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ABSTRACT 

Increasing seeker frame rate and pixel count, as well as the demand for higher levels of scene fidelity, have driven scene 
generation software for hardware-in-the-loop (HWIL) and software-in-the-loop (SWIL) testing to higher levels of 
parallelization. Because modern PC graphics cards provide multiple computational cores (240 shader cores for a current 
NVIDIA Corporation GeForce and Quadro cards), implementation of phenomenology codes on graphics processing 
units (GPUs) offers significant potential for simultaneous enhancement of simulation frame rate and fidelity. To take 
advantage of this potential requires algorithm implementation that is structured to minimize data transfers between the 
central processing unit (CPU) and the GPU. In this paper, preliminary methodologies developed at the Kinetic Hardware 
In-The-Loop Simulator (KHILS) will be presented. Included in this paper will be various language tradeoffs between 
conventional shader programming, Compute Unified Device Architecture (CUDA) and Open Computing Language 
(OpenCL), including performance trades and possible pathways for future tool development. 
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1. INTRODUCTION  
The parallel nature of GPUs makes them an efficient means for solving a large set of scientific and engineering 
problems. Traditionally, general purpose computing on GPUs (GPGPU) has required a highly specialized skill set. Until 
recently, implementation of algorithms on a GPU had to be reduced into a sequence of polygon translations and 
rotations. Random memory access for reading or writing was not allowed. New technologies have since emerged that 
remove these limitations. 

This paper provides an overview of the technologies that have been introduced to the marketplace over the past few 
years. A brief background on the predominant programming architecture (NVIDIA Corporation’s CUDA technology) is 
provided, along with a methodology for systematically porting software from a CPU-based system to the GPU. Finally, 
the paper provides a brief example of how the methodology can be applied to a realistic problem, demonstrating the 
performance improvements realized by porting the software to the GPU. 

2. GPGPU BACKGROUND 
2.1 Programming Languages 

Recently, two main graphics card manufactures, ATI and NVIDIA, released software development kits that allow a 
programmer to access the GPU’s power using general purpose code requiring  random memory access. This alleviates 
the key technical difficulties associated with solving problems in the graphics hardware. ATI called their solution Close 
To Metal (CTM), which has since been renamed Stream Software Development Kit (SDK) 1. NVIDIA’s solution, 
CUDA, currently dominates the GPGPU market2. 

Stream SDK and CUDA are vendor-specific solutions to the GPGPU problem. Apple Computer, Inc. saw the potential 
to bridge this gap and pushed for an open standard to be created which would allow GPGPU programming for any 
vendor. On December 8, 2008 the specification for OpenCL 1.0 was released by the Khronos Group, creator of the 
OpenGL standard. OpenCL standardizes a GPGPU language, based on the modern dialect of C, which will allow the 
same code to be executed on any type of GPU. 
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2.2 GPU versus CPU 

CPUs are highly optimized for serial processing of data. In general, the CPU processes one command at a time and 
operates on only one unit of data. Large amounts of die area are dedicated to control logic and cache to decrease the 
overall clocks per instruction (CPI). The memory cache is able to prefetch data because of special and temporal locality 
within the code. Elaborate control logic allows instructions to be executed out-of-order and branch logic to be predicted. 
Very little overall die space is dedicated to arithmetic logic units (ALUs), since only one thread can execute at a time. 
The most modern CPUs (with up to 16 cores on a chip) simply create multiple copies of this basic architecture on one 
chip. 

GPUs take a significantly different approach to computing. Instead of using a large area for cache and control logic, 
GPUs have very small control logic and cache blocks for a large number of threads. A CPU is saturated with only a few 
threads, whereas a GPU needs to have threads in the thousands before saturation occurs. This comes at a cost though; 
individual threads on a GPU will invariable perform worse than the same one on a CPU. Therefore, the performance 
gained from the GPU is from executing highly parallel code. 

GPUs are efficient at solving data-parallel problems. Data-parallel means that a single task operates identically and 
independently on a set of data. In computer architecture terms, it is equivalent to Single Instruction Multiple Data 
(SIMD) instructions. Figure 1 provides a graphical depiction of the difference between GPUs and CPUs. 
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Figure 1. CPUs use large amounts of transistors for cache and control logic for a very limited number of threads. On the 
other hand, GPUs have very little thread overhead but have many ALUs for numerous threads. 3 

To illustrate the difference between CPUs and GPUs, consider matrix addition. For a CPU, the algorithm would look 
similar to Figure 2. This algorithm processes each element one at a time in series. This approach can be very slow when 
the matrices become large. If the matrix has n by n elements, the algorithm will take n2 iterations of the loop to complete. 

1 for i = 1 to HEIGHT do 

2    for j = 1 to WIDTH do

3       ci,j = ai,j + bi,j 

4    end 

5 end 

Figure 2. Calculate     on the CPU 

1 i = current row  

2 j = current column 

3 ci,j = ai,j + bi,j 

Figure 3. Calculate     on the GPU 

 

On the other hand, the GPU code in Figure 3 creates one thread for each matrix element, adds that element from a and b, 
and then stores that value into the proper element in c. A GPU can execute hundreds of threads simultaneously. For 
example, if a GPU can process 1,000 threads at a time, it will take n2/1,000 iterations to complete. In practice, speed 
increases for GPU applications are typically between 10 to 200 times faster than their single core CPU counterpart. 
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The remainder of this paper will use NVIDIA CUDA terminology to explain the architecture of GPUs as described in 
the NVIDIA Programming Guide3. 

3. CUDA OVERVIEW 
3.1 CUDA Terminology 

When working with CUDA programs, it is necessary to understand some basic terminology. The host is the CPU, 
whereas the GPU is referred to as the device. A kernel is a small function that is executed on the device by a large 
number of threads. 

Compute capability is a number assigned a GPU to represent its computational capabilities. A higher compute capability 
number means the GPU can handle more advanced mathematical and programming operations. For example, compute 
capability 1.0, 1.1, and 1.2 can only handle single point precision (32-bit floating point) operations, while the latest 
compute capability 1.3 has double precision. Also, 1.0 does not allow for any atomic memory operations, while 1.2 
allows for shared and global atomic memory operations. 

3.2 Thread Hierarchy 

The thread hierarchy describes how the GPU executes threads as well as how threads interact with each other. When a 
kernel is sent to the device, it is assigned a grid. Grids are a logical mapping of the threads that are executed within the 
kernel. Each grid is made up of smaller components called blocks. These, in turn, are composed of individual threads. 
On the current generation of NVIDIA's GPUs, blocks can contain no more than 512 threads. Grid dimensions can be as 
large as 216 × 216. Figure 4 shows the thread hierarchy. 

Grid 
Block (0, 0) Block (2, 0) 

Block (0, 1) Block (2, 1) 

Block (2, 0) 
Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0) 

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1) 

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2) 

Block (1, 0) 

Block (1, 1) 

 
Figure 4. Every CUDA kernel is assigned a grid. Grids are subdivided into blocks. Each block contains up to 512 individual 
threads. Blocks and grids can be logically organized into multi-dimensional structures to simplify memory access and 
calculations.3 

Grids can be logically organized into a 1D or 2D layout, whereas a block can also be organized in a 3D layout. This 
organization can be useful to efficiently calculate the array index for each thread. For example, if the data processed by 
the kernel is a 2D image, then it would make sense to use a 2D grid and block structure. The current index for each 
thread can be calculated using built-in CUDA variables, as shown in Equation 1. This index can then be used within 
each thread to perform a certain operation on the image. 

column blockIdxx blockDimx threadIdxx
row blockIdxy blockDimy threadIdxy  (1) 

where blockIdx is a vector representing the current location in the grid, blockDim specifies the width and height of 
each block, and threadIdx is a vector representing the current location in the block. 
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3.3 Memory Hierarchy 

Memory hierarchy and memory access methods are important to understand how to improve the speed of applications on 
GPUs. There are three different levels of memory: global, shared, and local. Two additional types of memory exist, 
texture and constant, but will not be covered due to scope limitations of this paper. 

Global memory can be accessed by any thread, no matter what block it is in. This memory is the largest (most modern 
GPUs have up to 4 GB), but it is also the slowest. No memory reads from global memory are cached. In addition, since 
this memory is further away from the multiprocessor cores, there is a latency of about 400 to 600 clock cycles. 

Shared memory is memory that can be accessed only by threads within the same block. Current GPUs have 16 KB of 
shared memory. Access to shared memory can be as fast as reading and writing to registers so long as there are no bank 
conflicts within a half-warp. A half-warp is defined as a group of 16 threads executed simultaneously in a single stream 
processor core. A bank conflict occurs if two threads within a half-warp are reading or writing to the same 32-bit block 
of shared memory. 

Local memory can only be accessed by an individual thread. The CUDA compiler places as many local variables as it 
can into registers, but if there is overflow, variables are stored in a reserved section of the GPU's global memory. If  
variables do not fit in local registers, there will be a significant performance decrease. 

The most important concept to understand about memory access is coalescing. This means that all half-warp memory 
accesses are within a given segment size of memory. Table 1 summarizes the rules for devices with compute capability 
1.2 or higher. If these rules are followed, then only one memory access command is executed. If they are not followed, 
then individual memory fetch/store commands must be issued for each thread (16 individual memory fetch/store 
commands instead of one). For example, if the 2-byte words accessed by the threads in an individual half-warp are 
contained within a 64-byte contiguous spread in global memory, the read and writes to that memory will be coalesced, as 
shown in line two of Table 1. If just one of the words fall outside that 64-byte spread, then the processor will issue 16 
individual memory fetch/store commands. 

Table 1. Coalescing memory writes is very important for GPU performance. This table summarizes the rules for memory 
access within a half-warp (16 threads) for devices of compute capability 1.2 or higher.3 

Byte Spread Word Size 

32 bytes 1-byte 

64 bytes 2-bytes 

128 bytes 4-bytes 

128 bytes 8-bytes 

 

3.4 Synchronization 

Synchronization is limited within the GPU. Using the _syncthreads() command, threads within the same block can 
be synchronized. This limitation of only block-level synchronization results from all of the thread blocks not executing 
at the same time. The GPU has a scheduler which submits blocks for execution on an individual Single Instruction 
Multiple Thread (SIMT) multiprocessor core. Each SIMT contains eight scalar processor cores. These cores are capable 
of executing one warp (or set of 32 threads) at a time. The NVIDIA GTX 280 has 30 SIMT multiprocessor cores, which 
means it can execute up to 240 blocks simultaneously. Synchronizing within a core (i.e., block) requires only four clock 
cycles, but synchronization between multiple blocks is much more costly because of the interprocessor communication. 

3.5 Performance Notes 

Writing efficient code on the GPU can be difficult. Memory bandwidth and latency are two important concepts that 
affect overall performance. As has already been mentioned, coalescing is also very important to speed up the execution 
of code on the GPU. 

What is not as obvious is that sending data between the host and device can cause a bottleneck in a program. On all 
motherboards, communication between the CPU, GPU, and RAM is mediated by the northbridge, as shown in Figure 5. 
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There is a limit of 12.8 GB/s between the CPU and northbridge. One-way communication between the CPU and GPU is 
limited to 8 GB/s with PCIe 16x Generation 2. An uncompressed, 24-bit, 1920x1080 (1080p) image uses 5.9 MB of 
memory and takes about one millisecond to copy from the CPU to GPU. Therefore, two milliseconds are used just to 
transfer data, without any useful computation. 

16.0 GB/s 

12.8 GB/s 

12.8 GB/s 

PCIe 16x Gen 2 

1600 MHz FSB 

CPU 

GPU Northbridge 
DDR3-1600 

RAM 

 
Figure 5. The CPU and GPU cannot communicate directly with each other. The northbridge mediates between the CPU, 
GPU, and RAM. 

The data-parallel operations executed on the GPU need to be great enough that their quick execution more than makes 
up for the transfer time to and from the GPU. For example, a single operation of matrix addition or transpose would 
probably execute more quickly on the CPU, while matrix multiplication would be quicker on the GPU. 

Device-to-device memory transfer refers to moving data to another portion of global memory on the same graphics card. 
These transfers have a bandwidth of up to 141.7 GB/s, which makes them not as susceptible to the bandwidth problems 
described above. 

4. PROCESS FOR PORTING SOFTWARE TO THE GPU 
There are a number of considerations one must take into account when porting software from running only on the CPU 
to running on both the CPU and GPU. First, and most importantly, it must be determined if the code or problem being 
ported can run efficiently on the GPU. A full understanding of the GPU and CPU architectures (Sections 2 and 3) is 
important for this preliminary analysis. The GPU works best for problems that can be subdivided into a large number of 
smaller problems that can be solved independently, i.e., very little inter-process communication or synchronization. 
Significant performance improvement will most likely be seen if the following conditions are met: (1) the problem 
requires a large number of independent and complex calculations, (2) relatively few global memory fetches/writes are 
required for each thread, and (3) there is a limited amount of divergent logic between threads within the same half-warp. 

The last point deserves a more detailed explanation. Threads in the GPU are executed together in half-warps, or groups 
of 16 threads. The processor can only execute identical instructions for each thread. In other words, if there is 
conditional logic (e.g., if statements, for loops, etc.) then there is the potential that one conditional statement will be 
evaluated as true for some of the threads and false for the rest. If this is the case, while the processor is executing the 
“true” logic for some of the threads, the other threads in the half-warp are idle. When the commands in the “false” logic 
are executed, the “true” threads are idle. A significant amount of idle time for threads decreases the overall performance 
of the kernel. 

After determining there will likely be a performance improvement from porting the software, the next step is to 
determine which part of the software to implement on the GPU. Benchmark the software on the CPU to identify which 
functions or methods are the bottlenecks for the application. These bottlenecks are typically the first part of the software 
you want to port over to the GPU. Again, when you identify the bottlenecks, verify that they will port well to the GPU 
by using the three part test identified in the first paragraph in this section. If you are using GCC (GNU Compiler 
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Collection) as your compiler, you can use the -pg flag during compilation and after you execute the program you can 
analyze the overall execution time for each function by running gprof on the executable. Matlab has a similar function 
called profile. 

At this point, you can run a few quick calculations to determine how much of an overall speedup you may see in your 
software. This is accomplished by applying Amdahl’s Law, speedup 11 P PS , (2) 

where P is the percentage of the program (in execution time) that you will be porting to the GPU and S is the amount of 
speedup you expect to get on the GPU. For example, if you are porting over a function that takes 25% of the overall 
execution time and you expect to get a 10 times speedup, you would expect a speedup of about 1.29, a 29% increase 
over the baseline. 

There are two major implications of Amdahl’s Law. First, you should always check to see if porting the software will 
provide the overall speedup that you desire. In other words, even if you get a 50 times speedup for a function that only 
takes 5% of the execution time, your overall speedup is only 5.1%. The second implication is that there are diminishing 
returns from speeding up an individual function. Take the previous example, but assume that you can achieve a 200 
times speedup for the function that takes 5% of the execution time. Now your overall speedup is 5.2%. Even though the 
function performance was improved 4 times, the overall performance was only improved by 0.1%. Your time would 
more likely be better spent optimizing a different function. 

After identifying a function to port, the next step is to get it working on the GPU. On the first implementation, do not 
focus on optimizations. The primary goal is to produce functionally correct code executing on the GPU. Verify that it is 
producing the correct output by writing automated test plans to compare the outputs of the CPU and GPU 
implementations. 

If all the conditions described in the first paragraph of this section apply, you can expect roughly a two to ten times 
speedup from this first implementation. To achieve greater speedup, you must optimize the code for the GPU. To do this, 
you must fully understand the material covered in Sections 2 and 3 from this paper. The NVIDIA Programming Guide 
and programming forum are also valuable resources. The best ways to improve performance are to limit the number of 
global memory reads and writes through the use of shared memory, decrease the amount of divergent logic, maximize 
the use of coalesced memory access (Section 3.3), and limit the amount of data transferred between the GPU and CPU 
(Section 3.5). If the problem fits well into the GPU architecture, based on the criteria defined at the beginning of this 
section, you should expect to see speedups on the order of 100 times. 

5. CASE STUDY OF SOFTWARE PORT 
5.1 Planck’s Law 

An example will be used to introduce the potential speed increases that can be achieved through the use of the GPU. In 
many high-fidelity scene generation scenarios, it is necessary to calculate the exact spectral radiance of an object at 
various wavelengths. Plank’s law can be applied in this scenario to calculate the spectral radiance for a given wavelength 
and temperature, as shown in this equation, , 2 1 1 . (3) 

In Equation 3, ν is the frequency in hertz, T is the temperature in kelvin, h is Planck’s constant, c is the speed of light, 
and k is Boltzmann’s constant. A scene generation scenario using Plank’s law may use a ray casting or tracing algorithm 
to determine all the visible points in the scene and then evaluate the spectral radiance of each facet in the scene across a 
spectrum of wavelengths. 

5.2 Step 1 – Analyze Potential Gain from Porting Software 

Before porting the software, an evaluation of whether the problem will port well into the GPU domain is necessary, 
referring to the three criteria listed at the beginning of Section 4. For the evaluation it is assumed that each thread 
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calculates a single spectral radiance value for a single object. The first criterion is met since each thread performs a 
complex calculation that is completely independent of other threads. Each thread only has to read in two values, 
frequency and temperature, from global memory and write one value back to global memory, so the second criteria is 
satisfied. Also, it is important to note that there is relatively little communication between the GPU and CPU compared 
to the time required for the calculations. Finally, there is no conditional logic necessary to perform each calculation of 
Planck’s law since it is simply evaluating an equation with known inputs. All the criteria have been met, indicating this 
problem will have significant performance improvement if the Plank function is ported to the GPU. 

5.3 Step 2 – Benchmark the CPU Software to Identify Bottlenecks 

In this example, the bottleneck of the software is the Planck’s law function. The remainder of the software is overhead 
necessary to read in temperature data and wavelength range for the objects. Since this single function accounts for most 
of the execution time of the program, and the function maps well to the GPU paradigm, we can expect significant overall 
program speedups when it is ported to the GPU. In a straightforward problem like this, a detailed benchmark is not 
strictly needed. This program essentially consists of two steps: (1) read in the problem data from a file, (2) loop over that 
data and compute the Planck’s law on each value. Without further analysis, it can be determined that only the Plank’s 
calculation can be made parallel to execute on the GPU. 

5.4 Step 3 – Implement on the GPU 

Implementing Planck’s equation on the GPU is a straightforward process. A single kernel is created to perform all the 
Planck equation calculations. All the memory reads and writes are coalesced by default as long as thread index is 
directly used to calculate the global memory location for the temperature and frequency. The amount of data being 
transferred over the GPU is minimal considering that most of the program time is spent calculating the result of the 
equation. The results from running this program on the CPU, as compared to the GPU, are shown in Table 2. The GPU 
used was the NVIDIA Quadro FX 5800, and two quad-core Intel Xeon processors were used for the CPU tests. 

Table 2. Results from running Planck’s equation on 16,777,216 (or 4,096 * 4,096) different wavelengths at a set 
temperature. The CPU scales linearly compared to the number of cores, whereas the GPU performs more than two times 
faster than would be expected with a linear performance improvement. This is due to coalesced memory access along with 
context switching when the processors are waiting for a memory fetch or write. 

Implementation Cores Time (s) Speed Increase 

CPU 1 1,287.92 1.00 

CPU 8 160.55 8.02 

GPU 240 2.25 573.43 

 

5.5 Interpretation of Results and Lessons Learned 

This example demonstrated how a problem that would have been intractable to solve without large server farms can 
become much more manageable with just a single consumer-grade graphics card that cost well under $1,000. The 
significant speedups seen in this scenario are only seen in problems that port extremely well to the GPU design 
paradigm, it is not typical to see speedups larger than 200 times for most well-suited problems. GPU speedups are 
achieved in part because of memory coalesced reads and writes. In addition, compared to a CPU, the GPU processors 
have very low overhead to switch in new threads while old threads are waiting for a memory fetch or write to complete. 
The more complicated the GPU kernel and the more global memory access required, the less the overall speedup will be. 

This example was presented in order to demonstrate to the reader the process of porting software from the CPU to the 
GPU. The example provides a straightforward case as a template for more complicated situations. A slightly more 
involved scenario for matrix multiplication is presented in Chapter 2 of the CUDA Programming Guide3. Numerous 
optimization techniques are provided in the CUDA Best Practices Guide. Assistance can also be obtained on the 
NVIDIA CUDA forums online where there is an active community of people willing to help people of all levels of 
experience. 
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6. FUTURE WORK 
6.1 NVIDIA Fermi 

The future of GPGPU programming holds a great amount of potential benefit for engineering simulation. In particular, 
NVIDIA is expected to release its next generation of GPUs in the first quarter of 2010. This architecture, codenamed 
Fermi, should significantly improve on NVIDIA’s previous generation. 4 The number of computing cores available on 
each board has more than doubled from 240 to 512. From this feature alone one would expect at least double 
performance for any software run on Fermi compared to the GT200 architecture. However, other improvements should 
allow the speedup to be as much as eight times faster than the GT200 architecture. The main features include 10 times 
faster context switching, concurrent execution of multiple kernels, and caching of global memory. The user can specify 
how much of the 64 KB shared memory will be used as L1 and L2 cache. After this configuration is set, caching is 
transparent to the programmer. 

Not all of the Fermi improvements were designed solely for performance improvement. For example, Fermi boards 
contain a unified address space which allows for C++ code to be executed natively. Now engineers can use object-
oriented programming to rapidly port currently-existing solutions. Also, Fermi is the first graphics card architecture ever 
to introduce error checking and correcting (ECC) for its memory. This is especially important for scientific applications 
where precision and accuracy is vitally important for all calculations in a variety of different settings. 

6.2 OpenCL 

OpenCL was briefly mentioned in Section 2.1. This new technology allows the same piece of code to be compiled and 
executed on a variety of different platforms. The same code could be executed on both NVIDIA and ATI products. 
There are a number of reasons that the OpenCL community has not made CUDA obsolete. Probably most important is 
that the OpenCL drivers are in their infant stages and perform poorly in comparison to the vendor technologies. The 
CUDA example presented in this paper (Section 5) consistently runs about 20% - 30% slower when implemented in 
OpenCL. ATI’s OpenCL drivers have not yet been released from beta. 

As the driver technology improves, OpenCL can be expected to perform at least as well as other programming 
architectures. A valuable research task with mature OpenCL technology would be to compare the performance of new 
generations of ATI and NVIDIA GPGPUs. 

7. CONCLUSION 
The purpose of this paper was to provide a brief tutorial into the GPGPU world, providing the user with a toolset that 
will allow them to understand the GPU architecture. Specifically, the CUDA programming model was presented in 
detail along with a list of references for the reader to further investigate this technology. A straightforward methodology 
for porting software from the CPU to the GPU was presented along with a representative example. The example was an 
idealistic case that realized significant performance improvement on the GPU in comparison to the CPU. These 
demonstrated techniques can be applied to a variety of different scene generation software algorithms to improve the 
performance and fidelity of real-time and offline systems. 
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