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Fig. 1. This paper is about the efficient generation of dense models of very-large-scale environments from range data.

Abstract—This paper is about the efficient generation of dense
models of very large-scale environments from depth data and in
particular, stereo-camera-based depth data. Better maps make
for better understanding; better understanding leads to better
robots, but this comes at a cost: the computational and memory
requirements of large dense models can be prohibitive.

We provide the theory and the system needed to create very-
large-scale dense reconstructions. To this end, we leverage three
sources of geometric and contextual information. First, we apply
a 2D Total Generalized Variation (TGV) regularizer to our depth
maps as this conforms to the affine-smooth surfaces visible in
the images. Second, we augment the TGV regulariser with an
appearance prior, specifically an anisotropic diffusion tensor.
Finally, we use the computationally efficient 3D Total Variation
(TV) regularizer on our 3D reconstructions to enforce piecewise-
constant surfaces over a sequence of fused depth maps. Our
TV regularizer operates over a compressed 3D data structure
while handling the complex boundary conditions compression
introduces. Only when we regularize in both 2D (stereo depth
maps) and 3D (dense reconstruction) can we swiftly create “well
behaved” reconstructions.

We evaluate our system on the KITTI dataset and provide
reconstruction error statistics when compared to 3D laser. Our
3D regularizer reduces median error by 40% (vs. a 2D-only
regularizer) in 3.4 km of dense reconstructions. Our final median
reconstruction accuracy is 6 cm. For subjective analysis, we
provide a review of 6.1 km of dense reconstructions in the below
video. These are the largest regularized dense reconstructions
from a passive stereo camera we are aware of in the literature.

Video: https://youtu.be/FRmF7mH86EQ

I. INTRODUCTION AND PREVIOUS WORK

Over the past few years, the development of 3D reconstruc-

tion systems has undergone an explosion facilitated by ad-

vances in GPUs. Earlier, large-scale efforts such as [18][1][6]
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reconstructed sections of urban scenes from unstructured photo

collections. The ever-strengthening theoretical foundations of

continuous optimization [3][8], upon which the most advanced

algorithms rely, have become accessible for robotics and com-

puter vision applications. Together these strands – hardware

and theory – allow us to build systems which create very-

large-scale 3D dense reconstructions.

However, the state of the art of many 3D reconstruction

systems rarely considers scalability for practical applications

(e.g., autonomous driving and inspection). The most general

approaches are motivated by recent mobile phone and tablet

development [13][5] with an eye on small-scale reconstruction.

We review the taxonomy of 3D reconstruction systems by

considering the nature of the workspace to be modelled and

the data-collection platform used. We highlight the difference

between dense reconstruction with a mobile robot [26] versus

object-centered modelling [15][22]. The former suggests the

workspace is discovered while traversed — e.g., driving a

car [28][26][5]. In contrast, in object-centred applications

the goal is to generate models from sensor data gathered

by pre-selected viewpoints [4][15][19]. The main difference

is in the way the scene is observed; object reconstruction

requires an active interaction with the scene [19][22]. In

this paper we focus solely on passive reconstruction using

contextual priors. Since we do not directly control the camera

motion and therefore do not observe surfaces from multiple

angles, these contextual priors improve the final reconstruction

through reasonable assumptions about the data’s underlying

structure. Our use stands in contrast to the object-centric

contextual priors dominant in the literature which are either

tightly coupled with scene segmentation [9][32][10] or are

computationally prohibitive [25]. Rather, our global contextual

prior is “urban environment,” so we reach for the TV and TGV

local-prior (piecewise constant and affine smooth) regularizers

to efficiently produce high-quality reconstructions.

https://youtu.be/FRmF7mH86EQ
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Fig. 2. An overview of our software pipeline. Our Dense Fusion module
accepts range data from either laser sensors or depth maps created from mono
or stereo cameras. We regularise the model in 3D space, extract the surface,
and then provide the final 3D model to other components on our autonomous
robotics platform (e.g., segmentation, localisation, planning, or visualisation).
Blue modules are discussed in further detail in Sections III-IV.

An important characteristic of 3D mapping algorithms is

their choice of representation. Some traditional Structure from

Motion (SfM) and Simultaneous Localization and Mapping

(SLAM) algorithms still believe in sparse or semi-dense rep-

resentations [2][14][5] or trust probabilistic occupancy grids

[29] or mesh models [18]. Although these approaches may be

sufficient for localisation, their maps lack the richness prereq-

uisite for a variety of applications, including robot navigation,

active perception, and semantic scene understanding. In con-

trast, dense 3D reconstruction systems use an implicit surface

representation built from consecutive sensor observations [4].

To this end, we find data structures such as voxel grids [31],

point based structures [11], or more recently compressed voxel

grids [24][26][22].

The accuracy of the reconstruction also varies with the

sensor type, ranging from monocular cameras, stereo cameras,

RGB-D cameras [12][16][15][28][31][13][26][22], to 3D laser

[29]. Although RGB-D cameras generate very accurate mod-

els, their depth observations are limited to a few meters. This

restricts their use to small-scale and (usually) indoor work-

spaces [13][15][11][28][31][22].

Our contributions are as follows. First, we present a method

to regularize 3D data — in contrast to the 2D-only regularizers

which dominate the literature — stored in a compressed

volumetric data structure, specifically the Hashing Voxel Grid

[17]. This enables optimal 3D regularization of scenes an

order of magnitude larger than previously possible. The key

difficulty (and hence our vital contribution) with compressed

3D structures is the presence of many additional boundary

conditions. Accurately computing the gradient and divergence

operators, both of which are required to minimize the system’s

energy, becomes a non-trivial problem.

Second, we present a system which efficiently combines

state-of-the-art components for depth map estimation, fusion,

and regularization.

Finally, our quantitative results in Table I serve as a new

public-data benchmark for the community to compare dense-

map reconstructions. We hope this becomes a tool for the

dense mapping community.

II. SYSTEM OVERVIEW

At its core, our system (Figure 2) consumes range data

and produces a 3D model. For the passive reconstructions

considered in this paper, our input is created from stereo

images, however our system can handle a variety of sensors

(e.g., active cameras and 2D/3D scanning lasers).

The pipeline consists of a Localization module responsible

for providing sensor pose estimates. The Depth Map Esti-

mation module processes stereo frames into a stream of 2D

regularized depth maps. The Dense Fusion module merges

the range data into a compressed 3D data structure that is

then regularized. A surface model can be extracted for parallel

processing in a separate application (e.g., planner).

III. DEPTH-MAP ESTIMATION

This section describes our module that produces a stream

of depth maps (D) which are the input to the Section IV’s

3D fuser. We pose this as an energy minimization with a

regularization term and a data term:

E(·) = Eregularization(·)+Edata(·) (1)

The data term measures the similarity between correspond-

ing pixels in the stereo images [20]. We emphasize this section

describes the 2D regularization case, whereas Section IV

presents the sparse-in-literature 3D regularization case.

A. Census Transform Signature Data Term

The data term is given by:

Edata(d; IL, IR) =

¨

Ω

|ρ(d,x,y)|dxdy (2)

where the coordinates are (x,y) for a particular pixel in the

reference image, and the function ρ(d,x,y) = SimW (IL(x +
d,y), IR(x,y)) measures the similarity between two pixels using

a window of size W for a candidate disparity d ∈ D. We use

the Census Transform Signature (CTS) [30] as our similarity

metric as it is both illumination invariant and fast to compute.

B. Affine Regularization

For ill-posed problems like depth-map estimation, good and

apt priors are essential. A common choice is TV regularization

which favors piecewise-constant solutions. However, its use

lends to poor depth-map estimates over outdoor sequences

by creating fronto-parallel surfaces. Figure 3 shows artifacts

created by planar surfaces not orthogonal to the image plane

(e.g. the roads and walls which dominate our urban scenes).

Thus we reach for a Total Generalized Variation (TGV)

regularization term which favours planar surfaces in any

orientation:

Ereg(d) = min
w∈R2

α1

¨

Ω

|T ∇d −w|dx dy+α2

¨

Ω

|∇w|dx dy

(3)

where w allows the disparity d in a region of the depth

map to change at a constant rate and therefore creates planar

surfaces with different orientations and T preserves object

discontinuities.



Fig. 3. Comparison of three depth-map regularizers: TV, TGV, and TGV-Tensor. Using the reference image (top), the TV regularizer (left) favours fronto-
parallel surfaces, therefore it creates a sharp discontinuity for the shadow on the road (red rectangle) and attaches the rubbish bin to the rear of the car (red
circle). TGV (center) improves upon this by allowing planes at any orientation, but it still cannot identify boundaries between objects: the rubbish bin is again
estimated as part of the car. Finally, the TGV-Tensor (right) regularizer both allows planes at any orientation and is more successful at differentiating objects
by taking into account the normal of the color image’s gradient. For clarity, the reconstructions have a different viewing origin than the reference image.

C. Leveraging Appearance

A common problem that arises during the energy minimiza-

tion is the tension between preserving object discontinuities

while respecting the smoothness prior. Ideally the solutions

preserve intra-object continuity and inter-object discontinuity.

One may mitigate this tension by using the isotropic ap-

pearance gradient (∇I) as an indicator of boundaries between

objects. However, though this aids the regularizer, it does not

contain information about the direction of the border between

the objects. To take this information into account we adopt an

anisotropic (as opposed to isotropic) diffusion tensor:

T = exp(−γ|∇I|β )nnT +n⊥n⊥
T

(4)

where n = ∇I
|∇I| and n⊥ is its orthogonal complement. When

used in Equation 3, T decomposes the disparity’s gradient (∇d)

in directions aligned with n and n⊥. We penalize components

aligned with n⊥, but do not penalize large gradient components

aligned with n. In other words, if there is a discontinuity

visible in the color image, then it is highly probable that there

is a discontinuity in the depth image. The benefits of this tensor

term are visually depicted in Figure 3.

IV. 3D DENSE MAPS

The core of the 3D dense mapping system consists of a

Dense Fusion module which integrates a sequence of depth

observations into a volumetric representation, and the Regular-

isation module smooths noisy surfaces and removes uncertain

surfaces.

A. Fusing Data

To create a dense reconstruction, one must process the

depth values within a data structure which can efficiently

represent surfaces and continually improve that representation

with future observations. Simply storing each of the range

estimates (e.g., as a point cloud) is a poor choice as storage

grows without bound and the surface reconstruction does not

improve when revisiting a location.

A common approach is to select a subset of space in

which one will reconstruct surfaces and divide the space into

a uniform voxel grid. Each voxel stores range observations

represented by their corresponding Truncated Signed Distance

Function (TSDF), uT SDF . The voxels’ TSDF values are com-

puted such that one can solve for the zero-crossing level set

(isosurface) to find a continuous surface model. Even though

the voxel grid is a discrete field, because the TSDF value is a

real number, the surface reconstruction is even more precise

than the voxel size.

Due to memory constraints, only a small subset of space

can be reconstructed using a legacy approach where the

grid is fixed in space and therefore reconstructs only a few

cubic meters. This presents a problem in mobile robotics

applications since the robot’s exploration region is restricted

to a prohibitively small region. In addition, long-range depth

sensors (e.g., laser) cannot be fully utilised since their range

exceeds the size of the voxel grid (or local voxel grid if a

local-mapping approach is used) [27].

A variety of techniques were proposed in recent years to

remove these limits. They leverage the fact the overwhelming

majority of voxels do not contain any valid TSDF data since

they were never directly observed by the sensor. A compressed

data structure only allocates and stores data in voxels which

are near a surface.

The most successful approach is the Hashing Voxel Grid

(HVG) [17]. The HVG subdivides the world into an infinite,

uniform grid of voxel blocks, each of which represents its

own small voxel grid with 8 voxels in each dimension (512

total). Anytime a surface is observed within a given voxel

block, all the voxels in that block are allocated and their TSDF

values are updated. Blocks are only allocated where surfaces

are observed.

Applying a hash function to coordinates in world space

gives an index within the hash table, which in turn points

to the raw voxel data. Figure 4 provides a graphical overview

of this process, and we refer the reader to the original HVG

paper [17] for further implementation details.

If one considers each HVG voxel block to be a legacy voxel

grid, then the update equations are identical to those presented

by [15]. This method projects voxels into the depth map to
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Fig. 4. A depiction of our novel combination of the Hashing Voxel Grid
(HVG) data structure with regularization to fuse depth observations from the
environment. The HVG enables us to reconstruct large-scale scenes by only
allocating memory for the regions of space in which surfaces are observed
(i.e., the colored blocks). To avoid generating spurious surfaces, we mark each
voxel with an indicator variable (Ω) to ensure the regularizer only operates on
voxels in which depth information was directly observed. This same approach
is used independent of the range sensor — e.g., stereo depth maps or laser.
Figure inspired by [17].

update f , but this can be extended to work with laser sensors

by only updating voxels along the ray from the laser sensor

to −µ (a user-defined system parameter) behind the surface.

B. 3D Regularization

We pose the fusion step as a noise-reduction problem that

can be approached by a continuous energy minimization over

the voxel-grid domain (Ω):

E(u) =

ˆ

Ω

|∇u|dΩ+λ

ˆ

Ω

|| f −u||22dΩ (5)

where E(u) is the energy (which we seek to minimize) of

the denoised (u) and noisy ( f ) TSDF data. The regularization

energy term, commonly referred to as a Total Variation (TV)

regularizer, seeks to fit the solution (u) to a specified prior

— the L1 norm in this case. The data energy term seeks to

minimize the difference between the u and f , while λ controls

the relative importance of the data term vs. the regularizer

term.

In practice, the TV norm has a two-fold effect: (1) smooths

out the reconstructed surfaces, and (2) removes surfaces which

are “uncertain” — i.e., voxels with high gradients and few

direct observations. However, since compressed data structures

are not regular in 3D space, the proper method to compute

the gradient (and its dual: divergence) in the presence of

the additional boundary conditions is not straightforward —

hence why we believe this has remained an open problem.

In addition, improper gradient and divergence operators will

cause the regulariser to spuriously extrapolate surfaces into

undesired regions of the reconstruction [23].

We leverage the legacy voxel grid technique [23] into

the HVG by introducing a new state variable in each voxel

indicating whether or not it was directly observed by a range

sensor. The subset of voxels which were observed are defined

as Ω, the set solely upon which the regluarizer is constrained

to operate. Note that all voxel blocks which are not allocated

are in Ω̄. A graphical depiction of the Ω and Ω̄ for a sample

surface is provided in Figure 4.

The additional boundary conditions introduced by the HVG

require careful derivation of the gradient (Equation 6) and

divergence (Equation 7) operators to take into account whether

or not neighbors are in Ω. We define the gradient as:

∇xui, j,k =



















ui+1, j,k −ui, j,k if 1 ≤ i <Vx

0 if i =Vx

0 if ui, j,k ∈ Ω̄

0 if ui+1, j,k ∈ Ω̄

(6)

where ui, j,k is a voxel’s TSDF value at the 3D world integer

coordinates (i, j,k), and Vx is the number of voxels in the x

dimension. The gradient term in the regularizer encourages

smoothness across observed (Ω) neighboring voxels while

excluding unobserved (Ω̄) voxels.

To solve the primal’s dual optimization problem (Sec-

tion IV-C), we must define the divergence operator as the dual

of the new gradient operator:

∇x ·pi, j,k =







































px
i, j,k −px

i−1, j,k if 1 < i <Vx

px
i, j,k if i = 1

−px
i−1, j,k if i =Vx

0 if ui, j,k ∈ Ω̄

px
i, j,k if ui−1, j,k ∈ Ω̄

−px
i−1, j,k if ui+1, j,k ∈ Ω̄

(7)

Each voxel block is treated as a voxel grid with boundary

conditions determined by its neighbors’ Ω indicator function,

IΩ. The regularizer operates only on the voxels within Ω, the

domain of integration, and thus it neither spreads spurious

surfaces into unobserved regions nor updates valid voxels with

invalid TSDF data. Note that both equations are presented for

the x-dimension, but the y and z-dimension equations can be

obtained by variable substitution between i, j, and k.

C. Implementation of 3D Energy Minimization

In this section, we describe the algorithm to solve Equa-

tion 5 and point the reader to [3][21] for a detailed derivation

of these steps. We vary from their methods only in our new

definition for the gradient and divergence operators.

Equation 5 is not smooth so it cannot be minimized with tra-

ditional techniques. We use the Legendre-Fenchel Transform

[21] and the Proximal Gradient method [3] to transform our

TV cost-function into a form efficiently solved by a Primal-

Dual optimization algorithm [3]:

1) p, u, and û are initialised to 0. û is a temporary variable

which reduces the number of optimization iterations

required to converge.



TABLE I
SUMMARY OF ERROR STATISTICS (10 CM VOXELS)

KITTI-VO # Type Mode (cm) Median (cm) 75% (cm) GPU Memory Surface Area # Voxels 106 Time Per Iter. (mm:ss)

Sequence 00 Raw 0.84 10.00 36.51 976 MiB 51010 m2 123.62

Regularized 1.84 6.15 23.60 34630 m2 5:24

Sequence 07 Raw 1.68 12.19 40.38 637 MiB 33891 m2 79.11

Regularized 1.69 7.30 26.21 22817 m2 4:10

Sequence 09 Raw 2.00 8.43 32.22 1,462 MiB 81624 m2 187.24

Regularized 1.83 5.04 19.06 54561 m2 4:41

2) To solve the maximisation, update the dual variable p,

pk =
p̃

max(1, ||p̃||2)

p̃ = pk−1 +σp∇û

(8)

where σp is the dual variable’s gradient-ascent step size.

3) Then update u to minimize the primal variable,

uk =
ũ+ τλw f

1+ τλw

ũ = uk−1 − τ∇ ·p
(9)

where τ is the gradient-descent step size and w is the

weight of the f TSDF value.

4) Finally, the energy converge in fewer iterations with a

“relaxation” step,

û = u+θ(u− û) (10)

where θ is a parameter to adjust the relaxation step size.

As the operations in each voxel are independent, our im-

plementation leverages parallel GPU computing with careful

synchronization between subsequent primal and dual updates.

TABLE II
SUMMARY OF SYSTEM PARAMETERS

Symbol Value Description

λ3D 0.8 TV weighting of the data term vs. regularization
µ 1.0 m The maximum distance behind a surface to fuse

negative TSDF values
σp, θ 0.5, 1.0 3D regularizer gradient-ascent/descent step sizes

τ 1/6 3D regularizer relaxation-step weight

λ2D 0.5 TGV weight of data vs. regularization terms
α1,α2 1.0, 5.0 Affine-smooth/piecewise-constant TGV weights
β , γ 1.0, 4.0 Image gradient exponent and scale factor

TABLE III
KITTI-VO SCENARIOS SUMMARY FOR 10 CM VOXELS

KITTI-VO # Length (km) # Frames Fusion Time (mm:ss)

Sequence 00 1.0 1419 4:10
Sequence 07 0.7 1101 3:23
Sequence 09 1.7 1591 4:09

V. RESULTS

This section provides an analysis of our system, the param-

eters for which are provided in Table II. We use the publicly

available KITTI dataset [7]. For ground truth, we consolidated

all Velodyne HDL-64E laser scans into a single reference

frame. We keep in mind that this is not a perfect ground

truth because of inevitable errors in KITTI’s GPS/INS-based

ground-truth poses (e.g., we observed up to 3 m of vertical

drift throughout Sequence 09).

Three sequences were selected: 00, 07, and 09. In Sequence

00 we qualitatively evaluate the full 3.7 km route, but quantita-

tively evaluate only the first 1.0 km to avoid GT pose errors. A

summary of the physical scale of each is provided in Table III,

along with the total time required to fuse data into our HVG

structure with either 10 cm voxels using an GeForce GTX

TITAN with 6 GiB.

We processed all scenarios with 10 cm voxels and compared

the dense reconstruction model, both before and after regu-

larization, to the laser scans, see Table I. The regularizer on

average reduced the median error by 40% (10 cm → 6 cm), the

75-percentile error by 36% (36 cm → 23 cm), and the surface

area by 32% (55,008 m2 → 37,336 m2). In these large-scale

reconstructions, the compressed voxel grid structure provides

near real-time fusion performance (Table III) while vastly

increasing the size of reconstructions. The legacy voxel grid

was only able to process 205 m; this stands in stark contrast to

the HVG’s 1.6 km reconstruction with the same GPU memory.

In Figure 5, it is clear errors in the initial “raw” fusion

largely come from spurious surfaces created in the input depth

maps. The corresponding depth maps created these surfaces

for far-away objects with low paralax for depth estimates. The

2D TGV minimized this effect, but the inevitable surfaces still

dominate the histograms’ tail and are visible as red points in

the point-cloud plots. The 3D TV regularizer removes most of

these surfaces, which in turn significantly increased the final

reconstruction’s accuracy.

Figure 6 shows the bird’s-eye view of each sequence with

representative snapshots of the reconstructions. To illustrate

the quality of the reconstructions, we selected several snap-

shots from camera viewpoints offset in both translation and

rotation to the original stereo camera position, thereby pro-

viding an accurate depiction of the 3D structure. Overall, the

reconstructions are quite visually appealing; however, some

artifacts such as holes are persistent in regions with poor

texture or with large changes in illumination. This is an
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Fig. 5. A summary of the dense reconstruction quality for three scenarios (one scenario per row) from the KITTI-VO public benchmark dataset. The left
side are the results before regularization and the right side are after regularization. Next to each histogram of point-to-point errors is a top-view, colored
reconstruction errors corresponding to the same colors in the histogram. The regularizer reduces the reconstruction’s error approximately 40%, primarily by
removing uncertain surfaces — as can be seen when you contrast the raw (far left) and regularized (far right) reconstruction errors.

S
e
q
u
e
n
c
e
 0
0

S
e
q
u
e
n
c
e
 0
7

S
e
q
u
e
n
c
e
 0
9

Fig. 6. A few representative sample images for various points of views (offset from the original camera’s position) along each trajectory. All sample images
are of the final regularized reconstruction with 10 cm voxels. The video provides full fly-through footage for each sequence.

expected result since, in these cases, no depth map can be

accurately inferred.

The video provides a fly-through of each sequence to visu-

alize the quality of our final regularized 3D reconstructions.

VI. CONCLUSION

By leveraging the geometric and contextual prior in urban

environments, we presented a state-of-the-art dense mapping

system for very-large-scale dense reconstructions. We utilized

the affine-smooth and piecewise consistency in our 2D and

3D models while also introducing an anisotropic diffusion

tensor to improve the quality of our input depth maps. We

overcame the primary technical challenge of compressed 3D

regularization by redefining the gradient and divergence oper-

ators to account for the additional boundary conditions. Our

3D regularizer consistently reduced the reconstruction error

metrics by 40% (vs. a 2D-only regularizer), for a median

accuracy of 6 cm over 2.8e5 m2 of constructed area. In future

work, we plan to use segmentation to select an appropriate

contextual prior to regularize each object (e.g., affine-smooth

for road/buildings, “vegetation” regularizer for trees, etc.).
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