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Accelerating FAB-MAP With
Concentration Inequalities

Mark Cummins and Paul Newman

Abstract—We outline an approach for using concentration in-
equalities to perform rapid approximate multi-hypothesis testing.
In a scenario where multiple hypotheses are ranked according to a
large set of features, our scheme improves the efficiency of selecting
the best hypothesis by providing a “bail-out threshold” at which un-
promising hypotheses can be excluded from further evaluation. We
show how concentration inequalities can be used to derive princi-
pled bail-out thresholds, subject to a user-specified error tolerance.
The technique is similar to the sequential probability ratio test, but
is applicable in more general conditions. We apply the technique to
improve the speed of the fast-appearance-based mapping system
for appearance-based place recognition and mapping. The speed
increase provided by the new approach is data dependent, but we
demonstrate speed improvements of between 25x − 50x on real
data, with only a slight degradation in accuracy.

Index Terms—Computer vision, recognition, simultaneous
localization and mapping (SLAM).

I. INTRODUCTION

THE MOTIVATION of this paper is to improve the speed of
our fast-appearance-based mapping system (FAB-MAP),

which is an appearance-based navigation system for mobile
robots [5], [7]. The FAB-MAP system allows a robot to in-
crementally construct an “appearance map” of its environment,
which consists of a set of discrete locations, each with an asso-
ciated appearance model. Distinctive places can be recognized
even after unknown vehicle motion, and therefore, the appear-
ance map allows the robot to perform loop-closure detection and
other challenging global relocalization tasks in cases where met-
ric methods for simultaneous localization and mapping (SLAM)
may have failed.

The basic FAB-MAP model has fairly high computational
cost. When real-time place recognition is required, its appli-
cability is limited to maps that contain around 1000 locations
(or, equivalently, a robot trajectory no more than about 1 km
long). The limiting computational cost of the method is the cal-
culation of an observation likelihood term in the probabilistic
model. Every time the robot collects a new observation, this ap-
pearance likelihood term must be evaluated for all locations in
the map. However, only a small number of these locations will

Manuscript received May 23, 2010; revised September 14, 2010; accepted
September 18, 2010. Date of publication November 1, 2010; date of current
version December 8, 2010. This paper was recommended for publication by
Associate Editor C. Stachniss and Editor W. K. Chung upon evaluation of the
reviewers’ comments. This work was supported by the Systems Engineering for
Autonomous Systems (SEAS) Defence Technology Centre established by the
U.K. Ministry of Defence and by the EPSRC.

The authors are with the Mobile Robotics Research Group, Ox-
ford University, OX1 3PJ Oxford, U.K. (e-mail: mjc@robots.ox.ac.uk;
pnewman@robots.ox.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2010.2080390

yield non-negligible probability of having generated the obser-
vation. The core idea of this paper is that it should be possible to
identify locations that will have insignificant likelihood before
the calculation is fully complete. These locations could then
be excluded from further processing, and large speed increases
could be realized. We will describe a new multi-hypothesis test-
ing technique, which formalizes this intuition and provides a
closed-form bound on the resultant error rate.

II. RELATED WORK

The problem of efficient multi-hypothesis testing is very
generic and arises in many fields. One powerful approach for
pruning a large space of hypotheses is the branch-and-bound
technique, as used, for example, in the recent work of Lampert
et al. to accelerate sliding window classification [10]. A classical
branch-and-bound algorithm removes a hypothesis from consid-
eration only when it is completely certain that the hypothesis
cannot be the best solution. The method we present here can be
thought of as a relaxation of this approach to the probabilistic
case, where a hypothesis is removed when it is extremely likely
(but not certain) that it is not the best hypothesis. By allowing
for a small probability of error, we can achieve a much greater
speed increase.

Such probabilistic “bail-out” strategies have been described
elsewhere in computer vision, notably in the context of effi-
cient RANSAC algorithms [12], [13]. Matas and Chum showed
that for RANSAC, the sequential probability ratio test (SPRT)
yields the optimal solution. The SPRT approach was originally
designed to test two hypotheses under a sequence of identical
and equally informative observations [15]. Extensions exist for
the multi-hypothesis case [1]. However, stopping boundaries
for the SPRT are not easy to derive when the observations are
not equally informative. We describe an alternative approach
based on concentration inequalities [4]. Unlike the SPRT, this
approach is straightforward to apply even when there are multi-
ple hypotheses and the observations are not equally informative.
We have noted related ideas in other fields [11]; however, we
believe our approach is novel in this context.

The techniques described in this paper were first presented
in [6]. Here, we expand on that presentation with a more detailed
justification of correctness and a more complete outline of how
the techniques can be applied.

III. PROBABILISTIC BAIL OUT USING BENNETT’S INEQUALITY

Let H =
{
H1 , . . . , HK

}
be a set of K hypotheses (models),

and let Z = {z1 , . . . , zN } be an observation consists of N fea-
tures. The likelihood of the observation under the kth hypothesis
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Fig. 1. Conceptual illustration of the bail-out test. After considering the first i
features, the difference in log-likelihoods between two hypotheses is ∆. Given
some statistics about the remaining features, it is possible to compute a bound
on the probability that the evaluation of the remaining features will cause one
hypothesis to overtake the other. If this probability is sufficiently small, the
trailing hypothesis can be discarded.

is given by

p(Z|Hk ) = p(z1 |z2 , . . . , zN ,Hk ) . . . p(zN −1 |zN ,Hk )

× p(zN |Hk ). (1)

Define the log-likelihood of the first i features under the kth
hypothesis as follows:

Dk
i =

i∑

j=1

dk
j (2)

where

dk
i = ln(p(zi |zi+1 , . . . , zN ,Hk )) (3)

is the log-likelihood of the ith feature under the kth hypothesis.
We would like to determine, as rapidly as possible, the hypoth-
esis H∗ for which the total log-likelihood D∗

N is maximized.
To find H∗ with certainty requires a complete evaluation of
the likelihood of each hypothesis, which may be too slow for
applications of interest. Consequently, we consider the prob-
lem of finding a hypothesis H# , subject to the constraint that
p(H# $= H∗) < ε, where ε is some user-specified probability.

In overview, our approach is to calculate the likelihoods of all
hypotheses in parallel and terminate the likelihood calculation
for hypotheses that have fallen too far behind the current-leading
hypothesis. “Too far” can be quantified using concentration in-
equalities, which yield a bound on the probability that a hypoth-
esis will overtake the leader, given their current difference in
likelihoods and some statistics about the properties of the fea-
tures which remain to be evaluated. Fig. 1 illustrates the idea.

Consider two hypotheses Hx,Hy ∈ H, and let

Xi = dx
i − dy

i (4)

that is, the difference in the log-likelihood of feature i under
hypothesis Hx and Hy . Xi can be considered to be a random

variable before its value has been calculated. This is useful
because we can calculate some key statistics about Xi more
cheaply than we can determine its exact value. Now, let us
define

Sn =
N∑

i=n+1

Xi. (5)

If, after evaluating n features, the log-likelihood of some hy-
pothesis is ∆ less than the current best hypothesis, then the
probability of failing to locate H∗ if we discard this hypothesis
is given by p(Sn > ∆), i.e., by the probability that the trail-
ing hypothesis will overtake the leader after the evaluation of
the remaining features. Thus, knowing the distribution of Sn

enables the creation of a probabilistic bail-out test for discard-
ing hypotheses subject to an error constraint. To calculate an
explicit distribution on Sn is infeasible; however, concentra-
tion inequalities—which bound the probability that a function
of random variables will deviate from its mean value—can be
applied to yield bounds on p(Sn > ∆).

A large variety of concentration inequalities exist, many of
which apply under very general conditions, including cases
where the component distributions are not identically dis-
tributed, not independent, and combined using arbitrary func-
tions. The more information available about the component dis-
tributions Xi , the tighter the bound. For an overview, see [4]. For
our application, we will find it convenient to use the Bennett
inequality for sums of symmetric random variables [3]. This
inequality is specified in terms of two parameters—M , which
is a bound on the maximum value of any component Xi , and v,
which is a bound on the sum of the variances of the components
Xi .

Formally, let {Xi}N
i=n+1 be a collection of independent

mean-zero random variables with symmetric distributions (cor-
responding to the log-likelihood changes due to those features
not yet considered) and satisfying the conditions

p (|Xi | < M) = 1∀i : {n + 1 < i < N} (6)

N∑

i=n+1

E
[
X2

i

]
< v. (7)

As before

Sn =
N∑

i=n+1

Xi. (8)

Then, the Bennett inequality states that

p(Sn > ∆) < exp
(

v

M 2 cosh(f(∆)) − 1 − ∆M

v
f(∆)

)

(9)
where

f(∆) = sinh−1
(

∆M

v

)
. (10)

Thus, after considering the first n features, and given bounds on
the maximum value (M) and sum of variances (v) of the inter-
hypothesis log-likelihood changes (Xi) for the features yet to be
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Fig. 2. Bail-out test on real data. Here, the blue lines show the log-likelihoods of each place versus number of features considered. Typically, there are thousands
of places—here, only a few are shown for clarity. The black line is the bail-out threshold. Once the likelihood of a place hypothesis falls below the bail-out
threshold, its likelihood calculation can be terminated (the remainder of the likelihood calculation is shown earlier for illustration). The calculations shown in
(a) and (b) are the same, the only difference being the order in which features are considered. In (a), observations are ordered by information gain; in (b), they
are ordered randomly. Note that ordering the features by information gain results in much faster convergence toward final likelihood values and, hence, a much
more effective bail-out test. The bail-out threshold does not fully converge to the leading hypothesis because of the offset constant C described in Section V-D.
(a) Features ordered by information gain. (b) Random feature order.

evaluated (n + 1 : N), we can solve the Bennett inequality for
∆, such that p(Sn > ∆) meets the user-specified error proba-
bility ε. After considering a given feature, any hypothesis whose
log-likelihood is at least ∆ less than the current-leading hypoth-
esis can be discarded, because the probability of it overtaking
the current leader before the end of the calculation is less than ε.
Note that the values of M and v are defined on the features that
have yet to be evaluated (n + 1 : N); thus, as the calculation
progresses and the number of unconsidered features decreases,
M and v will decrease. The bail-out threshold thus converges
to zero as the number of unconsidered features decreases (see
Fig. 2).

To apply this scheme to a concrete multi-hypothesis testing
task, some method must be available to calculate the values
M and v. In Section V, we will outline exactly how this can
be achieved for our FAB-MAP place-recognition system. Note
that if a particular problem does not allow for the calculation of
these values, it might still be possible to apply the scheme by
substituting a different concentration inequality. For example,
the Hoeffding inequality [9] can be used when no information
about v is available.

Before moving on, there are two implementation details worth
mentioning. The first is how to solve the Bennet inequality for
∆. We do this using standard numerical techniques. To find ∆,
we begin with a few iterations of the bisection method and then
switch to Newton–Raphson iteration for faster convergence. If
bisection has not brought us sufficiently close to the minima,
then Netwon–Raphson may diverge. If we detect this behavior,
we fall back to bisection for a few iterations. We also use the fact
that the value of ∆ after considering the first n features is strictly
less than (and typically very close to) the value after considering
n − 1 features. Thus, after ∆ has been found initially, it can
be incrementally updated with only a single Netwon–Raphson
iteration in most cases.

The second detail relates a low-level optimization of the log-
likelihood calculation. We use the same trick as described by
Nister in [13] to avoid unnecessary computation of the expensive
ln-function. Instead of computing the log-likelihood increment
for each feature, we take features in groups of ten and compute
the log-likelihood increment for the whole group

ln
( 10∏

i=1

p(zi |zi+1 , . . . , zN ,Hk )
)

.

Grouping the features like this introduces a tradeoff, in that the
bail-out test can now only be applied at every tenth step. The
low-level computational gains must thus be balanced against the
loss from less frequent bail-out tests. We experimented with dif-
ferent group sizes and found that ten gave the best performance.
Groups much larger than ten should be avoided for numerical
precision reasons.

IV. APPEARANCE-ONLY SIMULTANEOUS

LOCALIZATION AND MAPPING

In the next section, we will describe the use of the bail-out
technique with our FAB-MAP appearance-only SLAM system.
However, we must first provide a brief description of how this
system operates. FAB-MAP has been described in detail in [5]
and [7], and a modified, more scalable version was described
in [8]. We will present only a very brief overview here.

The design goal of the FAB-MAP system is to create a kind
of appearance-based analog to metric SLAM. Whereas typical
SLAM algorithms attempt to keep track of the pose of the robot
in precise metric coordinates, FAB-MAP makes no attempt to
track the vehicle. Instead, it simply classifies the current robot
observation as belong to either a new never-before-seen loca-
tion or one of the locations previously visited. If the location
is new, it is added to the map so that it can be recognized in
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the future. Distinctive locations can be recognized even after
unknown vehicle motion, thus making FAB-MAP suitable to
solve problems such as a kidnapped robot, loop-closure detec-
tion, and multisession mapping, which are typically very hard
to deal with in a purely metric SLAM framework. A notable
aspect of FAB-MAP is that it is based on a principled proba-
bilistic model, which means that the system naturally handles
challenging cases, such as self-similar environments (“percep-
tual aliasing”), and makes full use of available information, in-
cluding negative observation (discussed later) and correlations
among observations.

Formally, at time t, the robot’s map consists of nt discrete
locations, each location Li having an associated appearance
model. When the robot collects a new observation Zt , we com-
pute p(L|Zt), and the probability distribution over locations
in the map give the current observation. This can be cast as a
recursive Bayes filtering problem

p(Li |Z t) =
p(Zt |Li,Z t−1)p(Li |Z t−1)

p(Zt |Z t−1)
(11)

where Z t is the set of all observations up to time t,
p(Zt |Li,Z t−1) is the likelihood of the observation given the
location Li and the previous observations Z t−1 , p(Li |Z t−1) is
our prior belief about our location, and p(Zt |Z t−1) normalizes
the distribution.

To represent appearance, we use the visual words approach
developed for image retrieval in the computer vision commu-
nity [14]. Invariant features are detected in the current image
(we use the speeded up robust features (SURF) detector [2]),
and then, these features are quantized with respect to a vocabu-
lary of prototypical features (learned from generic training data).
An observation Zt is then simply a binary vector, the kth entry
of which indicates whether or not the kth word of the visual vo-
cabulary was detected in the current image. A place appearance
model Li is similarly a vector of continuous probabilities and in-
dicates our belief about the existence of visual-word-generating
elements at that particular location.

A description of the FAB-MAP model is not the purpose
of this paper. For detailed information on how the model is
evaluated, see our earlier publications. For present purposes,
it is sufficient to say that the primary cost for the evaluation
of the FAB-MAP model is the calculation of the observation
likelihood term p(Zt |Li,Z t−1), which must be evaluated for
every location in the map every time the robot collects a new
observation. The evaluation of this term can be expanded as
follows:

p(Zk |Li)≈ p(zr |Li)
|v |∏

q=2

p(zq |zpq , Li) (12)

where the terms zq are the individual binary components of the
observation Zk , which indicates the presence or absence of a
particular word in the visual vocabulary. The conditioning on
zpq is because we account for some of the correlations between
visual words. For details, see [7]. Our intention here is only
to show that for each new observation, we have a set of hy-
potheses (the locations Li), which we are evaluating under a set

of features (the visual words zq ). Most locations will yield an
insignificant likelihood of having generated the current obser-
vation. By identifying these locations before the calculation is
fully complete, many locations can be quickly excluded from
processing, and large speed increases can be realized.

V. APPLICATION OF THE BAIL-OUT TEST TO

APPEARANCE-ONLY SLAM

We now describe how to apply the bail-out test from
Section III to our FAB-MAP model. To recap, we have a set
of locations Li whose likelihood we are evaluating with respect
to some observation Z. The observation Z consists of a set
of features zi , each of which is a binary variable that indicates
whether or not the ith word of the visual vocabulary is present in
the observation. We will denote the difference in log-likelihood
of two locations Lx and Ly under feature zi by

Xi = dx
i − dy

i

= ln(p(zi |zpi , Lx)) − ln(p(zi |zpi , Ly )) (13)

which we will consider as a random variable before its value has
been calculated. To apply our bail-out test, we must establish
that our random variables Xi meet the conditions for applica-
bility of Bennett’s inequality. We must also define an order in
which to consider the features and outline how M and v may be
calculated.

A. Applicability of Bennett’s Inequality

To make use of (9), we require that the random variables
{Xi}N

i=1 be independent and mean-zero and have symmetric
distributions. We also require that their maximum values be
bounded.

To understand why these conditions are satisfied, we note
that, given that the values of zi and zpi are fixed, the likelihood
of a feature being observed at a particular location p(zi |zpi , Lx)
depends only on the number of previous observations of feature
zi at location Lx (for a thorough appreciation of this point, it is
necessary to refer the reader to [7]. Intuitively, however, this is
because our belief about how likely the feature is to be observed
at a location is initialized to some fixed prior, which is then only
updated each time the feature is observed to be present or absent
at the location). Taking this fact, and assuming the number
of observations relating to any given place is finite, Xi has a
multinomial distribution because p(zi |zpi , Lx) can be one of a
fixed set of discrete values. If we now make the assumption that,
a priori, all locations are equally likely to generate any given
feature, Xi must have a symmetric mean-zero distribution. This
is because if Xi = δ for some history of previous observations
at Lx and Ly , then Xi = −δ for the symmetric case, where the
observation history of Lx and Ly is swapped, which occurs with
equal probability.

To illustrate this, consider an example. Let zi be a feature,
which is observed with probability η, and let Lx and Ly be
two location models, which each have exactly one associated
observation. Further assume that the state of the feature zi in
the observation associated with Lx and Ly (i.e., zi = 0 or 1) is



1046 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 6, DECEMBER 2010

unknown. For compactness, denote the event that location Lx

has a previous associated observation with zi = 0 by Lx{0}.
There are four possible cases, as shown in the following:

which occur with the probabilities shown. In addition, the log-
likelihood difference (Xi) is shown in the four cases, where
δ is the value of ln(p(zi |zpi , Lx{0})) − ln(p(zi |zpi , Ly{1})).
Observe that Xi has a symmetric, mean-zero multinomial dis-
tribution

Xi :






δ with probability η(1 − η)
0 with probability (1 − η)2 + η2

−δ with probability η(1 − η).
(14)

When the location models have more than one associated ob-
servation, this multinomial distribution has a similar form but a
larger number of states.

Finally, Bennett’s inequality requires that the variables Xi be
independent. FAB-MAP incorporates a Chow Liu tree, which
captures conditional dependencies between features. While in-
corporating this model ameliorates concerns about correlations,
the Chow Liu tree is still only an approximation to the true joint
distribution, and thus, the variables Xi may have weak residual
dependence. However, our experimental results (see Section VI)
would appear to indicate that this is not a problem in practice.

B. Ranking Features

Next, we must define an order in which to consider the fea-
tures during the bail-out test. While the bail-out test applies to
any ordering, it is natural to rank the features by information
gain. This way, the hypotheses will converge most rapidly to-
ward their final log-likelihood values, and poor hypotheses can
be identified earliest (see Fig. 2).

Under our observation model, each feature zi is conditionally
dependent on one other feature zpi . If we observe zi = si and
zpi = spi (with s ∈ {0, 1}), then the information gain associated
with this observation under our model is as follows:

I = − ln p(zi = si |zpi = spi ). (15)

Typically observations of rare words are the highest ranked fea-
tures, although, perhaps surprisingly, failure to observe a word
can sometimes also have high information gain, for example,
if two words are almost always observed together, then fail-
ure to observe one while observing the other is an informative
observation.

Note that in our implementation, the probabilities in (15)
come from the training data on which we learned the model of
our visual words. As such, we are calculating the information
gain with respect to the places in the training data. Strictly, we
should consider the information gain with respect to the set
of places in our current map, for example, some feature might

be very rare in the training set but very common in the map. In
practice, we think that maintaining a separate set of probabilities
will usually be unnecessary. As the bail-out test applies to any
feature ordering, the effect of a simplified implementation is
merely that hypotheses may be discarded slightly later than
optimal.

C. Calculating M and v

Finally, to apply Bennett’s inequality, we must calculate M
and v, i.e., the parameters of the concentration inequality, which
depend on the component random variables Xi . As per (6),
M is a bound on the maximum value of Xi∀i : {n + 1 < i <
N}, i.e., the maximum of the log-likelihood differences due to
feature i between some trailing location hypothesis Lx and the
leading hypothesis at the time when feature i is considered, over
all indices i between n + 1 and N . The calculation of an exact
value for M would require knowledge of the leading hypothesis
at a future point in the calculation, which is unknown. However,
as M is a boundon the maximum value of Xi , it can be calculated
as the maximum interhypothesis log-likelihood change over all
hypothesis pairs and all remaining features. This bound can
easily be calculated by keeping track, for each feature i, of the
location that was most and least likely to have generated that
feature, as these location pairs maximize Xi .

The value of v can be determined directly as the sum of the
variances of the distributions shown in (14). This is practical
when the number of observations associated with each location
in the map is small. However, as exploration continues and the
number of observations associated with a typical place in the
map increases, the calculation of this variance rapidly becomes
expensive. At some point, it may be beneficial to switch from
using Bennett’s inequality to Hoeffding’s inequality [9], which
is a similar concentration inequality that requires knowledge
only of the maximum value of each Xi . Hoeffding’s inequality
gives a weaker bound, but this is compensated for by the fact
that by the time the variance becomes expensive to compute, the
place models themselves are more differentiated, and therefore,
their likelihoods will diverge faster. However, we have not yet
investigated this issue because in the datasets we have labeled
for evaluation, the robot typically visits a particular location
only a small number of times.

D. Calculating a PDF Over Hypotheses

One remaining issue is that our appearance-only SLAM sys-
tem requires a pdf over hypotheses, whereas our discussion so
far has concerned locating only the best hypothesis. To compute
a pdf requires a simple modification to the bail-out scheme.
Consider that instead of locating only the best hypothesis H∗,
we would like to locate all hypotheses, whose log-likelihood is
at most C less than that of H∗. C is a user-specified constant
chosen so that hypotheses less likely than this can be considered
to have zero probability with minimal error. Simply increasing
our bail-out distance by C will retain all those hypotheses whose
final likelihood may be within this likelihood range, thus giving
us a close approximation to the pdf over hypotheses.
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Fig. 3. Appearance-only matching results (using the accelerated algorithm)
for the City Center dataset overlaid on an aerial photograph. The robot travels
twice around a loop with total path length 2 km, collecting 2474 images. Each of
these images is determined to be either a new place or a loop closure. Positions
(from hand-corrected GPS) at which the robot collected an image are marked
with a yellow dot. Two images that were assigned a probability p ≥ 0.99 of
having come from the same location are marked in red and joined with a green
line. There are no incorrect matches that meet this probability threshold.

VI. RESULTS

We tested the technique on FAB-MAP applied to imagery
collected by a mobile robot. We use the New College and City
Center datasets introduced in [7] and available online.1 The
ground truth for these data sets was labeled by hand. The binary
for the FAB-MAP system we used is also available.2 Regarding
the datasets, the New College set has a trajectory of 1.9 km
in length and features a number of challenging cases of per-
ceptual aliasing. The City Center dataset is 2 km in length and
is particularly rich in dynamic objects. We used a third dataset
Parks Road, which features a typical suburban environment.
In all three datasets, the robot collected images to the left and
right of its trajectory approximately every 1.5 m. The robot’s
appearance model was built from a fourth dataset collected in
a different region of the city, the area of which did not overlap
with the test sets.

Navigation results for these datasets were generated using
both the original system outlined in [7] and the accelerated
system incorporating the bail-out test as described in this paper.
All datasets were processed using the same visual vocabulary
and algorithm parameters. The bail-out boundary was set so that
the probability of incorrectly discarding the best hypothesis at
any step was <10−6 . This value can be varied to trade off speed
against accuracy, and we selected this value empirically as the
best compromise.

Results are summarized in following the figures. Fig. 2 illus-
trates the bail-out calculation on some real data. Ordering the
features by information gain clearly has a dramatic effect on the
effectiveness of the bail-out test. Fig. 3 visualizes the overall

1http://www.robots.ox.ac.uk/∼mobile/IJRR_2008_Dataset/
2http://www.robots.ox.ac.uk/∼mjc/Software.htm

Fig. 4. Precision–recall curves for the City Center dataset show the full-
likelihood calculation (red) and the accelerated calculation using the bail-out
test (green). Note the offset on the axes.

TABLE I
COMPARISON OF THE PERFORMANCE OF THE SLAM SYSTEM USING FULL-

AND ACCELERATED-LIKELIHOOD CALCULATIONS

Fig. 5. Filter update time versus the number of locations in the map for the
Parks Road dataset. Update time with zero locations is nonzero due to the fixed
cost of evaluating the partition function in (11). Calculation time with the bail-
out test grows linearly; however, the slope is too small to be seen on this graph.

performance of the accelerated algorithm on the City Center
dataset. The system correctly identifies a large proportion of
possible loop closures with high confidence. There are no false
positives that meet the probability threshold necessary to accept
a loop closure.

Precision-recall curves for the full and accelerated algorithms
on the City Center dataset are shown in Fig. 4. The curves were
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Fig. 6. Some examples of images that were assigned high probability of having come from the same place despite the scene change. Results were generated
using the accelerated-likelihood calculation. Words common to both images are shown in green; others are shown in red. The probability that the two images come
from the same place is indicated between the pairs.

generated by varying the probability at which a loop closure
was accepted. Precision is defined as the ratio of true positive
loop-closure detections to total detections. Recall is the ratio of
true positive loop-closure detections to the number of ground
truth loop closures. Note that images for which no loop clo-
sure exists cannot contribute to the true positive rate; however,
they can generate false positives. Likewise true loop closures,
which are incorrectly assigned to a “new place” depress recall
but do not impact our precision metric. These metrics provide
a good indication of how useful the system would be for loop-
closure detection as part of a metric SLAM system—recall that
100% precision indicates the percentage of loop closures which
can be detected with no false positives that would cause filter
divergence. Note that recall rates are quoted in terms of image-
to-image matches. As a typical loop closure is composed of
multiple images, even a recall rate of 35% is sufficient to detect
almost all loop closures. The relative performance of the two al-
gorithms on the other datasets is summarized in Table I. Timing
performance for the Parks Road dataset is shown in Fig. 5.

The speedup achieved by bail-out test exhibits a fairly broad
range across the three datasets (from 27× to 53.6×; see Table I).
The effectiveness of the bail-out tests is data dependent; there-
fore, this variation is not surprising. In general, we expect a large
performance gain where the data contains distinctive features,
which rapidly separate the location hypotheses. In cases where
the features are less distinctive, for example due to higher per-
ceptual aliasing in the environment, or lower level effects such
as increased image blur, we would expect the speedup to be
lower. This intuition, in fact, matches with the results here, as
there is a substantial section of high-perceptual aliasing in the
New College dataset, which we would tentatively suggest as
the reason for the lower speedup on that set. This adaptive be-

havior seems desirable: when the data is very distinctive, the
computation terminates quickly, and when the data is ambigu-
ous, the algorithm considers more features to try to resolve the
ambiguity.

Finally, Figs. 6 and 7 show some examples of place recogni-
tion performance, highlighting the fact that matching ability in
the presence of scene change and robustness to perceptual alias-
ing is not significantly compromised by the bail-out test. The
robustness to perceptual aliasing is particularly noteworthy. Of
course, had the examples shown in Fig. 7 been genuine loop clo-
sures, they might also have received low probability of having
come from the same place. We would argue that this is correct
behavior, modulo the fact that the probabilities in Fig. 7(a) and
(b) seem too low. The very low probabilities in Fig. 7(a) and (b)
are due to the fact that the best matches for the query images are
found in the sampling set used to suppress perceptual aliasing,
which captures almost all the probability mass. This is less likely
in the case of a true, but ambiguous loop closure, particularly
because in the case of a true loop closure, the ambiguity can be
resolved by temporal information via the prior term in (11). For
a complete appreciation of these issues, see [5] and [7].

VII. APPLICABILITY TO OTHER ROBOTICS PROBLEMS

There many problems within robotics and computer vision
which consist of ranking hypotheses using a set of features.
The acceleration scheme discussed in this paper is very generic,
and it seems that it could be applied to many of these other
problems. Obvious candidates include object detection and
localization, but it is likely other problems are suitable as well.
Our method will be most useful when the set of hypotheses
and features are both large, and it is feasible to quickly sort the
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Fig. 7. Some examples of remarkably similar-looking images from different parts of the workspace that were correctly assigned low probability of having come
from the same place. Results were generated using the accelerated-likelihood calculation. The examples represent typical system performance. Words present in
both images are shown in green; others are in red. (Common words are shown in blue in (b) for better contrast). The probability that the two images come from
the same place is indicated between the pairs.

features by expected information gain (as shown in Fig. 2, this
is crucial to obtain a useful bound). Problem-specific reasoning
will be required to determine how to compute M and v for a
particular application, but it does not seem that there is any-
thing unusual about FAB-MAP which makes computing these
quantities especially easy in our case. In particular, Hoeffding’s
bound, which requires knowledge only of M , could be applied
to any problem where a set of hypotheses are evaluated against a
sequence of independent features, and the maximum score con-
tribution of each feature is known. It seems that this should be a
sufficiently generic requirement to allow at least the Hoeffding
bound to be used to accelerate many other algorithms. It is quite
straightforward to implement the bail-out test once a method to
compute M is available.

VIII. CONCLUSION

This paper has presented a new approach to rapid multi-
hypothesis testing using a probabilistic bail-out condition based
on concentration inequalities. Concentration inequalities exist
that apply under very general conditions, even for arbitrary
functions of non-independent and non-identically distributed
random variables; hence, our basic idea should be applicable to
a wide variety of problems. The approach in effect generalizes
techniques such as the SPRT, which have already shown great
utility in applications such as efficient RANSAC. Unlike the
SPRT, our technique is easy to apply even when observations
are not equally informative and the hypothesis test is not bi-
nary. We show how to apply our bail-out test to accelerate the
FAB-MAP appearance-only SLAM system. The speed increase

obtained is data-dependent, but acceleration factors in the range
25×–50× are typical in our tests. The location-recognition per-
formance of the accelerated system is only marginally less than
that of the full solution and more than sufficient for reliable on-
line loop-closure detection in mobile robotics applications. We
have presented results demonstrating online loop-closure detec-
tion over 2 km loops, although the system is fast enough to scale
to loops of tens of kilometers in length, while maintaining sub-
second filter update times. While we have subsequently explored
even more efficient computational schemes for the specific task
tackled by FAB-MAP [5], [8], the acceleration technique pre-
sented in this paper is much more general in its applicability and
should find uses in problems beyond appearance-based SLAM.
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