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Abstract— Depth map estimation techniques from cameras
often struggle to accurately estimate the depth of large texture-
less regions. In this work we present a vision-only method
that accurately extracts planar priors from a viewed scene
without making any assumptions of the underlying scene
layout. Through a fast global labelling, these planar priors
can be associated to the individual pixels leading to more
complete depth-maps specifically over large, plain and planar
regions that tend to dominate the urban environment. When
these depth-maps are deployed to the creation of a vision
only dense reconstruction over large scales, we demonstrate
reconstructions that yield significantly better results in terms
of coverage while still maintaining high accuracy.

I. INTRODUCTION

With the recent strides in autonomous driving and de-
ployment of robots in large-scale urban environments the
ability of robots to create better maps of these environments
over large scales have become increasingly important. Dense
depth-maps created from monocular/stereo cameras offer a
low-cost solution that can naturally deal with both the scale
and lighting conditions of outdoor environments but do not
have the accuracy of RGB-D cameras which are in turn
restricted to small-scale and low-light indoor scenes.

Current state-of-the-art methods for creating dense depth-
maps with cameras are based on powerful variational optimi-
sation algorithms [1], [2]. These in general have two terms
that are minimised. Firstly a data term that measures the
photoconsistency (over a set of consecutive images in the
case of a monocular camera or a stereo pair of images) of
the depth estimation. Followed by a regularisation term that
enforces depth smoothness for homogeneous surfaces while
simultaneously attempting to preserve sharp discontinuities
between different objects in the scene. A key step of the
minimisation process involves the application of a primal-
dual optimisation scheme which is widely used for solving
variational convex energy functions arising in many image
processing problems [3].

The natural challenge in these techniques is dealing with
large, plain and planar structures where the data term is of
little use, with the lack of texture in these areas restricting
the use of photo-consistency. The regularisers promoting
smoothness also struggle to propagate information from dis-
tant barriers. With urban scenes characterised by a multitude
of man-made objects such as roads and buildings which by
construction contain planar surfaces this results in noisy and
sometimes erroneous depth-maps.
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Fig. 1. A qualitative perspective of this paper. A dense depth-map (top) of a
planar wall surface created by a state-of-the-art Total Generalised Variation
algorithm is displayed. As expected the algorithm results in a noisy output
on the largely textureless wall and road. Our method discovers planar regions
and from there invokes a planar prior to restricted areas. This results in an
improved depth-map (bottom), showing a marked improvement in the depth
estimation along the wall and road.

In this work we present a vision-only pipeline that accu-
rately extracts and incorporates planar priors into the depth-
map estimation through a per-pixel labelling, resulting in
more accurate depth-map estimation as shown in Figure 1.
With the planar prior extraction and pixel labelling driven
by a fast, parallel, global energy minimisation algorithm,
this brings real-time capabilities into the depth-map im-
provement. Planar priors are extracted through a vision-
only two view homography segmentation that makes no
assumptions about the layout of the scene. To evaluate the
performance of the proposed pipeline outlined in Figure 2,
the resulting depth-maps were fused to create large-scale
dense reconstructions of sections of the KITTI [4] data-set.
With this dataset providing ground-truth ego-motion and 3D
laser, a quantitative as well as qualitative evaluation of this



proposed depth-map improvement pipeline was undertaken.
In particular this work offers the following contributions:

o A robust and accurate method for extracting planar
priors using two-view segmentation.

o A fast global labelling of image pixels to their under-
lying planes.

« A method to integrate these planar surfaces into large
scale dense reconstructions.

With the paper organised as follows. In Section II re-
lated work from the literature in improving on depth-map
acquisition followed by work on plane prior extraction is
presented. In Section III the details of the proposed depth-
map estimation technique are described. In Section IV we
present the data fusion algorithm used to create the dense
reconstructions before showing qualitative and quantitative
results in Section V. Conclusions and discussion follow in
Section VI.

II. RELATED WORK

The use of strong planar priors in dense depth-map
estimation has been explored in several different ways.
Most approaches attempt to leverage the powerful variational
optimisation machinery by including sophisticated regulari-
sation terms that enforce planarity over the structure. For
instance, the work of [5] introduces a non-local higher order
regularisation term in a variational framework. This offers
significant improvement for large planar surfaces by allowing
the propagation of depth information over distant pixels to
texture-less regions of the same planar surface.

Other approaches such as [6] use a higher-order term that
models Manhattan and piece-wise planar structures. However
unlike the cost function proposed by [5], this new regular-
isation term requires prior estimation of plane normals by
using super-pixel classification of indoor Manhattan scenes
into predefined classes (wall, floor, ceiling and clutter).

Geometry-only depth-maps are also popular techniques
in computer vision. These approaches are motivated by the
simplification of scene reconstruction by constraining the re-
construction to geometric surfaces often known as Piecewise
Planar Reconstructions (PPRs) [7], [8], [9], [10], [11], [12],
[13], as these approaches easily overcome the challenges of
poorly textured regions through the strong planar assumption.
The depth-map estimation is framed as an optimal labelling
problem where each of the pixels is assigned to a particular
hypothesised geometric model through a Markov Random
Field (MRF) formulation.

Many other approaches generate geometric hypotheses
such as those using Manhattan plane models [12], lines
and their vanishing points [11], virtual-cut planes [10],
plane sweeps [14] and RANSAC [15] all demonstrating
good results in their respective application contexts. Most
of these approaches, however, neglect non-planar surfaces.
[9] mitigates this by adding an extra non planar model
represented by the original noisy depth map for those points
that are not assigned to any of the hypothesised geometric
models. The refinement of the depthmap is formulated as a
labelling problem that handles both planar regions through
underlying geometric models and non-planar regions. In this
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Fig. 2. Overview of the proposed vision only depth-map improvement
pipeline. From image sequences (mono or stereo) a two-view homography
segmentation in conjunction with visual odometry is used to create planar
priors. These priors drive a fast global labelling that assigns planar regions
to their corresponding prior and non-planar regions to a depth-map obtained
through the Total Generalised Variational (TGV) energy minimization. From
this labelling a more complete improved depth-map is estimated. The fusion
of consecutive improved depth maps are further fused to create a dense
reconstruction.

method, geometric hypotheses are obtained using RANSAC
over local connected regions on the original stereo depth-
map. While exhibiting good results, this approach is limited
to regions of high texture where the depth estimation is fairly
accurate which is not the case in plain texture less surfaces.
In addition, this method includes a graph-cut labelling based
on the a-expansion [16], a sequential algorithm that cannot
exploit parallelisation in modern General Purpose GPUs [17]
whose use is desirable to ensure real-time execution.

The work of [18] describes a continuous optimisation ap-
proach allowing for real-time optimal labelling. By utilising
a first-order energy minimisation algorithm, this approach
lends itself to a highly parallel GPU implementation. A
speed-up of around 30 times is reported as compared to
the discrete graph-cut approach. However to initialise the
geometric models a plane sweep algorithm is developed [14]
restricting the use to layouts where the ground plane and two
orthogonal facades are dominant. This is an approximation
to a Manhattan world, an assumption that does not hold
throughout the urban scene leading to errors when new planar
configurations are viewed. Moreover, this method does not
effectively deal with non-planar regions.

In this work we opt for an initialisation of geometric priors
that does not make any assumptions about the underlying lay-



out of the scene. We extend the work of [5] to estimate depth-
maps with non-local Total Generalised Variation (TGV)
term to favour planar surfaces in textureless regions. Unlike
[18] we do not limit planar priors to only ground plane
configurations. We propose a solution for automatic planar
prior discovery by means of a two-view multi-homography
segmentation of the scene. To accurately detect multiple
homographies in the presence of high levels of noise and
clutter is, however, a non-trivial task for classical approaches
such as RANSAC [15]. In contrast, robust multi-model fitting
approaches such as [19] have shown to significantly outper-
form greedy clustering based approaches under high levels of
noise by means of a global discrete energy minimisation. In
this work, we use a similar formulation in terms of a global
continuous energy minimisation with primal dual algorithm.
The resulting homographies can be decomposed to reveal the
underlying planar priors. As in [9], we use an extra label to
account for non-planar models, together with colour image
segmentation. Given this information we refine the original
stereo depthmaps in a fast per-pixel depth labelling with
parallel continuous energy minimisation. We show that our
approach can be used to produce volumetric reconstructions
of urban environments with significant improvements in
terms of completeness of the surface without compromising
accuracy.

III. DEPTH-MAP ESTIMATION WITH PLANAR PRIORS

In this Section we describe the estimation of the
depthmaps in a labelling framework that leverages of au-
tomatic planar prior discovery. While this pipeline can be
applied to monocular or stereo cameras we focus here on a
stereo implementation.

A. Stereo Depth-Map Initialization

The first component of the pipeline is a module that
produces stereo disparity maps from which our depthmaps
are obtained. The disparity estimation algorithm solves the
following variational problem:

InCin E’r‘eg (C) + Edata (C) (1)
The data term measures the photoconsistency between cor-
responding pixels in the stereo images. This is given by

Fonta(d: I, Ir) = / / Ip(d, 2, ) |dady.
Q

where (x,y) are the coordinates of a pixel in the refer-
ence image, and the function p(d,z,y) = Sim" (IL(z +
d,y),IR(x,y)) measures the similarity between two pixels
using a patch window W for a candidate disparity d € D.

We then reach for a Total Generalised Variation (TGV)
regularisation term which favours planar surfaces in any
orientation:

Ereg(d) = min ay // |TVd—W|d:cdy+oz2/ |[Vw|dzdy.
weR Q
3)
where w allows the disparity d in a region of the depth
map to change at a constant rate and therefore creates planar
surfaces with different orientations and T is a tensor that
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preserves object discontinuities. This tensor is included to
mitigate the tension between maintaining object discontinu-
ities and keeping smoothness in the energy minimisation.
While the appearance gradient (VI) can indicate the presence
of boundaries between objects, it does not include any
information on the direction of these borders. To take this
information into account we adopt an anisotropic diffusion
tensor:

T = exp(—|VI|#)nnT + ntnt’

VI
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where n = T and n' is its orthogonal complement. T
decomposes the disparity gradient (Vd) in directions aligned
with n and n*. We penalise components aligned with n=,
but do not penalise large gradient components aligned with
n, such as those appearing due to lighting changes. In other
words, if there is a discontinuity visible in the colour image,
then it is highly probable that there is a discontinuity in the
depth image.

The minimisation of this energy is then performed by
an iterative exhaustive search step for the non-convex data
term Fj,., and a Primal-Dual algorithm [3] for the convex
regularisation term [20] E,.4. From the resulting disparity-
map the well defined camera intrinsic matrix K can be used
to create the stereo depth-map.

B. Planar Prior Generation

Although planar structures in urban scenes are mainly
represented by texture-less regions, we can leverage of the
existence of objects that can be revealed by blob detec-
tors such as SURF. We leverage of this insight to extract
sparse features from the scene. Then we follow the classical
multiple-view framework to find correspondences between
sparse points across two views. We use the relation between
point correspondences and an observed 3D plane through
the well established homography. Without lost of generality,
given a sparse set of n pixel correspondences in homoge-
neous coordinates between the two views u; = (u},u?) €
R% i =1---n, a homography H?! € R3*3 establishes the
mapping of pixels from the first view u? to the second view
u? through an observed plane 7 with normal vector n' and
distance d' [21]. With this available information, we can
extract the motion between the two views (R?!,t21).

u? = H2'u!,
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Similar to [22] and [23] we initialise our homography
fitting problem from affine transformations to achieve better
performance as compared to the classical Direct Linear
Transform [24]. For this initialisation a non homogenous
point correspondence u; is augmented by the 2 X 2 affine
matrix A that maps the image points surrounding u} into
those in the vicinity of u? [22].

e
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Two affine correspondences (u;, A) and (u;,B) then
belong to the same homography if they satisfy the following

H21 _ R21 +

)



conditions.

(u? —u})"PA(u} —u}) = 0,
(u? —u )TPB( ; u}) =0,
s + a2b3 — a3b2 —(a1b3 — a3b1) 2 2\
|: a2b4 — a4b2 S — (a1b4 — a4b1) (11] ui) =0
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Where the variables s and P are defined as
ezt biay — b](u} —u?) — (a1by — aghy)(z] — xj)
(Wi —v3)
0 1
P—LIJ.

The average error of the four conditions provides a similar-
ity score between pairs of point correspondences. We cluster
point correspondences belonging to the same homography
using affinity propagation [25]. Noise and outlier removal
is performed in a refinement step for which the quality of
the solution is linked to the global energy minimisation. In
this process pixel correspondences are used to fit homog-
raphy models while simultaneously considering the overall

classification of points.
This gives the global energy as in Equation 9:
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The data term in Equation 9 accounts for the symmetric
transfer of the re-projection error. Here, we refer to D
as the Mahalanobis distance ID(w;, Hap)llp,, = (u¢ —
ugl)Z;bl(u- —u?)T where X, represents the propagated
covariance matrix through the mapping induced by the
corresponding homography.

The assignment of data points to their respective models
is encapsulated through an indicator function

mm—{é

where the uniqueness in the label assignment can be achieved
by adding the constraint ZzL:1 ¢i(u) = 1. To account for
outliers —where some data points might not be explained by
a geometric model- a special label (), representing the outlier
model is added. In this way a constant cost is assigned 7y to
points that cannot be explained by any geometric model.
The model cost for the outlier model is simply given by
po(u, gp(u)) =

The smoothness term in Equation 9 takes into account
locality by promoting a homogeneous assignment of labels
to neighbouring points. The Vs operator calculates the
gradient of the indicator function over the neighbourhood
N of a point given in this work by its k-nearest neighbours.

uelil

10
otherwise (10)

Algorithm 1: Multi-Homography fitting through global
energy algorithm.

Initialisation;

Propose L models;

while not converged do
Primal Dual Optimisation;
Merge Homographies;
Re-estimate Homographies;

end

This penalises points that belong to the same neighbourhood
but do not share the same model. The parameter A controls
the trade-off between the smoothness cost and the data cost
while the weights was are used to reduce the effect of the
smoothness term depending on the distance between a point
and its nearest neighbour.

Finally, the third term in Equation 9 penalises the number
of models by adding a constant cost S per model. This
eliminates redundancies in models resulting in a compact
solution.

The minimisation of this energy can be performed using
a discrete optimisation algorithm such as a-expansion [16].
For this work we prefer a continuous optimisation approach
outlined in [26] that leverages a primal dual optimisation [3]
to perform the energy minimisation. This approach by utilis-
ing a parallel approach implementable on a GPGPU is able
to achieve faster execution time as compared to the discrete
a-expansion approach. Allowing for real-time performance
on geometric model detection. The multi-homography fitting
algorithm is shown in Algorithm 1 and we refer the reader
to [26] for further implementation details.

After algorithm 1 converges, N homographies are re-
trieved. The underlying plane priors defining the homogra-
phies are extracted by applying Singular Value Decompo-
sition (SVD) [27] on K~'H'2?K with K describing the
camera intrinsics. Then we extract the motion {R,t} and
the plane parameters {n, d} described by Equation 6.

Notice that SVD leads to two valid separate solutions for
{R, t,n}. In order to disambiguate between the two, we use
the ego-motion estimation T, from our visual odometry,

R'UO t’UO
TUO = |: 0 1 :|

Additionally, this decomposition only gives the transla-
tion and distance of the plane upto scale. The ego-motion
translation estimate from visual odometry is therefore used
to obtain the actual distance of the plane as follows,

t

C. Semantic Image Segmentation

(1)

12)

Before we carry out any depthmap refinement, an extra
pre-processing step is added to improve the depth accuracy.
In other words, certain classes of objects found in the urban
scene are known to be non-planar including cars, trees and
pedestrians that only account as noise to the per-pixel depth
labelling. Therefore similar to the approach presented in [9],



a semantic image segmentation is included to determine the
class of pixels in the scene. This will help to exclude non-
planar object classes from the planar labelling.

For this work, a full resolution residual network as outlined
in [28] is used. This approach combines outstanding recogni-
tion performance, as found in the current state-of-the-art with
increased localisation accuracy. Training data was obtained
from manually annotated images in the KITTI dataset [29]
with an example output shown in Figure 3.

Fig. 3. Semantic Segmentation of the pixels of an image (top) into its
respective classes (bottom). Buildings and roads over which planar surfaces
are expected to be found are labelled in red and pink respectively.

D. Fast Global Labelling

Once the planar priors are retrieved from the two-view
multi-homography segmentation, we propose a labelling of
the image pixels to the corresponding underlying planes.
Analogous to the homography minimisation, we use a similar
global energy approach that leverages of the detected planar
priors. Our energy is formulated as

L n n
5 (L ID@lorw 2 Y wxl Tl ) a3

= i = i=1
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Where L is the number of plane hypotheses with an addition
of the non-planar label () that is provided by the original
TGV stereo depth-map, with the nodes u € D the image
pixels. With ¢(u) being the indicator function the data term
is defined in Equation 14.
D(w) = m?n(p(uz),pmm) lemy,-- 7L
min(p(ug), Pmin) + Pbias ly
(14
p(u) is the photo-consistency measured between images.
At each frame in this work there are four images available,
the current stereo pair coupled with a previously viewed
stereo pair from which the two view homography segmenta-
tion is calculated. With the baseline and ego-motion known,
pixels can be projected from an image to either of the
remaining three according to their corresponding depths.
This depth is determined by the planar priors or given by
the TGV stereo depth map in the outlier case as shown in
Equation 14. From this projection, the photo-consitency is

measured by comparing the similarity of the projected pixels
and that of the second image over a window of size W.
Poorly matched surfaces are handled through p,,;,, while a
small bias term pp;qs is added to the outlier label.
Additionally, to ensure that non-planar regions are not
wrongly assigned into planar priors, pixels that belong to
non-planar classes have p(u) automatically amended w.r.t.
the semantic segmentation as shown in Equation 15. This
semantic segmentation include cars, trees and pedestrian

classes.
P(Ul) — { Pmazx

p(u)

The smoothness term penalises depth discontinuities be-
tween neighbouring pixels based on their plane labels. A
4-connectivity pattern is used for A" with a Euclidean norm
to penalise points that belong to the same neighbourhood
but have different labels. S is a matrix of the pixel depths
corresponding to their assignment to different labels. To
preserve depth discontinuities arising from different objects
the smoothness term was down-weighted based on changes
in the image gradient (VI) using the weighting function was
presented in Equation 16.

Non — Planar (15)
Planar

1

C AVIZ 41

As in the case of the planar prior generation, a continuous
optimisation approach is opted for [26]. This not only has
time benefits but also allows for different norms to be used.
The metrication error arising from graph-cut techniques [17]
can thus be avoided as an Euclidean norm is used. From
results presented in Figure 4 it can be seen that this approach
is able to perform accurate labelling over different scenes.

WA (16)

E. Implementation

We implemented and tested this pipeline using CUDA on
a Nvidia GeForce GTX TitanBlack 6048MB GPU. Running
it 100 times over sample images from KITTI [4] with sample
results shown in Table I. The images are of resolution
376x1241. Bench-marking was run in scenes with 3 planar
models mirroring the most common application scenario.

TABLE I
TIMING RESULTS ON THE DEPTH-MAP IMPROVEMENT PIPELINE

Module Time (ms)
Homography Optimisation (1000 correspondences) 13.7
Photo-consistency computation 3.7
Per-pixel labelling 185.3

An «-expansion approach run on the per pixel labelling
problem returns a running time of around three and a half
seconds for the images presented, as can be seen in Table I
the proposed pipeline is able to report a much faster labelling
(around twenty times). This reported time is achieved by
using a coarse to fine approach that reduces the number
of iterations needed to converge as demonstrated in [18].
This is done by performing the labelling at various levels:
the original resolution, half the resolution and a quarter the
resolution. With this approach a reduction of the number of
iterations is achieved up to a factor of ten.



Fig. 4.

By using a global energy approach, our proposed approach is able to detect multiple homographies in images as shown in the top row. These

homographies encode planar priors which are used as input into the planar labelling of the image pixels. The bottom row shows the results of the pixel

labelling using the extracted planar priors.

IV. DENSE RECONSTRUCTION
A. Depth Map Fusion

To create a dense reconstruction in this work the BOR%2G
approach outlined by [30] is followed. In this work, the
incoming depth values are processed through a uniform
voxel grid. Each voxel stores range observations represented
by their corresponding Truncated Signed Distance Function
(TSDF), urspr. The voxels TSDF values are computed
such that one can solve for the zero-crossing level set
(isosurface) to find a continuous surface model. Even though
the voxel grid is a discrete field, because the TSDF value is a
real number, the surface reconstruction is even more precise
than the voxel size.

To deal with the large spatial region represented in these
reconstructions, a hashing voxel grid (HVG) is used [31].
This subdivides the world into an infinite and uniform grid
of voxel blocks, which in turn encapsulate their own small
voxel grid. Only when a surface in a given voxel block
is observed, are all the voxels in that grid allocated and
their corresponding TSDF values updated. Applying a hash
function to coordinates in world space gives an index within
the hash table, which in turn points to the raw voxel data.

For each of the voxel blocks, the update equations are
identical to those presented by [32] which projects voxels
into the depth map to update the TSDF data (f). The fusion
step can then be posed as a noise-reduction problem that can
be approached by a continuous energy minimisation over the
voxel-grid domain (£2):

E(u):/ |Vu|dQ+)\/ | f — u||2dQ
Q Q

where E(u) is the energy (which we seek to minimise) of
the denoised (u) and noisy ( ) TSDF data. The regularisation
energy term, commonly referred to as a Total Variation (TV)
regulariser, seeks to fit the solution (u) to a specified prior the
L1 norm in this case. The data energy term seeks to minimise
the difference between the u and f , while A controls the
relative importance of the data term vs. the regulariser term.
For further implementation details we direct the reader to
[33].

a7)

V. RESULTS

In this section the proposed pipeline over the dense
reconstruction task is evaluated using the publicly available

KITTI dataset [4]. Comparing the reconstructions produced
using the raw depth-maps and those improved through the
planar priors.

To create the ground truth for the comparison, the laser
scans from the Velodyne HDL-64E were consolidated into
a single reference frame in a similar approach to Tanner
et al. [33]. As there are inevitable errors in the KITTI’s
GPS/INS ground -truth poses we limited this consolidation
to a relatively short distance (75m) over which a good
comparison between the two could still be made. To compute
the error statistics against the sparse ground cloud point
cloud, the vertices of the corresponding mesh were used. The
error thus reduced to the metric distance between a vertex
in the mesh and its closest laser point. Two sections of the
KITTI sequence 00 were chosen for evaluation in regions
where the reconstruction performance was shown to be poor.
Using ten cm voxels the reconstructions were created from
the two sets of depth maps with results consolidated in Table
IT and Figure 5.

From Figure 5 it can be seen that the introduction of
the planar priors results in more complete reconstructions
(bottom row) over the evaluated sections than the raw TGV
depth-maps (top row). Holes in the reconstruction created as
a result of the noisy depth maps in textureless regions are
filled as well as gaps presented through partially occluded
region through the planar prior. Resulting in a smoother and
more complete reconstruction.

This is confirmed when the quantitative evaluation in Table
Il is viewed. For both cases the use of the planar prior
results in a significant increase in the surface area of the
reconstruction, ~ 10 % in the first case, as well as number of
blocks and voxels when the planar priors are used. This can
be expected as the resulting reconstruction covers a larger
area and thus accumulates more error. We do additionally
observe in both cases that the difference between the median
errors is within the noise of the ground truth laser sensor (3
cm).

From this it can be observed that the proposed pipeline
does successfully improve the depth map estimation of large,
planar textureless surfaces over our test cases. Thus allowing
low cost visual sensors to more completely capture the urban
environment while still remaining within the error margins.



Fig. 5.
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Sample results of dense reconstructions from the fusion of depth maps in the two evaluated sections are shown in this figure. The images on the

left correspond to the reconstructions produced using the TGV depth maps. It can be seen that the noise on the depth maps results in some gaps in the
reconstruction. By improving these depth maps with planar priors in our approach the results can be improved on significantly as shown in the images on

the right. Resulting in a more accurate map of the world.

TABLE II
TABLE OF THE EVALUATED ERROR STATISTICS.

KITTI-VO 00 Type Median (cm) 75% (cm) Surface Area (m?) #Blocks #Voxels 10° GPU Memory (MB) Distance (m)
Case 1 TGV 15.9434 49.8064 3140.74 26367 13.49 154.494 78.22
— Prior 18.2147 51.5005 345091 27405 14.03 160.576 78.22
Case 2 TGV 24.4837 99.8326 4162.02 28185 14.43 165.146 73.67
— Prior 25.6882 98.3273 4399.76 30274 15.50 177.387 73.67

VI. CONCLUSIONS

In this work an end to end system for improving the
estimation of depth-maps from images is presented and
evaluated. In particular focusing on large, plain and planar
surfaces which have long plagued contemporary dense depth-
map estimation techniques due to lack of abundant texture.
We leverage an energy based model discovery technique over

homographies to induce planar priors over these planar re-
gions. This is then similarly employed to associate and label
the underlying image pixels to their corresponding planar
model to improve the depth-map estimation. The labelling
is further aided by an image segmentation that removes the
pixels that belong to non-planar regions, reducing the noise
and increasing the labelling accuracy.



The energy minimisations in this work rely on a contin-
uous optimisation approach CORAL [26], that allows for
a parallel implementation on GPGPU hardware. This when
run on images from the KITTI dataset [4] resulted in a
labelling that was twenty times faster than other discrete
optimisation approaches, most notably «-expansion [16].
Opening up this technique to online use in robotics appli-
cations and with steady advances in GPU hardware real-
time implementations. This would reduce the reliance on
expensive 3D sensors in favour of lower-cost visual sensors
allowing for the increased development and deployment of
autonomous vehicles. The subsequent fusion of the improved
depth-maps also reveals a more complete reconstruction of
the environment with little change in the reconstruction error.
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