPU applications can be between 10 to 200

times faster than their CPU-only counterparts.

The remainder of this section will use NVIDIA CUDA terminology to explain

the architecture of GPUs.

2.3.3 CUDA Terminology. When working with CUDA programs, it is nec-

essary to understand some basic terminology. The host is the CPU, whereas the GPU

is referred to as the device. A kernel is a small function that is executed on the device

by a large number of threads.

Compute capability is a number assigned a GPU representing its computational

capabilities. A higher compute capability number means the GPU can handle more

advanced mathematical and programming operations. For example, compute capa-

bility 1.0, 1.1, and 1.2 can only handle single point precision operations, while the

latest compute capability 1.3 has double precision. Also, 1.0 does not allow for any

atomic memory operations, while 1.2 allows for shared and global atomic memory

operations.

2.3.4 Thread Hierarchy. The thread hierarchy describes how the GPU

executes threads as well as how threads interact with each other. When a kernel is

sent to the device, it as assigned a grid. Grids are a logical mapping of the threads

that are executed within the kernel. Each grid is made up us smaller components

called blocks. These, in turn, are composed of individual threads. On the current

generation of NVIDIA’s GPUs, blocks can contain no more than 512 threads. Grid

dimensions can be as large as 216 × 216. Figure 2.8 shows the thread hierarchy.

20

Grid

Block (0, 0) Block (2, 0)

Block (0, 1) Block (2, 1)

Block (2, 0)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Block (1, 0)

Block (1, 1)

Figure 2.8: Every CUDA kernel is assigned a grid. Grids are subdivided into
blocks. Each block contains up to 512 individual threads. Blocks and grids can
be logically organized into multi-dimensional structures to simplify memory access
calculations. [13]

Grids can be logically organized into a 1D or 2D layout, whereas a block can also

be organized in a 3D layout. This organization can be useful to efficiently calculate

the array index for each thread. For example, if the data processed by the kernel is a

2D image, then it would make sense to use a 2D grid and block structure. The current

index for each thread can be calculated using built-in CUDA variables, as shown in

Equation 2.12. This index can then be used within each thread to perform a certain

operation on the image.

column⇐ blockIdxx ∗ blockDimx + threadIdxx

row⇐ blockIdxy ∗ blockDimy + threadIdxy

(2.12)

where blockIdx is a vector representing the current location in the grid, blockDim

specifies the width and height of each block, and threadIdx is a vector representing

the current location in the block.

2.3.5 Memory Hierarchy. Memory hierarchy and memory access methods

are important to understand to improve the speed of applications on GPUs. There

are three different levels of memory: global, shared, and local. Two additional types

of memory exist (texture and constant) but will not be covered.

21

Table 2.4: Coalescing memory writes is very important for GPU performance. This
table summarizes the rules for memory accesses within a half-warp (16 threads) for
devices of compute capability 1.2 or higher.

Byte Spread Word Size
32 bytes 8-bit
64 bytes 16-bit
128 bytes 32-bit
128 bytes 64-bit

Global memory can be accessed by any thread, no matter what block it is in.

This memory is the largest (most modern GPUs have more than 500 MB), but it is

also the slowest. No memory reads from global memory are cached. In addition, since

this memory is further away from the multiprocessor cores, there is a latency of about

400 to 600 clock cycles.

Shared memory is memory that can be accessed only by threads within the same

block. Current GPUs have 16 KB of shared memory. Access to shared memory can be

as fast as reading and writing to registers so long as there are no bank conflicts within

a half-warp. A bank conflict occurs if two threads within a half-warp are reading or

writing to the same 32-bit block of shared memory.

Local memory can only be accessed by an individual thread. The CUDA com-

piler places as many local variables as it can into registers, but if there is overflow,

variables are stored in a reserved section of the GPU’s global memory. This means

variables should be chosen to fit in local registers or there will be a significant perfor-

mance decrease.

The most important concept to understand about memory access is coalescing.

This means that all half-warp memory accesses are within a given segment size of

memory. Table 2.4 summarizes the rules for devices with compute capability 1.2 or

higher. If these rules are followed, then only one memory access command is executed.

If they are not followed, then individual memory fetch/store commands must be issued

for each thread (16 individual memory fetch/store commands instead of one).

22

2.3.6 Synchronization. Synchronization is limited within the GPU. Only

threads within the same block can be synchronized (using the syncthreads() com-

mand). This limitation is because all the thread blocks are not executing at the same

time. The GPU has a scheduler which submits blocks for execution on an individual

Single Instruction Multiple Thread (SIMT) multiprocessor core. Each SIMT contains

eight scalar processor cores. These cores are capable of executing one warp (or set

of 32 threads) at a time. The NVIDIA GTX 280 has 30 SIMT miltiprocessor cores,

which means it can execute only 240 blocks simultaneously. Synchronizing within a

core (i.e., block) requires only four clock cycles, but synchronization between multiple

blocks is much more costly because of the interprocessor communication.

2.3.7 Performance Notes. Writing efficient code on the GPU can be diffi-

cult. Memory bandwidth and latency are two important concepts that affect overall

performance. As has already been mentioned, coalescing is also very important to

speed up the execution of code on the GPU.

What is not as obvious is that sending data between the host and device can

cause a bottleneck in a program. Communication between the CPU, GPU, and RAM

is mediated by the northbridge, as shown in Figure 2.9. There is a limit of 12.8 GB/s

between the CPU and northbridge. One-way communication between the CPU and

GPU is limited to 8 GB/s with PCIe 16x Generation 2. An uncompressed, 24-bit,

1920x1080 (i.e., 1080p) image uses 5.9 MB of memory which would take about one

millisecond to copy from the CPU to GPU. This means that about two milliseconds

are used just to transfer data, without any useful computation.

Therefore, the amount of data-parallel operations executed on the GPU needs

to be great enough such that their quick execution more than makes up for the trans-

fer time to and from the GPU. For example, a single operation of matrix addition or

transpose would probably execute more quickly on the CPU, while matrix multipli-

cation would be quicker on the GPU.

23

16.0 GB/s

12.8 GB/s

12.8 GB/s

PCIe 16x Gen 2

1600 MHz FSB

CPU

GPU Northbridge
DDR3-1600

RAM

Figure 2.9: The CPU and GPU cannot communicate directly with each other. The
northbridge mediates communication between the CPU, GPU, and RAM.

Device-to-device memory transfers refers to moving data to another portion

of global memory on the same graphics card (i.e., device). These transfers have a

bandwidth of up to 141.7 GB/s, which makes them not as susceptible to the bandwidth

problems described above.

2.4 Literature Review

This section briefly presents related work that has been published in the liter-

ature. Most previous research focuses on image processing on the GPU. MTT has

been well researched in single-core and cluster machines, but no research could be

found that uses GPUs to improve MTT performance [14] [15] [16].

2.4.1 GPGPU Image Processing Libraries. In recent years, a number of

libraries have been written for general purpose image processing on the GPU. The

most well-developed one is called GPU Computer Vision (GpuCV), based off the

more well known Open Computer Vision (OpenCV) library developed by Intel [17].

GpuCV offers a subset of OpenCV, and its data structures and functions are intended

to be compatible with any software written with OpenCV. It includes functions for

addition, multiplication, thresholding, color manipulation, Sobel edge detection, and

discrete Fourier transforms. The GpuCV library is limited since it does not supply a

GPU implementation of CCL or blob analysis, which are needed in MTT systems.

24

Algorithm 2.3: Parallel Implementation of CCL

input : i - row pixel that processor is to operate on
j - column pixel that processor is to operate on
globalFlag - flag memory location available to all processors
image - a binary image with blobs to be labeled

output: Image with uniquely labeled blobs

if imagei,j = 1 then1

imagei,j ⇐ uniqueThreadID2

3

repeat4

globalFlag = 05

synchronizeAllThreads()6

minimumLabel ⇐ minimum label of neighbor pixels7

8

if minimumLabel < imagei,j then9

imagei,j ⇐ minimumLabel10

globalFlag ⇐ 111

end12

13

until globalF lag = 0 ;14

end15

GPU programming, in particular CUDA, is emerging into other areas of industry

as well. Medical applications are being explored. Research results indicate that a

speedup of 13 times is achievable using CUDA for biomedical imaging [18]. Plugins

have also been developed for commercial image manipulation applications, like Adobe

Photoshop, to speed up image filters [19].

2.4.2 Parallel CCL Algorithms. Solving the CCL problem with parallel pro-

cessors has been researched as early as 1983. Most methods that have been developed

were written to only work on specific parallel architectures. The most common general

parallel method is outlined in Algorithm 2.3 [20]. Essentially, each thread is assigned

each pixel. If that pixel is part of a blob, it is assigned a unique label. Each thread

then assigns itself to the minimum of its neighbors’ labels until no reassignments have

been made.

25

One problem with this algorithm is that it can take a long time to propagate a

label if one of the blobs is irregular in nature (e.g., a snake shaped object wrapping

around the image). This algorithm would be very inefficient in that situation, but it

does perform well when all blobs are relatively small and non-convex.

More advanced parallel CCL algorithms are presented by [21], but they do not

map well to the GPU architecture.

2.4.3 Fast Radial Blob Detector. The Fast Radial Blob Detector (FRBD),

presented in [22], is an algorithm which finds the areas of a grayscale or color image

with high gradients (or change in pixel intensity). These areas indicate the location

of an edge or blob.

FFRB assigns one thread to each pixel. That thread calculates the average

gradient between itself and its neighbors at a few predefined distances from itself. A

threshold is then used to indicate whether a pixel is or is not part of an edge or blob.

Although some of this algorithm is implemented on a GPU, a significant portion

of it is run on the CPU. This is because the GPU merely finds edges within the image,

it does not apply a unique label to each of those edges. A minimum spanning tree is

used on the CPU to combine all blobs and edges into clusters, calculate their centroid,

and then pass that data onto the MTT algorithm.

2.5 Summary

The goal of this chapter was to provide the background necessary to under-

stand the research presented in this thesis. Image processing techniques used to

extract objects from a sequence of images were covered in Section 2.1. In Section 2.2

the fundamental principles of MTT were covered, from the sensor input to filtering

and prediction. GPU programming concepts were introduced in Section 2.3. Some

optimization techniques for the GPU were also briefly discussed. Finally, the chapter

concluded with a brief overview of related research available in the literature.

26

III. Methodology

Image processing is a bottleneck in the performance of MTT. Many of the solu-

tions to improve performance either are expensive or have very long development

times. This research explores the use a low-cost and rapid-development hardware and

software package to speed up image processing in MTT. This chapter describes the

implementation of MTT software. There are three different versions of the software:

1. A complete self-contained MTT software package written MATLAB .

2. Slow image processing functions are converted to C code to improve overall
MTT performance.

3. The same image processing functions are converted to run on the GPU. Two
different versions of this software are developed:

(a) No atomic operations available (Compute Capability 1.0)

(b) Atomic operations available for shared and global memory Compute Ca-
pability 1.2+

3.1 MTT Software Development (MATLAB)

All of the algorithms used in the MTT software are described in detail in Chap-

ter II. This section will briefly describe the MTT software sequentially and explain

how it was implemented in MATLAB.

Figure 3.1 outlines the software functional flow. All functions in this MATLAB

implementation are single threaded.

Optimizations are used for all of the different functions created for the MTT

software. In MATLAB, this means for loops are only used as a last resort; instead,

the code is vectorized. Vectorized code refers to using linear algebra functions on

data instead of processing them one at a time in a loop. MATLAB is an interpreted

language, which means it is very slow at executing loops, but it is optimized to execute

linear algebra functions quickly.

3.1.1 Input Data. The MTT software is able to perform target tracking on

any fixed frame-rate video data that can be read by the MATLAB function mmreader.

27

Gating Data Association

Track

Maintenance

Filtering and

Prediction

Color to

Grayscale

Background

Subtraction

Convert to

Binary Image

Connected

Component

Labeling

Blob Analysis

Current Video Frame Image Processing

Draw Target Outlines

Figure 3.1: A detailed flowchart of how the MTT software processes each video
frame.

On Windows, this includes AVI, MPEG-1, and Windows Media Video formats. The

tracking software assumes that all pixels are updated each frame, which means only

progressive-scan video should be used.

Real-time video capture functionality is possible in MATLAB with the Data

Acquisition toolbox, but it is not implemented in the software since it does not add

significant value to the research. The software processes the video feeds one frame at

a time and does not look at future frames to track targets in the current frame.

There is one file that contains all the configuration variables for simulations. In

this file, parameters can be set for the video, target model, Kalman filter, and track

maintenance.

3.1.2 Output Data. In the configuration file, the user can specify the desired

output. The most common output is displaying each video frame in real-time and

outlining each target that is being tracked. Debugging data may also be printed out

to the console along with a profile of how long each frame takes to process. Also, a

detailed break-down of the time spent in each function can be generated.

28

Table 3.1: Summary of MATLAB image processing implementation. All functions
were taken from the Image Processing Toolbox, except for a custom written threshold
function.

Image Processing Block MATLAB or Custom Function Name
Color to Grayscale MATLAB rgb2gray

Background Subtraction MATLAB imabsdiff

Convert to Binary Image Custom N/A
Connected Component Labeling MATLAB bwlabel

Blob Analysis MATLAB regionprops

3.1.3 Image Processing. The image processing algorithms are covered in

detail in Section 2.1. Table 3.1 summarizes how each of the image processing functions

were implemented in MATLAB. As can be seen, almost all the functions were available

in the Image Processing Toolbox. The “Convert to Binary Image” (or “Threshold”)

function was implemented in a single line of MATLAB code, as shown in Equation 2.3.

3.1.4 Gating. The measurement noise in the x and y directions are assumed

to be the same. Using this assumption, the gates are drawn in a circle around the

predicted target location. In Equation 3.1, the radius is calculated as a multiple of

the covariance of the model’s position state at the current time period.

r = α
√

P 2
x1,1

+ P 2
y1,1

(3.1)

where α is a predefined constant, Px is the covariance matrix for the x-dimension KF,

and Py is the covariance matrix for the y-dimension KF. Note that the covariance

matrix is not squared, rather it is the position state variable, a scalar value, that is

squared.

If a track has not been initialized (i.e., only one observation has been made)

then the gate is created by estimating the velocity of the target with a predefined

constant. The gate is expanded each time frame until another observation is found

or the track is deleted.

29

3.1.5 Data Association. GNN is the data association method used since

it offers the highest accuracy for a single hypothesis target tracking system. Since

writing an implementation of the algorithm is not important for this thesis research,

a solution to the assignment problem was downloaded from The MathWorks, Inc.

website [23].

3.1.6 Track Maintenance. Tracks have four distinct states: (1) uninitial-

ized, (2) initialized, (3) confirmed, and (4) deleted. New tracks are made for every

observation that has not been assigned to a previously created track. A new track

begins in the uninitialized state.

Once a track is observed twice, its state and covariance matrices are initialized

and KF propagate and update equations are executed each simulation time step (i.e.,

video camera frame rate). The track is then in the initialized state.

A track is confirmed after it is observed Kc times in the last M observations,

both of which are constants defined in the configuration file. This is the “sliding

window” method of track maintenance.

Finally, tracks are moved to the deleted state after they are not observed for

the last Kd frames. Again, this is a constant defined in the configuration file. Once

in this state, the KF and gate for the track are no longer used or updated.

3.1.7 Filtering and Prediction. The MTT software model used is the Singer

model, which Section 2.2.5.2 describes in detail. This model was chosen because it

is simple and will accurately track maneuvering targets. Filtering and prediction are

done with a standard Kalman filter. All parameters for the KF and model are defined

in the software configuration file. The observation matrix is H = [1 0 0] since only

the position of a target can be determined from an image.

3.1.8 Profile. A summary of the MTT software performance is provided in

Table 3.2. This table was generated from processing 50 sequential frames in a fixed

30

Table 3.2: Summary of the time required by MATLAB to process one 1080p image
in the MTT software. These samples were generated on a different machine than those
on Table 4.2. The individual execution times are different, however the proportion
(i.e., “% Time”) of the execution times does not change significantly from machine
to machine.

Function Time (ms) % Time
Read Current Video Frame 140.0 34.2 %
Color to Grayscale 71.9

61.2 %
Background Subtraction 6.2
Convert to Binary Image 2.8
Connected Component Labeling 29.6
Blob Analysis 140.1
Gating 3.3

4.5 %
Data Association 0.9
Track Maintenance 0.0
Filtering and Prediction 14.4

Total: 409.2

frame rate, 1080p AVI video file encoded with the Indeor 5.10 video codec. The two

bottlenecks for performance are reading the video frames into memory and performing

image processing.

The processing times for many of the functions listed in Table 3.2 are data-

dependent. In particular, the sample data used had a maximum of three targets

moving at a time. For larger scenarios (e.g., 100+ targets) the times will increase sig-

nificantly for target tracking, especially for data association. This increase is bounded

by an exponential expression of the number of targets and observations.

3.2 C MEX Implementation

The MATLAB implementation can only process HD images at about two frames

per second (FPS). Nearly a third of that time is dedicated to reading in the video

frames from a file. Image processing takes nearly two-thirds of the time, which means

it is a good candidate to port into C MEX code.

31

Algorithm 3.1: Generalized structure of MATLAB MEX files

Read input variables from MATLAB1

Perform desired function2

Store output variables in MATLAB format3

3.2.1 Overview of MEX Files. MEX files allow a programmer to convert

MATLAB functions into C or FORTRAN code to speed up their performance. MAT-

LAB performs well with vectorized math, but it is very slow at executing loops, which

are frequently used in image processing. The general format of MEX files is shown in

Algorithm 3.1. Like the MATLAB implementation, all the functions for the C MEX

implementation are single threaded.

3.2.2 Image Processing. The C MEX image processing functions are imple-

mented as described in Section 2.1. For the first three functions, this is a matter of

a single equation within a for loop that iterates over each pixel. The CCL and blob

analysis functions are a bit more complicated, but the code is written to reflect the

algorithms and principles described in Section 2.1.

3.2.2.1 Color to Binary Image. Converting the image processing func-

tions into C code is a straight-forward process. Equations 2.1, 2.2, and 2.3 describe

the behavior for the MEX program to operate on each pixel for the first three stages

of image processing. These stages are shown as a flow chart in Figure 3.1.

3.2.2.2 Connected Component Labeling. The two-pass CCL method,

depicted in Algorithm 3.2, and blob analysis are implemented as described in Sec-

tion 2.1. Custom-built linked-list and union-find array structures were used to store

the CCL equivalence table.

The two-pass algorithm uses two for loops to iterate through the image. On the

first loop, each non-background pixel is assigned the minimum label of its neighbors.

The neighbor labels are then stored in an equivalence list to indicate that the labels

32

are synonymous. If there are no neighbor labels, then the pixel is labeled with a

unique number.

On the second pass, each pixel is assigned to the value of its equivalence class.

For example, if there are three different equivalence sets (i.e., three blobs),

1 = {2, 4}
2 = {1, 3, 5}
3 = {6}

any pixel that contains a label within set 1 (i.e., 2 or 4) will be assigned the label 1.

The same applies for the other sets. At the end, each blob is assigned a single unique

label for all of its pixels.

3.2.2.3 Blob Analysis. The blob analysis function in MATLAB is

nearly identical to the implementation described in Section 2.1. The tables used to

generate the x- and y-coordinates are stored as 2D array structures. Once these arrays

are populated, the area and coordinates for the blobs are calculated within two for

loops that are used to add up their contents.

3.2.3 Profile. A timing profile (the same setup previously used) tests the

speed of the image processing C MEX implementation. Table 3.3 summarizes the

results. Overall, the C MEX implementation is about 85% faster than the MATLAB

Image Processing Toolbox.

As seen in Table 3.3, some functions are faster with the custom MEX imple-

mentation, and some are significantly slower. One would expect a well-written MEX

file to run quicker than pure MATLAB code since it is pre-compiled. There are a

variety of reasons why the custom MEX implementation may be slower:

1. MATLAB now uses a Just-in-Time (JIT) compiler to compile loops and other
frequently run code (similar to .NET and Java).

33

Algorithm 3.2: The algorithm to solve CCL with a serial two-pass method.

// First Pass1

maxLabel ← 22

for i ← 1 to NUM ROWS do3

for j ← 1 to NUM COLUMNS do4

if imagei,j 6= BACKGROUND then5

if Labeled Neighbors Exist then6

imagei,j ← minimum label of neighbors7

union neighbor labels8

else9

imagei,j ← maxLabel10

maxLabel ← maxLabel + 111

create equivalence entry for imagei,j12

end13

end14

end15

end16

17

// Second Pass18

for i ← 1 to NUM ROWS do19

for j ← 1 to NUM COLUMNS do20

imagei,j ← find(imagei,j)21

end22

end23

Table 3.3: Summary of the time required by MATLAB C MEX functions to process
one 1080p image in the MTT software. Overall, the MEX implementation is about
85% faster than the MATLAB Image Processing Toolbox implementation.

Function
MATLAB C MEX

% Speedup
Time (ms) Time (ms)

Color to Grayscale 71.9 38.1 +88.7
Background Subtraction 6.2 13.5 −54.1
Convert to Binary Image 2.8 2.5 +12.0
Connected Component Labeling 29.6 57.8 −48.8
Blob Analysis 140.1 23.3 +501.3

Total: 250.6 135.2 +85.4

2. MATLAB has the ability to compute with multiple threads across processor
cores.

3. Some MATLAB functions have their own MEX files for computationally inten-
sive operations that cannot execute quickly in native MATLAB code.

34

In this case, it turns out all the functions that are slower with a custom MEX

file are in fact already implemented as MEX files in the toolbox, the source code of

which is not publicly available. The converse is also true, all the faster functions are

implemented as pure MATLAB in the toolbox.

3.3 GPU Implementation

The final, and most important, step of the research is to port some of the MTT

code from MATLAB onto the GPU. CUDA is the programming language used to port

the functions to execute on a NVIDIA graphics processor. Because of limitations of

the GPU, only certain functions can be efficiently be implemented with CUDA. In

this software, most of the image processing functions are data-parallel algorithms that

are well-suited to GPU implementation. There are two different types of CUDA code

written for the MTT software, one uses atomic operations and one does not.

3.3.1 Implementable Functions. Before writing any code to port functions,

a brief analysis of the problem structure must be done in order to determine if it

is feasible to implement on a GPU. As discussed in Section 2.3, good candidates

are functions that are highly data-parallel. Ideally, the problem can be solved by

thousands of threads simultaneously rather than being limited to just a few.

As discussed in the previous section, two-thirds of the MATLAB MTT software

code is spent on image processing. Many image processing functions are inherently

data-parallel since the same operation is independently repeated on every pixel. This

means that it is reasonable to attempt to try to speed up at least some of the image

processing functions by implementing them on the GPU with CUDA.

3.3.2 Performance Considerations. The bottleneck with GPU computa-

tions is memory bandwidth. It takes about a millisecond to transfer a 24-bit, 1080p

image between the CPU and GPU. If the entire image is transfered between the CPU

and GPU after each image processing stage, then the overall performance will be de-

35

graded. A better solution is to transfer the current frame and background once at the

beginning, perform the image processing computations on them, and then transfer

back the blob analysis data (list of centroids and area for all the blobs in the image).

Performance can also be decreased if global memory is accessed too much or

in the wrong way. A global memory read or write operation takes between 400 to

600 clock cycles. The amount of memory transfers can be decreased by caching data

(whenever possible) into local and shared memory for blocks and threads to access

during computation. Afterwards, the data can be stored back in the global memory.

Also, reads and writes to global memory need to be coalesced. Non-coalesced oper-

ations require separate memory operations for each thread, while coalesced actions

are able to be executed in one operation per half-warp. Following these rules can

significantly increase the performance of the functions implemented on the GPU.

3.3.3 Compute Capability. Each NVIDIA GPU is assigned a compute capa-

bility level that describes its mathematical and programming capabilities. Table 3.4

provides a brief summary of the differences between compute capabilities. Because of

these different levels, there were two different types of GPU implementations written

for the MTT software. The first implementation works on any compute capability

level since it does not use atomic memory operations. The second implementation

does use atomic memory operations and therefore can only be executed on GPUs with

compute capability 1.2 or greater.

Only the blob analysis function is different between the two implementations.

All other functions are identical. The unique structure of the blob analysis problem

made it more efficient and robust to solve with atomic operations.

3.3.4 Color to Binary Image. This section describes the CUDA implementa-

tion of the image processing functions “Color to Grayscale” (rgb2gray), “Background

Subtraction” (imabsdiff), and “Convert to Binary Image” (threshold). All three of

these functions fit perfectly into the data-parallel model for stream processing. Each

36

Table 3.4: A brief comparison between different compute capabilities on NVIDIA
GPUs. Precision refers to the maximum variable precision the ALU hardware can
natively handle.

Atomic Memory Precision
Compute Capability Shared Global Single Double

1.0 X
1.1 X X
1.2 X X X
1.3 X X X X

function performs an identical operation on every pixel of the image and there is no

interdependence between pixels. Therefore, each pixel can be assigned to a single

thread to perform the computations. In a 1080p image, there are 2,073,600 pixels.

The block size is set to the maximum number of threads (512) as to maximize the

number of threads being simultaneously executed on the GPU. The kernel bodies for

each function are described in Equations 2.1, 2.2, and 2.3.

Originally, all three functions were executed as three separate kernels. However,

in the final product they are combined into one kernel to improve their overall per-

formance. Instead of between two to five global memory read and write operations

per pixel per function, there are only four reads/writes total (8-bit RGB values, 8-bit

background pixel intensity, threshold value, and binary pixel value). The input global

memory variables are stored in local memory, processed through the three functions,

and then the binary image is written back to global memory. All memory operations

are coalesced on NVIDIA devices with Compute Capability 1.2 or above.

3.3.5 Connected Component Labeling. As discussed in Section 2.4, solving

CCL on parallel architectures is a well known problem, but no implementation has

been published to date that works efficiently on a GPU. The final algorithm used is

very similar to the one presented in [20], however it was slightly modified to work

correctly on the GPU hardware.

37

Algorithm 3.3: Parallel Implementation of CCL on CUDA

input : image - a binary image with blobs to be labeled
output: image - original image with uniquely labeled blobs

start kernel1: (x, y are pixel coordinates calculated by each thread)1

if imagex,y 6= BACKGROUND then2

imagex,y ← (blockIdxx ∗ blockDimx + threadIdxx + 1)3

end4

end kernel15

6

repeat7

start kernel2:8

if imagex,y 6= BACKGROUND then9

imagex,y ← minimum label of neighbors10

end11

end kernel212

until kernel2 has not modified any pixels ;13

3.3.5.1 Algorithm Implementation. Algorithm 3.3 is a pseudocode

representation of how CCL is solved using CUDA. A few optimizations are imple-

mented to make it run more quickly. Since each time a kernel is invoked from the

CPU takes some overhead to execute, the kernel2 contains a loop (executed a con-

stant number of times) that relabels each pixel the minimum of its neighbors. This

loop is unrolled to minimize the number of branch mispredictions. Global memory

accesses are coalesced (whenever possible), and variables are cached in local memory

to prevent too many global memory accesses.

3.3.5.2 Label Minimization. While Algorithm 3.3 does technically

solve the CCL problem, it is not sufficient for an image processing application. This

is because the labels it produces are neither sequential nor minimal. For example, an

image with three blobs may generate labels 63984, 12, and 345. The blob analysis

algorithm requires that they be labeled minimally from 1 to n, where n is the number

of blobs in the image.

38

Algorithm 3.4: CCL Label Reduction

Remove non-label pixels from image1

Delete sequential duplicates in the 1D image array2

Sort array with radix algorithm3

Delete sequential duplicates4

Store reduced labels in O(1) lookup structure5

Relabel original image6

This is non-trivial to solve on the GPU with CUDA. The GPU is able to solve

many identical and independent operations at the same time. However, reducing the

labels creates a data dependency between the pixels in the different blobs.

In order to solve this problem, a new six-step algorithm (created for this re-

search) is used to efficiently minimize the labels on the GPU. Algorithm 3.4 provides

a brief summary of the steps. The solution used requires six sequential kernels de-

scribed in detail in the following paragraphs.

The number of pixels must be reduced to make the sorting more tractable in

Step 3. To do this, first all non-labeled pixels are removed from the image, and the

remaining pixels are stored in a 1D array. Next, the sequential duplicate elements in

the 1D array are removed. This does not globally remove duplicates, only duplicates

that are immediately next to each other in the array.

After the number of pixels have been reduced, the array can be sorted. This

is done with the radix sort since it can be efficiently implemented on the GPU with

CUDA. Then all the duplicate elements in the array are removed. Since the array is

sorted, this is the same as Step 2.

A large array is created where the reduced label is stored in the index of its

original label. For example, if the label was originally 8347 and it was reduced to 5,

then it would be stored in array minLabel as minLabel[8347] ← 5. This allows the

relabel lookup to be executed in O(1) time.

39

Finally, the original image is relabeled with the reduced labels. At this point,

each blob is labeled with a unique and minimized value. Therefore, the CCL algorithm

is complete.

This algorithm performs well on data sets where there are a large number of

background elements (Step 1 and 3) with wide or tall blobs (Step 2). Fortunately, in

many target tracking applications, the density of targets in images is relatively low.

Reducing the number of elements sorted by Step 3 is essential to keep this algorithm

efficient because sorting is, at best, an O (n · log(n)) operation.

3.3.5.3 Unsuccessful Optimizations. There were a number of opti-

mizations that were attempted, but did not significantly improve the performance of

CCL. First, 2D array structures were used to simplify the calculation of the current

row and column for each thread’s pixel. This prevents using two computationally

costly division operations. Also, the blocks were arranged in a 16x16 structure with

all the neighboring elements cached in shared memory. This significantly reduced the

number of global memory accesses for each block.

The 16×16 block was solved by propagating minimum labels until no pixels

were changed. Moving the loop into the kernel decreased the number of times the

kernel was called by the CPU. The image was processed by these kernels until no

more changes were made in any pixel’s label.

3.3.6 Blob Analysis. Two different implementations of blob analysis are

implemented to work with different types of graphics cards, with and without atomic

operations. Compute capability 1.0 does not have any atomic operations, while com-

pute capability 1.2+ has atomic operations for shared and global memory.

An atomic operation guarantees a thread that it will be able to complete a

sequence of commands on a memory location without any other thread interrupting

it. For example, if thread a attempts to increment the memory location x, it will first

read the contents of x, increment it in local memory, then store it back to x. Without

40

atomic operations, it is possible for thread b to write a different value to x after a

has read the previous value, but before it has stored the incremented value. Then the

value that a writes to x is incorrect. If atomic operations are supported, then thread

a can guarantee that it will be able to properly increment the value in x.

Both implementations use seven separate kernels to calculate the area and cen-

troid of each blob. Two kernels are used to generate tables that specify the number

of pixels for each blob in each row and column.

Next, one kernel is executed that calculates the area of each blob. It does this

by summing up the number of pixels in each blob from the previous table generated

for blob row pixel count.

Two more kernels are used to weight the pixel counts in the tables generated in

the first two stages. The pixel count is multiplied by the column or row location. For

example, if blob a has x pixels in row y, then it is assigned the weighted value x · y.

Finally, two more kernels calculate the x and y coordinates of the centroid. This

is done by summing up the weighted sums for each column and row, and dividing that

sum by the area of the blob.

3.3.6.1 No Atomic Operations. The no-atomic-operation implemen-

tation of the first two kernels is complicated. One block is assigned to each row and

column of the image. The block first creates a shared array (initialized to zero) where

each element x represents the number of pixels of blob x that are in that block’s row

or column. Next, the pixel values for that row or column are loaded (using coalesced

memory operations) into shared memory (i.e., cached). Each thread in the block is

assigned to one blob. The thread then loops through each pixel in that row or column

and counts the number of times it sees a pixel from its blob. After all the threads

have completed, the shared array is stored back into global memory.

3.3.6.2 Atomic Operations. In the atomic-operation implementation,

the kernels are much simpler. Each pixel is assigned to one thread. That thread

41

Ease of Algorithm Implementation/DesignE f Al ith I l t ti /D i

Potential Increase in Performance

MATLAB GPUCPU

Potential Increase in Performance

Figure 3.2: A brief visual summary of the difficulty of implementation compared
to potential performance increase.

simply updates the row and column table global memory location for the blob label

of its pixel.

3.4 Summary

This chapter briefly covered the capabilities of the MTT software, the steps

used to implement it, as well as the algorithms used for each stage. The MATLAB

and C MEX implementations are meant to be used as baselines to be compared

against the GPU implementation. The primary performance metric used is execution

time (lower being better). These execution times can be compared to a baseline to

provide the overall percentage speedup of different implementations. For instance, if

the MATLAB implementation of a function takes 100 milliseconds to complete and

the MEX version completes in 50 milliseconds, then the MEX function is 100% faster

than the MATLAB function.

Figure 3.2 provides a brief summary of the difficulty of programming versus the

potential performance increase for each of the three different implementations. The

GPU implementation has the biggest potential increase in performance, but it is also

more difficult to develop and implement algorithms.

42

IV. Results

After developing the MTT software, it is necessary to test its functionality. There

are three main components of the MTT software: (1) read in current video

frame, (2) image processing, and (3) target tracking algorithms. This research ef-

fort concentrated on porting the image processing functions to execute on the GPU.

Follow-on research efforts can investigate porting the other two components of the

MTT software. This chapter summarizes the results found from researching the use

of GPUs to augment the MTT software.

4.1 Limitations

For this investigation, a limited number of functions were converted to execute

on the GPU. Therefore, choosing which functions were converted was accomplished

by using two criteria. First, the function had to pose a significant bottleneck to the

MTT software performance. Second, a preliminary analysis of the function needed to

indicate that the performance could be improved when ported onto the GPU.

A breakdown of the time spent executing each function facilitates the process

of choosing which functions are converted to the GPU. Table 3.2 provides the exact

times, but they are summarized visually in Figure 4.1. Applying Amdahl’s Law helps

choose what order to optimize the functions (in order): (1) image processing, (2) read

current video data, and (3) tracking algorithms [24].

4.2 Functions Not Implemented on the GPU

Reading current video data and tracking algorithm functions are not imple-

mented as GPU functions in the MTT software. This section briefly explains why

they are not and how they would probably perform if they were.

4.2.1 Read Video Data. The MTT software spends over a third of the time

just reading video data for the video frames. This is because of the time-intensive

steps involved with reading in each frame. MATLAB has to request a file with a

43

(a) (b)

MTT Software Timing Breakdown

5%

61%

34%

7%

93%

Tracking Algorithms

Image Processing

Read Current Video Frame

Figure 4.1: These pie charts represent proportion of time used for different types of
functions. In (a) the percentages represent what is actually observed in the baseline
MATLAB software, whereas (b) shows what the breakdown is without reading in the
current video frame.

system call. The operating system then accesses the hard disk and finds the different

fragments of the video frame. To add to the problem, the video is not cached in local

memory and large video files are fragmented across the disk. Finally, the video is

decoded and placed in a MATLAB data structure.

To speed up the performance of the MTT software, the video data could be

prefetched or custom hardware could be used. Prefetching the video data would add

a time delay to the real-time MTT software. In a real-time system the video data

has to be processed as quickly as it is received from the imaging device. If the data

is prefetched, then there would be a one-frame delay between what the camera is

viewing and what is produced at the output of the MTT software.

Custom hardware would be a better option because it could potentially decrease

the execution time by communicating on a low-latency, high-bandwidth data bus.

However, such custom hardware would significantly increase the cost of the system.

If the imaging sensor sends the uncompressed image data directly to low-latency

memory (e.g., RAM), then the CPU would no longer have to access the hard drive or

decode the video. In an embedded system, the video camera may continuously feed

44

the image data to the CPU or GPU and it could be processed in real-time. Any of

these methods would significantly decrease the time spent reading the video data.

4.2.2 Tracking Algorithms. Figure 4.1(b) shows what the MTT software

timing breakdown would be if there was no delay in receiving video data. With this

data set, target tracking algorithms only use 7% of the execution time, compared to

the 93% spent on image processing. Since this is such a small percentage, the time

was better spent converting image processing functions onto the GPU rather than

target tracking functions.

The main variable that changes the execution time for target tracking is the

number of detected targets. Increasing the number of targets increases the time it

takes to track them. For some functions this is a linear increase, however gating and

data association increase more rapidly. The general rule of thumb is that the tracking

functions may run quicker on the GPU for a large number of targets (1,000+), but

for smaller numbers, the CPU is probably the better choice.

4.2.2.1 Gating. Gating is a O(n2) operation since the distance be-

tween every target must be measured with respect to every every target. Since these

measurements are independent, they can be spread across multiple cores on the GPU

to process more efficiently.

4.2.2.2 Data Association. The computational complexity of data as-

sociation depends on what type of implementation is selected. For a simple algorithm

choice, like NN or greedy, it can be completed in linear time. However, more compli-

cated algorithms, like GNN or multiple hypothesis tracking (MHT), are nonlinear.

NN fits into the data-parallel paradigm since all targets are assigned the obser-

vation that is closest. The greedy algorithm also can be implemented on the GPU by

using atomic operations to remove observations when they have been assigned a tar-

get. However, a more detailed analysis must be done to determine if more advanced

algorithms would efficiently execute on the GPU.

45

4.2.2.3 Track Maintenance and Filtering/Prediction. Track mainte-

nance and filtering/prediction are the two tracking stages that increase linearly with

respect to the number of targets. This is because the same constant-time operation is

executed on each target, regardless of how many other targets there are. For a large

number of targets (1,000+), it would be reasonable to implement these algorithms

on the GPU. However, for a smaller numbers of targets, these functions will execute

more quickly on the CPU.

4.3 Experimental Setup

All of the test setups for the software have a number of similarities. The video

data is real (not simulated) footage taken by a high-definition camera. The footage

is shot at 30 frames per second, 1920×1080 pixels, and uses progressive scan (entire

image is updated each frame).

The experiments use a simple MTT setup. The targets are one inch in diameter,

semi-transparent rubber balls of various colors (green, blue, yellow, and purple). Since

the image processing for this software uses background subtraction, it tracks targets

best when there is a high contrast between the background and the targets. For this

reason, the background used is a concrete sidewalk and the footage is taken at noon

on a cloudy day to minimize the shadows. This is a best-case scenario for the MTT

software, however the main purpose of these tests is to determine the speed of the

image processing for MTT. The software has difficulty detecting valid targets in low-

contrast scenarios since it uses a simple form of background subtraction. Again, this

is not relevant to the speed of the image processing functions.

After a variety of simple test runs, it was determined that a threshold value

of roughly 0.1 works best for the binary image step of the image processing, as de-

scribed in Section 2.1. Recall from Equation 2.3, this means any pixel intensity

above b0.1 · 255c, or 25, will be stored as a foreground pixel (white), and any pixel

intensity less than 25 will be stored as a background pixel (black). In a real applica-

tion, this threshold value would most likely be automatically determined by analyz-

46

Figure 4.2: A single sample frame from Scenario 1. The blue target is obscured by
the bridge for a portion of its movement from the top to the bottom of the frame.

ing a sequence of images. The Image Processing Toolbox in MATLAB contains the

graythresh function which is useful in calculating a threshold value for a grayscale

image. It minimizes the overall variance between the resulting black and white pixels

by using Otsu’s method [25].

4.4 Scenario Descriptions

Three different scenarios are used to test the functionality of the MTT software

and to determine the performance difference between the different implementations

(MATLAB, C MEX, and GPU). As already mentioned, the film is taken at noon

to minimize the shadows and maximize the contrast between the targets and the

background. Each scenario is selected to test a different aspect of image processing

for MTT. They test performance of tracking: (1) a single target, (2) multiple targets

with good contrast, and (3) multiple targets with more challenging contrast.

4.4.1 Scenario 1 - Single Target. The purpose of this scenario is to deter-

mine if the software is capable of detecting a single moving object. It also tests the

software’s ability to track an object even after is has been obscured in some way (e.g.,

moves under a bridge). Figure 4.2 shows a single frame of the scenario. A single blue

47

Figure 4.3: A single sample frame from Scenario 2. There are two targets in the
frame. The yellow one is partially blocked by the bridge in the middle of the frame,
while the blue one is completely visible. Both targets move from the top to the bottom
of the frame. Only the yellow one moves under the bridge.

target moves into the scene from the top and exits at the bottom. In the middle of the

scene, the target moves under a “bridge” and is hidden from view for a few frames.

4.4.2 Scenario 2 - Multiple Targets, Good Contrast. In the second scenario,

the ability to track multiple targets is tested. Two targets move across the scene, and

one is blocked by an obstruction for a few frames. Figure 4.3 is a snapshot of one

frame from this scenario.

4.4.3 Scenario 3 - Multiple Targets, Poor Contrast. In the third scenario,

five targets are in the scene. Four of them move under the bridge in the middle of

the scene, while the fifth does not (Figure 4.4). The targets move from the right edge

of the scene to the left. This scenario tests the ability of the MTT software to track

a more complicated scenario. Also, since there are more blobs, the image processing

portion of the software has more objects to detect and therefore may potentially run

slower.

48

Figure 4.4: A single sample frame from Scenario 3. There are five targets in the
scene. Four of them are detected by the software, the green one is not because of the
low contrast between it and the background.

4.4.4 Threshold Value for Scenarios. A final note should be made about

choosing or calculating the threshold value. If the value chosen is too large, then

some or all targets will not be detected by the MTT software (as with the green

target in Scenario 3). This decreases the number of false targets, but it also decreases

the probability of detection. On the other hand, if the threshold value is too low,

then too many false targets are detected even though most real targets are detected.

Having too many targets can significantly decrease the speed of the image processing.

In particular, a high number of false targets will exponentially slow down target

tracking because of the assignment problem in GNN, as described in Section 2.2.

4.5 Results

This section details how each of the different implementations of the MTT

software perform on the different scenarios. The four different implementations are:

1. Pure MATLAB and Image Processing Toolbox implementation

2. Image processing functions written as C-MEX code

3. Image processing functions written for NVIDIA GPU

(a) Compute Capability 1.0

49

Table 4.1: A brief summary of the main components of the hardware used to test
the software.

Component Description
Model Dell Precision T7400
Operating System Windows Vista Enterprise 32-bit
Processor Intel Xeon CPU X5482 @ 3.20 GHz

(2 quad-core processors)
Memory 4×1GB 800 MHz DDR
Graphics Card NVIDIA GeForce GTX 280

1.3 GHz Processor Clock
1GB Memory
240 Processor Cores

(b) Compute Capability 1.2+

The metric for performance of the image processing functions is the CPU time

needed to complete each image processing function. A lower execution time means

a better performance. The CPU time is calculated using the MATLAB profile

function and CUDA timing functions. The average frame processing time for each

function on each scenario is used to compare performance. Table 4.1 outlines the

computer hardware and software specifications used to test the MTT software.

The test results are summarized in Table 4.2 and Figure 4.5. Table 4.2 is

organized into the four different implementation types and the performance results

for each of the three scenarios. The average of the three scenarios is taken to provide

one performance number for each implementation. The final GPU implementation is

2.87 times faster than the original MATLAB implementation. That is an improvement

from about 8 FPS to 23 FPS.

Figure 4.5 provides a brief summary of the performance results. Parts (a) -

(c) show the execution time for the image processing functions. Part (a) shows the

execution time for the first three functions (color to grayscale, background subtraction,

and convert to binary image). These three functions are combined into one as an

optimization on the GPU. Part (d) shows the overall execution time of all of the

image processing functions.

50

T
ab

le
4.

2:
A

su
m

m
ar

y
of

al
l
th

e
re

su
lt

s
fr

om
th

e
sc

en
ar

io
s

w
it

h
th

e
fo

u
r

d
iff

er
en

t
im

p
le

m
en

ta
ti

on
s.

T
h
e

th
re

e
co

lu
m

n
s

u
n
d
er

ea
ch

im
p
le

m
en

ta
ti

on
re

p
re

se
n
t

th
e

th
re

e
d
iff

er
en

t
sc

en
ar

io
s

u
se

d
to

te
st

th
e

so
ft

w
ar

e.
T

h
e

fi
n
al

im
p
le

m
en

ta
ti

on
is

2.
87

ti
m

es
fa

st
er

th
an

th
e

b
as

el
in

e
im

p
le

m
en

ta
ti

on
.

F
u
n
ct

io
n

T
im

e
(m

s)
M

A
T

L
A

B
C

M
E
X

G
P

U
1.

0
G

P
U

1.
2+

S
1

S
2

S
3

S
1

S
2

S
3

S
1

S
2

S
3

S
1

S
2

S
3

O
ve

rh
ea

d
n/

a
n/

a
n/

a
n/

a
n/

a
n/

a
6.

12
6.

10
6.

15
6.

23
6.

16
6.

24
C

ol
or

to
G

ra
ys

ca
le

46
.5

4
45

.9
5

45
.5

9
30

.2
8

27
.6

7
28

.4
6

Su
bt

ra
ct

B
ac

kg
ro

un
d

1.
77

1.
68

1.
95

4.
11

4.
70

5.
25

2.
45

2.
44

2.
48

2.
88

2.
89

2.
92

T
hr

es
ho

ld
3.

23
2.

80
3.

46
2.

34
3.

63
3.

69
C

C
L

5.
26

4.
96

6.
15

38
.5

5
33

.4
8

38
.1

2
29

.2
4

17
.2

8
30

.3
4

29
.4

1
17

.4
1

30
.7

0
B

lo
b

A
na

ly
si

s
72

.8
1

65
.7

3
69

.3
7

9.
47

8.
64

11
.8

0
79

.1
2

67
.9

7
77

.2
7

9.
10

8.
44

9.
27

T
ot

al
T

im
e:

12
9.

61
12

1.
12

12
6.

52
84

.7
5

78
.1

2
87

.3
2

11
6.

93
93

.7
9

11
6.

24
47

.6
2

34
.9

0
49

.1
3

A
ve

ra
ge

T
im

e:
12

5.
75

83
.4

0
10

8.
99

43
.8

8
A

ve
ra

ge
F
P

S
:

7.
95

11
.9

9
9.

18
22

.7
9

A
ve

ra
ge

S
p
ee

d
u
p
:

1.
00

1.
51

1.
15

2.
87

51

(a) (b)

(c) (d)

50.99

36.71

2.46 2.90

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

MATLAB C MEX GPU 1.0 GPU 1.2+

A
v
er

ag
e

E
x
ec

u
ti

o
n
 T

im
e

(m
s)

Implementation Type

Color to Binary Execution Time

5.46

36.72
25.62 25.84

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

MATLAB C MEX GPU 1.0 GPU 1.2+

A
v
er

ag
e

E
x
ec

u
ti

o
n
 T

im
e

(m
s)

Implementation Type

Connected Component Execution Time

69.30

9.97

74.79

8.94

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

MATLAB C MEX GPU 1.0 GPU 1.2+

A
v
er

ag
e

E
x
ec

u
ti

o
n
 T

im
ee

 (
m

s)

Implementation Type

Blob Analysis Execution Time

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

MATLAB C MEX GPU 1.0 GPU 1.2+

A
v
er

ag
e

E
x
ec

u
ti

o
n
 T

im
e

(m
s)

Implementation Type

Overall Execution Time

125.75

83.40

102.86

37.67

Figure 4.5: These bar charts represent the average execution time for different image
processing functions. The pure MATLAB implementation is used as the baseline. Part
(d) shows the overall execution time for the entire image processing.

4.6 Interpretation of Results

As expected, the final implementation is significantly faster than the original

MATLAB implementation. However, there are a few unexpected results. The com-

pute capability 1.0 implementation is only slightly faster than the MATLAB imple-

mentation, and actually slower than the C MEX implementation. Table 4.2 provides

some insight as to why this is the case. The blob analysis function takes nearly 80

milliseconds to complete on the GPU, whereas it finishes in about 10 milliseconds on

52

the CPU. This is due to the complexity and inefficiency of the GPU 1.0 implemen-

tation, as described in Section 3.3.6. By adding the ability to use atomic operations,

the blob analysis performance improves significantly. The GPU 1.2+ implementation

is about 8 times faster than the MATLAB implementation, whereas the C MEX im-

plementation is about 7 times faster and the GPU 1.0 implementation is 0.93 times

as fast.

The C MEX implementation of blob analysis is significantly faster than the

MATLAB version. This is due to the poor coding of the regionprops function in the

Image Processing Toolbox. After analyzing regionprops with MATLAB’s profile

tool, it was found that most of the time is spent passing and parsing arguments rather

than actually calculating the blob attributes. This problem is supposed to be fixed

in the MATLAB 2009a release.

All of the custom-written CCL functions are slower than the original MATLAB

Image Processing Toolbox versions. On the C MEX implementation, this can be

attributed to the inefficient use of random memory on the heap. On the GPU, the

slow down is largely because of global memory access, blob size, and coalesced reads.

The CCL algorithm assigns one thread to each pixel. The threads continue to assign

their pixel to the smallest label of its neighbors until all pixels are assigned to the

local minimum. Each thread reading and writing to global memory takes up to 600

clock cycles. With the large size of the blobs in the scenarios (around 1000 pixels),

there are a number of global memory operations. On top of that, the minimum label

is always in the upper-left corner of the blob, which takes longer to propagate to all

of the pixels in the blob than if it were in the middle. Also, the memory reads and

writes are not always coalesced because of the branching logic in the CCL kernel.

The best performance improvements are seen in converting the color image to

a binary image (first three steps in Figure 2.1). The GPU is able to perform about

20 times faster than the CPU. This is because these image processing functions are

perfectly suited to the CUDA programming model. Each function operates identi-

53

cally and independently (i.e., no branching logic) on all the pixels of the image. All

memory operations are coalesced. Combining the three functions into one removes

a number of global memory operations and allows all the calculations to be done

within the registers. All of these factors combine to yield the significant performance

improvement observed.

4.7 Modification of Results

After seeing Figure 4.5, one may wonder why each image processing function

cannot be executed by the fastest implementation, thereby creating a greater overall

speedup. This would be particularly beneficial if the CCL could be executed on the

CPU while the other functions are executed on the GPU. There is one potential

downfall from using this method. Data must be transferred from the GPU, through

the northbridge, and finally is received by the CPU (and vice versa). The time it takes

to transfer the image data twice degrades the performance that might be gained by

CPU execution. If the time lost from the data transfers is not gained back from fast

CPU execution, it would be better to optimize the code to run more efficiently on the

GPU.

Slight modifications to the implementations in Table 4.2 can yield significantly

different results, as seen in Table 4.3. For example, combining the best CPU func-

tions written in MATLAB and C MEX into one implementation results in an overall

speedup of 2.56 times. This means the pure GPU 1.2+ implementation is only 31%

faster than the optimized CPU implementation. However, when the slower functions

for the GPU are ported back onto the CPU, the GPU has an overall speedup of 5.06

times when compared to the pure MATLAB implementation. Only the first three

image processing functions are executed on the GPU and the CCL and Blob Analysis

functions are executed on the CPU. This demonstrates the the GPU can significantly

improve the performance of applications when it is used properly.

One final observation should be made. In the current MTT implementation, the

color information from the camera is never used in the tracking algorithms. Using a

54

Table 4.3: Summary of the results if different implementations are used for each
function. The “Pure CPU” implementation uses only MATLAB and C MEX func-
tions for the image processing. “CPU/GPU” uses the GPU for the first three image
processing functions, and then uses the CPU for CCL and Blob Analysis. The over-
head times for the GPU are starred because they are estimates.

Function
Time (ms)

Pure CPU CPU/GPU
S1 S2 S3 S1 S2 S3

Overhead n/a n/a n/a 7.00* 7.00* 7.00*
Color to Grayscale 30.28 27.67 28.46

Subtract Background 1.77 1.68 1.95 2.45 2.44 2.48
Threshold 3.23 2.80 3.46

CCL 5.26 4.96 6.15 5.26 4.96 6.15
Blob Analysis 9.47 8.64 11.80 9.47 8.64 11.80
Total Time: 50.01 45.75 51.82 24.18 23.04 27.43

Average Time: 49.19 24.88
Average FPS: 20.33 40.19

Average Speedup: 2.56 5.06

native grayscale video camera would speed up the image processing since it removes

the color to grayscale conversion stage. However, this would probably not be desirable

in a real application. Feature-aided tracking could use RGB attributes of targets to

increase the accuracy of the filtering/prediction and data association.

4.8 Summary

This chapter described the test setup for the MTT software, presented the

results of the tests, and then explained any unexpected deviations in the results. The

test results only demonstrated a performance improvement for the image processing

portion of the MTT software. The other portions of the software were not tested since

they do not fit well into the data-parallel model of GPU when there is a small number

of targets (less than 100). The GPU is able to run 2.87 times faster than the pure

MATLAB implementation. The performance gain on the GPU is greater when it has

compute capability 1.2 or higher, since that allows for atomic operations at global

memory and also allows for coalesced memory operations for byte-sized variables.

55

This 287% speedup is significant, considering that it is achieved by using hardware

already in most personal computers.

56

V. Conclusions

This chapter provides a brief summary of the research contributions and outlines

a few ideas of future work that can be pursued.

5.1 Research Contribution

There are three main contributions that this research offers. First, it addresses

the question of whether a GPU can be used to speed up the image processing portion

of MTT. Next, it provides valuable insights into feasible and practical performance

gains for MTT and general computing. Finally, a self-contained and reusable MTT

implementation is written in MATLAB and portions can be run as C MEX or GPU

code.

For AFIT, the self-contained MTT software written in MATLAB will be useful

for future research. The software is well documented and highly parameterized, which

will make it easier for a researcher to develop additional MTT algorithms in a short

time. Instead of developing the entire package, they can focus on the individual

portion of MTT they are working on.

Most importantly, this research indicates that the GPU can significantly im-

prove the performance of MTT, especially the image processing. Some functions are

improved more than 20 times, while the overall performance improvement is about

3 times. Images were originally able to be processed at 8 FPS, but now (with the

GPU) are processed at about 23 FPS with full 24-bit color 1080p HD images. Further

optimization of the GPU code may yield even higher speedups.

5.2 Future Work

This research only scratches the surface of augmenting MTT with GPUs. There

are many different aspects that can be improved, and other areas of completely new

research. Some functions, like CCL and blob analysis, need to be improved to realize

further performance gains. Also, different algorithms can be used for image processing

to make it more usable in a real-world application. There are also other future research

57

options that are tangent to this research, namely using a different GPU language,

tracking multiple targets in a large area, and tracking targets in a 3D environment.

5.2.1 Function Improvements. One of the least-improved image processing

functions in this research is CCL. Time should be taken to develop a more advanced

algorithm that efficiently solves the labeling problem on the GPU. Also, algorithms

to solve the assignment problem on the GPU should be analyzed for large numbers

of targets/observations. This would allow for tracking the targets in real-time.

There are a number of ways to improve the current implementation of CCL.

The image should be stored as a 2D array and divided into small sections that can

be solved by one block. Before processing the block, the label values for the sub-

section (along with the neighboring labels to the outer-perimeter pixels) should be

cached into shared memory. A shared flag is used to determine when the labels have

all been assigned to the local minimum. Then the perimeter pixels are stored back

into memory, all threads are synchronized, and their neighboring labels are re-cached

from global memory. This process continues until no more pixels have been relabeled.

All memory accesses should be coalesced to ensure maximum efficiency. Just these

modifications should improve the performance of the CCL. This and other algorithms

need to be researched to see if CCL can be faster on the GPU.

The blob analysis function could also be improved. Right now, each pixel is as-

signed one thread, and they perform an atomic add to the global memory. Combining

the row and column atomic kernels into one would cut in half their memory accesses.

Also, since a number kernels are currently used, possibly some of those kernels can

be combined in order to decrease the number of global memory accesses. Doing this

will also decrease the amount of task switching within each stream-processor core.

In addition, reading the video data could be improved by using prefetching or

custom hardware. If the data is prefetched into fast memory, or if custom hardware is

able to directly send the data to the CPU or RAM, then the performance of reading

in each video frame could be significantly improved.

58

5.2.2 Image Processing Algorithm Changes. In order to make this code

more reliable in real-world applications, the image processing algorithms should be

modified. Instead of using background subtraction and thresholding, edge detection

should be used to detect targets. This would make the tracking software less suscep-

tible to differences in lighting, and it would not have to continuously calculate/model

the background. Also, the video imaging should not be limited to only a stationary

camera. Optical flow (and other methods) should be implemented on the GPU to

make this viable for other military imaging applications.

5.2.3 Miscellaneous Research Ideas. The code for this project should be

ported into the GPU language that dominates the market. Most likely, when OpenCL,

described in Section 2.3, is released, it will be a viable candidate since it allows one

set of source code to run on any GPU.

Target tracking for a large area (e.g., a city or entire country) could be accom-

plished by dividing the area into a number of overlapping blocks. Each GPU would

process and track an individual grid, and then share the tracking information with

neighboring GPUs when the target leaves its tracking area.

There is also potential to solve 3D target tracking problems. A terrain map could

be loaded into the GPU texture memory in order to augment the filter predict/update

operations.

5.3 Summary

The goal of this thesis research was to determine if a GPU can be used to

improve the performance of the image processing for MTT. The results of this re-

search indicate that certain types of image processing map very well to the GPU

programming domain. For example, the color to grayscale, background subtraction,

and thresholding functions perform about 20 times faster on the GPU than on the

CPU. On the other hand, the CCL algorithm is 80% slower on the GPU. Overall,

59

the image processing is 287% times faster on the GPU than the MATLAB Image

Processing Toolbox implementation.

If a faster parallel implementation of CCL and blob analysis can be made,

then the performance improvement would increase significantly. The results indicate

that more research into MTT on the GPU is worthwhile for potential performance

improvements.

60

Bibliography

1. P. Heckbert, “Color image quantization for frame buffer display,” SIGGRAPH
Comput. Graph., vol. 16, no. 3, pp. 297–307, 1982.

2. R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change detection al-
gorithms: a systematic survey,” IEEE Transactions on Image Processing, vol. 14,
no. 3, pp. 294–307, March 2005.

3. T. F. Fulton, “Change detection for processing of angel fire imagery,” Master’s
thesis, Air Force Institute of Technology, March 2008.

4. M. Piccardi, “Background subtraction techniques: a review,” IEEE International
Conference on Systems, Man and Cybernetics, vol. 4, pp. 3099–3104 vol.4, Octo-
ber 2004.

5. R. C. Gonzalez and R. E. Woods, Digital Image Processing (2nd Edition). Pren-
tice Hall, January 2002.

6. G. Stockman and L. G. Shapiro, Computer Vision. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 2001.

7. K. Wu, E. Otto, and K. Suzuki, “Optimizing two-pass connected-component la-
beling algorithms,” Pattern Analysis Applications, 2007.

8. J. Antonakos, “Image processing fundamentals,” Circuit Cellar, December 2001.

9. S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems.
Artech House, 1999.

10. R. A. Singer, “Estimating optimal tracking filter performance for manned ma-
neuvering targets,” IEEE Transactions on Aerospace and Electronic Systems, vol.
AES-6, no. 4, pp. 473–483, July 1970.

11. T. C. Jansen, “Gpu++ an embedded gpu development system for general-purpose
computations,” Master’s thesis, University of Munich, August 2007.

12. S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W. mei
W. Hwu, “Optimization principles and application performance evaluation of a
multithreaded gpu using cuda,” in PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming. New
York, NY, USA: ACM, 2008, pp. 73–82.

13. NVIDIA CUDA Compute Unified Device Architecture Programming Guide Ver-
sion 2.0, NVIDIA, July 2008.

14. Y. Bar-Shalom, Tracking and data association. San Diego, CA, USA: Academic
Press Professional, Inc., 1987.

61

15. P. Konstantinova, A. Udvarev, and T. Semerdjiev, “A study of a target tracking
algorithm using global nearest neighbor approach,” in CompSysTech ’03: Proceed-
ings of the 4th international conference on Computer systems and technologies.
New York, NY, USA: ACM, 2003, pp. 290–295.

16. P. Konstantinova, M. Nikolov, and T. Semerdjiev, “A study of clustering applied
to multiple target tracking algorithm,” in CompSysTech ’04: Proceedings of the
5th international conference on Computer systems and technologies. New York,
NY, USA: ACM, 2004, pp. 1–6.

17. Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshan, “Gpucv: an open-
source gpu-accelerated framework for image processing and computer vision,” in
MM ’08: Proceeding of the 16th ACM international conference on Multimedia.
New York, NY, USA: ACM, 2008, pp. 1089–1092.

18. T. D. Hartley, U. Catalyurek, A. Ruiz, F. Igual, R. Mayo, and M. Ujaldon,
“Biomedical image analysis on a cooperative cluster of gpus and multicores,” in
ICS ’08: Proceedings of the 22nd annual international conference on Supercom-
puting. New York, NY, USA: ACM, 2008, pp. 15–25.

19. J. Fung and T. Murray, Photoshop Filters for the GPU, NVIDIA, April 2008.

20. T. Y. Kong and A. Rosenfeld, Eds., Topological Algorithms for Digital Image
Processing. New York, NY, USA: Elsevier Science Inc., 1996.

21. M. Manhar and H. K. Ramapriyan, “Connected component labeling of binary
images on a mesh connected massively parallel processor,” Comput. Vision Graph.
Image Process., vol. 45, no. 2, pp. 133–149, 1989.

22. C. Bibby and I. Reid, “Fast feature detection with a graphics processing unit
implementation,” in Proceedings of the International Workshop on Mobile Vision,
2006.

23. MathWorks, “Matlab central - file detail,” http://www.mathworks.com/matlab
central/fileexchange/6543, January 2009.

24. Wolfram, “Amdahl’s law,” http://demonstrations.wolfram.com/AmdahlsLaw/,
February 2009.

25. B. S. Morse, “Lecture 4: Thresholding,” January 2000, Brigham Young Univer-
sity.

62

Index

The index is conceptual and does not designate every occurrence of a
keyword.

Assignment Problem, 12

Background Subtraction, 5

blob, 6

Blob Analysis, 8, 24

CCL, 6, 24

CUDA Implementation, 37

Parallel Implementation, 25

Close to Metal, see CTM

Color to Grayscale, 4

compute capability, 20, 22

Connected Component Labeling, see CCL

CTM, 17

Data Fusion, 11

device, 20

Fast Radial Blob Detector, see FRBD

FRBD, 26

General Purpose Computing on GPUs, see

GPGPU

Global Nearest Neighbor, see GNN

GNN, 12, 29

GPGPU, 17, 24

GpuCV, 24

host, 20

Kalman Filter, see KF

kernel, 20

KF, 14

MEX, 27, 31

MTT, 10

MTT Software, 27

Flow Chart, 28

Input, 27

Model, 30

Output, 28

Track States, 30

Multiple Target Tracking, see MTT

Nearest Neighbor, see NN

NN, 12

northbridge, 23

OpenCL, 17

OpenCV, 24

OpenGL, 17

PCIe, 23

RAM, 23

Random Access Memory, see RAM

Singer Model, 15, 30

State Transition Matrix, 15

Track Maintenance, 13

Scoring, 13

Sliding Window, 13

63

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2009 Master’s Thesis Sep 2007 — Mar 2009

Image Processing for Multiple-Target Tracking on a Graphics
Processing Unit

09-248

Michael Allen Tanner, 2d Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCE/ENG/09-11

Air Force Research Labs (AFMC)
Dr. Devert Wicker
2241 Avionics Circle
WPAFB, OH 45433-7765
(937–674–9871; devert.wicker@wpafb.af.mil)

AFRL/RYAT

Approval for public release; distribution is unlimited.

Multiple-target tracking (MTT) systems have been implemented on many different platforms, however these solutions are
often expensive and have long development times. Such MTT implementations require custom hardware yet offer very
little flexibility with ever changing data sets and target tracking requirements. This research explores how to supplement
and enhance MTT performance with an existing graphics processing unit (GPU) on a general computing platform.
Typical computers are already equipped with powerful GPUs to support various games and multimedia applications.
However, such GPUs are not currently being used in desktop MTT applications.
Bottleneck MTT image processing functions (frame differencing) were converted to execute on the GPU. On average, the
GPU code executed 287% faster than the MATLAB implementation. Some individual functions actually executed 20
times faster than the baseline. These results indicate that the GPU is a viable source to significantly increase the
performance of MTT with a low-cost hardware solution.

Target Tracking, Kalman Filter, Graphics Processing Unit, Blob Analysis, Connected Component Labeling

U U U UU 79

Dr. Yong Kim

937–255–3636, ext 4620; ykim@afit.edu

