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Abstract

In this paper we describe a system for use on a mobile robot that detects potential loop closures using both visual and spatial appearance
of local scenes. Loop closing is the act of correctly asserting that a vehicle has returned to a previously visited location. Current approaches
rely heavily on vehicle pose estimates to prompt loop closure. Paradoxically, these approaches are least reliable when the need for accurate
loop closure detection is the greatest. Our underlying approach relies instead upon matching distinctive ‘signatures’ of individual local scenes
to prompt loop closure. A key advantage of this method is that it is entirely independent of the navigation and or mapping process and so is
entirely unaffected by gross errors in pose estimation. Another advantage, which is explored in this paper, is the possibility to enhance robustness
of loop closure detection by incorporating heterogeneous sensory observations. We show how a description of local spatial appearance (using
laser rangefinder data) can be combined with visual descriptions to form multi-sensory signatures of local scenes which enhance loop-closure
detection.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction and motivation

SLAM (simultaneous localization and mapping) is a core
information engineering problem in mobile robotics and has
received much attention in past years especially regarding its
estimation theoretic aspects [1,17,25]. Good progress has been
made but SLAM is still far from being an established and
reliable technology. A big problem is a lack of robustness.
This is markedly manifested during what has become known as
loop closing. It is common practice to use estimates produced
by a SLAM algorithm itself to detect loop closure. The naive
approach adopted in early SLAM work simply performs a
nearest neighbor statistical gate on the likelihood of the current
measurements given map and pose estimates. If the pose
estimate is in gross error (as is often the case following a
transit around a long loop), while in reality the vehicle is in
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an already mapped area, the likelihood of measurements being
explained by the pose and map estimate is vanishingly small.
The consequence of this is that loop closure is not detected.
Previously visited areas are re-mapped, but in the wrong global
location, error accumulates without bound.

Fig. 1 shows an obvious case of poor loop closing. Liberal-
ization and perception errors have lead to a gross error in vehi-
cle location estimate — so bad that the true location lies outside
the three-sigma bound on vehicle uncertainty. The problem here
is that the likelihood used is not independent of vehicle pose.
More sophisticated techniques offer some degree of robustness
against global vehicle error. For example, by looking at the re-
lationship between features in the local area [18] or continually
trying to relocate in a bounded set of sub-maps [1] that are ex-
pected to have some non-empty intersection with the true local
area. However these methods still struggle when the estimated
vehicle position is in gross error.

In our approach, an environment explored by the robot is
broken up into a sequence of individual local scenes. Temporal
relationships between the local scenes are established from
sequence order. Each local scene is described by a ‘distinctive
signature’. Adjacent local scenes have partial overlap of the
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Fig. 1. (a) Shows a snapshot of our SLAM algorithm just before loop closing takes place. The vehicle poses stored in the state vector are shown as red triangles.
The performance of the SLAM algorithm is just as would be expected. Global uncertainty (gray ellipses) increases as the length of the excursion from the start
location increases. A poor scan match at the bottom right introduced a small angular error which leads to a gross error in pose estimate when in reality the vehicle
has returned to near its starting locations (top right). The inset images are the two camera views used in the loop-closing process. The left hand image is the query
image and the right hand one the retrieved, matching image. The poses that correspond closest in time to the two images are indicated with arrows. (b) Shows the
final map after applying the loop closing constraint. As expected the marginal covariances on each vehicle pose decrease and a crisp map results — as would be the
case for any choice of SLAM algorithm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
environment. When comparing a newly captured signature
against a database of signatures, loop closure will be prompted
if a match is found. By relying on vehicle pose estimates,
relative or global map feature estimates, current approaches
are susceptible to unbounded accumulation of perception and
liberalization errors. Errors in our approach, on the other
hand, are bounded to errors from relative comparison of each
individual local scene.

The focus of this paper is to combine visual and spatial
appearances of a local scene into a distinctive signature that
can be used to prompt loop closure. Our motivation is two-
fold. Firstly multi-modal sensing naturally leads to richer and
more discriminative descriptions. Our second motivation is to
address shortcomings in our solely visual-appearance system.
The underlying assumption of our approach is if two local
scenes have similar signatures, they are likely to correspond
to the same location. This assumption is not always valid.
We found that many urban environments possessed repetitious
visual features which produced false positives. A query image,
taken from a current location, would be matched to the contents
of one or more previous images stored in a large database.
This would eventually lead to the erroneous declaration of loop-
closure events in (to a human) ludicrous situations.

For example, fire escape notices, multi-paned windows and
occasional wall patterns were repetitious visual events in our
test environments. However they did not occur in similar spatial
settings. An example is shown in Fig. 2. This paper shows that
by describing the local spatial appearance of the image capture
locale, false visual matches can be successfully discriminated
against. The operation at the heart of the spatial discrimination
component is the comparison of two 2D laser images (not
necessarily a single scan and more likely to be a scan-patch
in the terminology of [9]) of the locales of two camera images.
One picture-laser pair will be a query-pair — encapsulating the
spatial and visual appearance of the robot’s current location.
This pair will typically be compared to one of many possible
candidate pairs in a database — a set of picture-laser pairs built
over the vehicle’s past trajectory.

2. Derivation of visual signature

We begin by describing how to derive a visual signature
of a local scene. Periodically, an image of the surrounding
environment will be captured. This image is unique to the
specific pose of the robot with respect to the environment.
The goal is to reduce this image into a set of descriptors.
Every image set of descriptors is compared against each
other to determine similarity between local scenes. Many
authors have successfully used visual landmarks in SLAM, for
example [20,4]. In this paper we also use a camera to extract
visual landmarks. However we do not use them as geometric
features within the SLAM algorithm. Instead, we focus on the
photometric information contained with the descriptors and the
wide-baseline stability of the descriptors for the purpose of
scene comparison

2.1. Detection of image features

Previously in [19], a system was developed that was able
to close loops with visually salient features. Fig. 1 shows a
typical result in which two, automatically detected visually
salient images were used to close a loop. Two detection
algorithms were employed in that work, namely the scale
saliency algorithm [8] and the “maximally stable extremal
regions” (MSER) algorithm [14]. The scale saliency algorithm
measures saliency of regions within images as a function
of local image complexity weighted by a measure of self-
similarity across scale space. The MSER algorithm finds
“maximally stable extremal regions” which offers significant
invariance under affine transformations. The reason for the
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Fig. 2. The top row shows three visually similar images stored in an image database. The query image is shown in the center. Using photometric information alone,
it is extremely difficult to discern whether the right or left image is the correct match. A false loop closing event might be signalled (albeit a visually correct match)
with the image on the left. However, taking into account of spatial information will discredit the left image match while confirming an alternative visual match
shown on the right hand side.
wide-baseline stability of the technique lies in the fact that
connectivity (which is essentially what is detected) is preserved
under reasonable affine transformations (<70◦ in the plane).
In this work, we adopt a different detection algorithm, namely
the Harris-affine detection algorithm [15]. The primary reason
for selecting the Harris-affine algorithm is because it produces
a richer and more diverse range of descriptors than other
detection algorithms given the same image database. A wider
range of descriptors helps in differentiating image similarity.
Also, it was demonstrated in [16] that Harris-affine regions
enjoy comparable wide-baseline performance as MSERs.

2.2. Description of image features

Having found image regions, we encode them in a way
that is both compact, to allow swift comparisons with other
regions, and rich enough to allow these comparisons to be
highly discriminatory. The descriptor chosen is the SIFT
descriptor [13] which has become immensely popular in
computer vision applications [24] and used with good effect in
SLAM in [12]. The SIFT description algorithm transform each
image region into a 4X4 array of histograms with 8 orientation
bins in each. Consequently, each SIFT descriptor is a 128
dimension feature vector. The high dimensionality of the SIFT
descriptor plays a critical role in matching accuracy.

2.3. Assignment of weights to descriptor

The vector space model [24] which has been successfully
used in text retrieval is employed in this work. Each image
can be considered as a document consisting of visual words. In
this case, each SIFT descriptor is a visual word. Construction
of a visual vocabulary is achieved by clustering similar SIFT
descriptors (in terms of Euclidean distance) into visual words
that can be used for inverted file indexing. An agglomerative
clustering algorithm is used. Weights, Wi , are assigned to each
SIFT descriptor, Di , (word) according to the frequency of the
occurrence of the visual word in the image database. This is
based on the inverse document frequency [22] formulation:
Wi = log10(N/n f ) where N is the number of images stored in
the image database and n f is the number of images containing
the visual word, Di . The collection of images is represented by
an inverted index for efficient retrieval. To further enhance the
retrieval speed, we employ a k-d tree to search for the visual
words.

2.4. Similarity scoring function

To measure the similarity between two images, Iu and Iv ,
we employ the cosine similarity method. Since each image is
represented as a vector of words with different weights, we
can measure their cosine similarity by the inner product of
the two image vectors as shown in Eq. (1). The scoring for
a match of a term is based on the weights from the inverse
document frequency. If the images have different numbers of
visual words, imaginary visual words with zero weights are
inserted into the smaller image vector so that the sizes of both
image vectors are equal

S(Iu, Iv) =

n∑
i=1

ui .vi(
n∑

i=1
u2

i

)1/2

.

(
n∑

i=1
v2

i

)1/2 (1)

where Iu = [u1 · · · un], Iv = [v1 · · · vn] and ui and vi are visual
words from the respective images.

The left-hand column of Fig. 3 illustrates an anomaly where
the matched visual scene is visually similar to the query but
the robot is actually at a different location. This is an example
where the visual image matching system is working as hoped
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Fig. 3. Results in an outdoor environment. As shown above, a false positive loop closure is signalled w.r.t. the left-hand image when only visual information is taken
into consideration. This is discounted when spatial descriptors are used in addition. The query image and patch is in the middle and a correct match (spatially and
visually) is shown on the right. There are actually four visual correspondences (but mutually occluding when drawn) between the central query image and each of
the candidate images.
yet it incorrectly suggests a loop-closure event. It is true that
some of the false image feature correspondences can be re-
moved through the enforcement of epipolar constraints. How-
ever, matching of image features on repetitive artifacts will still
occur. On the other hand, the geometry of the local environ-
ments are truly different and can help to differentiate the two
local scenes. The spatial appearance of the immediate environ-
ment must be taken into consideration. Accordingly, the rest of
the paper is devoted to describing one approach to this task.

3. Derivation of spatial signature

A laser scan can be considered to be top-view image of the
geometric structure of the environment. Though most efforts
have concentrated on extracting shape descriptors of 2D objects
in images [26,2,10] have applied their shape similarity system
to the problem of robot localization and mapping in recognition
of the similarity in these two problems. We begin by describing
how a complete laser patch is passed through a pipeline of
processes resulting in a set of descriptors that encode the shape
and spatial saliency of local regions. We then discuss how these
descriptors can be compared with one another before bringing
the descriptor generation and comparison functionality together
to build a discriminative system.

3.1. Initial segmentation

The laser scan is divided into smaller but sizeable
“segments”. These segments are formed using a standard
nearest neighbor clustering algorithm [23]. A new segment is
formed whenever there is a significant break along a contour.1

These breaks are due to both occlusions and the true structure of

1 Note we do not require a convex scan patch.
Fig. 4. This shows a typical geometry patch after segmentation and a graph
depiction of the way we encapsulate the information contained. Each node is a
segment and contains the CAF function, its entropy measure and a list of critical
points. The edges represent a known spatial relationship between segments.

the environment. Fig. 4 shows a typical segmentation; the laser
patch on the left is broken up into four segments. We represent
each segment as a node on the graph on the right. The spatial
relationships between the segments are encoded into edges that
connect the nodes. The generation of these edge descriptors will
be discussed after considering how the segments themselves are
described.

3.2. Segment descriptors

The segmentation completed, we now desire to describe
each segment. The generated descriptors will be the values of
each node in Fig. 4. Each node is described using a cumulative
angular function, its entropy value and a set of “critical points”
along the segment’s boundary. The motivation behind and
method employed in these steps are as follows:

3.2.1. The cumulative angular function
Each segment is described by the “cumulative angular” or

“turning” function [5,11] as illustrated by Fig. 5. The turning
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Fig. 5. The cumulative angular function is transformed into a histogram of angular values. Each bin contains the number of points along the cumulative angular
function that have angular values that fall within the bin value. Using this histogram of bin values, the entropy of the cumulative angular function can be calculated.
function is a plot of the cumulative change in turning angle φ

versus the arc-length S of the segment. To illustrate, the turning
function maps straight lines ax + by + c = 0 to φ = 0, circles
to φ = αS and squares to a “staircase” function in φ. A key
characteristic of the cumulative angular function is that it is
rotational and translational invariant.

3.2.2. Entropy
We wish to measure the complexity of a segment so that we

can prefer matches between “complex” shapes to matches with
“simple” shapes. This is motivated by reasoning that a positive
match between two complex shapes is more likely to be a true
positive than a match between one simple, one complex and
two simple shapes. A natural way to encode complexity is via
entropy. In this case we may write an expression for entropy as

SD = −

∫
i∈D

PDi log2 PDi di (2)

where PDi is the probability of descriptor Di takes on values
in D the set of all descriptor values. The descriptor values in
this case are the angular values along the cumulative angular
function.

The integral is calculated from a histogram of the cumulative
angle function. Each histogram bin contains the number of
points along the cumulative angular function that have angular
values that fall within the bin value. The entropy follows from
Eq. (2). A distinctive segment will have a cumulative angular
function with multiple peaks and troughs while a simple
segment will have a relatively flat cumulative angular function.
In deriving shape descriptors, emphasis (via thresholding) is
placed on encoding segments with high entropy as they are
more distinctive.

3.3. Inter-segment descriptors

Given shapes of individual segments have been encoded, we
are now interested in describing the spatial configuration of
segments within a laser patch, in a manner that is rotationally
and translational invariant.
3.3.1. Critical points
We wish to encode the spatial configuration between

segments, which will form the inter-segment descriptors of the
laser scan (the edges of the graph in Fig. 4). We do this by
first extracting points of high curvature along the segments. We
call these “critical points” after [27]. Critical points are sharp
changes in the cumulative angle function and they are marked
as crosses in the laser patches shown in Fig. 6. Repeatability of
extraction of these critical points is an important consideration.
The thresholding on CAF (cumulative angle function) entropy
selects in favor of segments possessing strong critical points —
regions of high curvature likely to be visible over a range of
vantage points.

3.3.2. Segment configurations
In contrast to [27] where distances between all “anchor

points” are used to match laser scans, ownership of critical
points by individual segments is considered when matching
of segments between laser patches. The distance and relative
orientation between critical points form the links (the lines
joining the two segments shown in Fig. 6) that lock two
segments in a fixed configuration. To determine the relative
orientation between the critical points, we first have to
determine the orientation of the segment. This is simply done
using the largest eigenvector of the segment.

4. Descriptor comparison

4.1. Segment descriptor comparison

We now describe how two segment descriptors generated
according to Section 3.2 can be compared to one another.
Each segment (a node in the graph of Fig. 4) contains the
CAF function, its entropy measure and a list of critical points.
Considering two such nodes we use three disparity measures
based on their properties.

4.1.1. Angular function disparity
By representing a 2-D patch segment as a 1-D shape

descriptor, finding the best fit between two segments reduces
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Fig. 6. The way in which the relationship (in this case an SE2 transformation)
between segments is encoded. The two segments S and S′ contain nc and nc′

critical points respectively. For each critical point in S we form a“bundle” of
links to all nc′ critical points in S′. In all there will be nc bundles and nc × nc′

links in total but only one bundle is shown here. Each bundle (so long as it
contains more than one link) defines a rigid transformation between a critical
point in S and the entire segment S′. We define each edge in the graph of figure
2 to be the set of all bundles from S to S′. This is by intent a redundant way to
store the relationship between the two segments.

from a 3-D search space [x, y, θ] problem into a 2-D search
space [3]. This is a search problem in the position–rotation
space (β, γ ) since scale is fixed in our application. The
query curve is translated vertically and shifted horizontally
to find the minimum error between the query curve and the
pattern curve, see Fig. 7. This approach is similar to the
method employed by [3], except that their search problem is in
scale–position–rotation space. The difference, e(β, γ ), between
CAFs is calculated as

e(β, γ ) =

∫ l

0
(T1(s) − T2(s + β) + γ )2ds (3)

where the two cumulative angular functions are denoted by T1
and T2, the position–rotation search space is parameterized by
(β, γ ) and s parameterizes arc-length around the segment. A
scalar similarity measure η1 lying in [0, 1] is then calculated as
η1 =

1
1+e .

4.1.2. Match length disparity
A second scalar η2 is calculated as the matched length to

total length ratio: η2 =
l(m)
l(T )

where l(m) is the length of the
matched segment portion and l(T ) is the total length of the
query segment. In Fig. 7, the matched length is the portion of
the abscissa where there is overlap between the two cumulative
angular functions and total length is the length of the query
cumulative angular function. The larger the portion of the
segment that is matched (based on η1), the more similar the
segments are.

4.1.3. Entropy disparity
We use relative entropy to measure the similarity between

segments. The relative entropy, or the Kullback–Leibler
Fig. 7. Fig. 7 shows the disparity between two CAFs of two segments, S and
S′. CAF is the one-dimensional representation of 2-D segments, which encodes
the structure of the points within the segment by the change in tangential angles
between consecutive points. The difference between the two CAFs is the area
between the two curves. Segments that are similar to each other will have
similar angular functions and correspondingly, the disparity between the two
angular functions will be small.

distance, is given by:

K ( f ‖ f ′) =

m∑
i=1

fi × ln
fi

f ′

i
(4)

where m is the number of bins and f and f ′ are the probability
distributions approximated by the angle histograms an example
of which is illustrated in Fig. 5. The smaller the relative entropy,
the more similar the distribution of the two histograms. When
both distributions are equivalent K ( f ‖ f ′) = 0. The relative
entropy is normalized to lie within [0, 1] to produce a third
scalar η3.

We only calculate η3 (and hence compare segments) when
both have large SD . The concept is that it is less likely
for segments with high entropy to mismatch compared to
segments with low entropy. Consider a laser scan of a long,
straight corridor represented by two straight line segments;
these straight line segments will match easily with straight line
segments from any other laser scans taken at other portions
of the corridor. The above three similarity scalars are stacked
in vector ηS,S′ = [η1, η2, η3]

T. That describes the degree of
similarity between S and S′. If S and S′ are identical segments
ηS,S′ will be [1, 1, 1]

T.

4.2. Edge comparison

As well as comparing the shape characteristics of segments,
the matching technique described in the next section will
ask if the relationship between segments within a patch are
similar to those in a test case. As suggested in [27], we
determine the similarity between the segment–segment links
by matching arrays of distances and relative orientations of
the segment–segment edges. In Fig. 8, the segment–segment
relationships for two laser scans are shown. Due to occlusions,
a minority of the critical points found in one laser scan are not
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Fig. 8. A method of comparing inter-segment relationships (edges). In our determination of similarity between edges, the bundles of links that comprise the edges
are compared against each other using distance and relative angle criteria. The dark links represent those that have been successfully matched with links of the other
edge. The links marked as light toned lines represent links that have not been matched with links of the other edge. This can be due to occlusions or the segmentation
process.
seen in the other. The links that are successfully matched are
highlighted in a darker tone. The quality of the match between
the edges is determined by the ratio of matched links versus
the total number of links: qm =

nm
nr

where nm is the number of
matched links and nr is the number of links between segments
in query scan.

5. Matching of spatial descriptors

Our shape similarity metric comprises of two parts: the
shape similarity between two segments and the spatial similar-
ity between segments. The quality of match between segment
Si from the query scan and segment S′

j from the reference scan
is defined by Qi j = ληSi ,S′

j
+ (1 −λ)× qm , where Qi j ∈ [0, 1]

and the parameter λ ∈ [0, 1], determines the relative impor-
tance attached to the matching of the shape of segments and the
links between segments. It was determined experimentally that
the value of 0.3 for λ produced the best matching performance
for the particular environment in our experiment.

Given the set of matching score Qi j between all pairs
of segments Si ...n on the query laser scan and S′

j ...m on
the reference laser scan, we want to maximize the total
matching score of matching subject to the constraint that the
matching must be one to one. We solve this by using the
Hungarian method [21] which finds the optimal combination
of segments matching that gives the highest matching score
possible between the query and reference laser scans.

6. Experimental results

To examine and demonstrate the effectiveness of our
approach, we tested our algorithm in an outdoor environment.
The ATRV-Jnr mobile robot was driven around a car park
in front of a building. The vehicle camera kept a constant
orientation in vehicle coordinates — looking forward and
slightly to the left. Every two seconds an image was grabbed
and written to disk. The vehicle was equipped with a standard
SICK laser, the output of which was also logged along with
the odometry from the wheel encoders. Each image was time
stamped, processed and finally entered into a database as a
collection of feature descriptors. Using the image’s time stamp,
the corresponding laser scan is retrieved, processed and entered
alongside the visual information as a collection of spatial
descriptors. Here, a database2 of 155 images and laser scans
was collected — see Figs. 9 and 10 — where the ground is
relatively flat.

6.1. Retrieval system results

Firstly, we demonstrate the effectiveness of the image
retrieval system through some examples. In Fig. 9, the top
row represents the query images. Down each column are the
corresponding images most similar to the query images in
descending order of similarity. Notice that the image on the
second row, first column, is actually a false positive. This is
what we have expected. Even though the image is visually
similar to the query image, the image was captured from a
different location from the query image. This is an instance
where the assumption “similar appearance, same location” does
not hold. On the positive side, the retrieval system demonstrates
robustness to dynamic objects. Looking into the second column
and the last column, it is observed that the retrieval system
is able to select images from nearby locations despite the
presences of dynamic objects such as vehicles and humans.

Next, we demonstrate the effectiveness of the laser scan
retrieval system. Similarly, the top row in Fig. 10 represents
the query laser scans. Down each column are the corresponding
laser scans deemed most similar to the query laser scans
in descending order of similarity. The observation is the
complexity of the laser patches makes it difficult to describe
laser patches adequately with only geometric primitives such as
lines and corners. The results from column two demonstrate the
rotational invariance property of our description and matching
technique.

2 The database of images and laser scans collected from the urban environ-
ment can be viewed at http://www.robots.ox.ac.uk/˜klh/AclandImageDB.htm
and http://www.robots.ox.ac.uk/˜klh/AclandLSDB.htm respectively.

http://www.robots.ox.ac.uk/~klh/AclandImageDB.htm
http://www.robots.ox.ac.uk/~klh/AclandLSDB.htm
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Fig. 9. Experimental results from our image query system. The top row contains the query images. Down the column are the corresponding matches in descending
order of similarity. Notice the robustness of our image matching system against dynamic objects such as human and moving vehicles. However, the image in row 2,
column 1 is an example of how visual match alone will produce wrong loop detection in environments where there are repetitive visual artifacts.
Fig. 10. Experimental results from our laser scan shape-based query system. The top row contains the query laser scans. Down the column are the corresponding
matches in descending order of similarity.
6.2. Similarity matrix

We encode the similarity between all possible pairings of
scenes in a “similarity matrix”. Each element Mi, j of the
similarity matrix is the similarity score between signature i and
signature j from the data sequence. The main diagonal consist
of a bright red line. It is the result of matching every local scene
against itself and consequently a perfect match. When there is a
loop closure, there will be a connected sequence of off-diagonal
elements with high similarity scores found within the similarity
matrix. This is shown by the off-diagonal bright lines.

The data in Fig. 11 was taken over two loops around
the outside of a large building. A visual similarity matrix is
constructed. It is composed of similarity scores calculated from
matching each image in the database against every image in
the database. A spatial similarity matrix is also constructed by
matching each laser scan in the database against every laser
scan with the technique described in Section 5. To construct
the combined visual and spatial similarity matrix, we simply
add the normalized similarity scores from the visual and spatial
similarity matrix in a similar fashion as [7]. Cells with high
similarity scores are shaded in a bright tone while cells with
low similarity scores are shaded in a dark tone. From these
three similarity matrices as shown in Fig. 11, we can compare
the loop closure detection performance of using the image
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Fig. 11. Similarity matrices. The left matrix is the image similarity matrix. The middle matrix is the laser scan similarity matrix. The right matrix is the combined
image–laser scan pair similarity matrix. Improvement in loop closure detection can be observed by the improved definition of the off-diagonals of the combined
image and laser scan pair similarity matrix over the off-diagonals of the other similarity matrices.
Fig. 12. From left to right: Sequence detection in visual similarity matrix, spatial similarity matrix and combined similarity matrix. The dark lines represents
sequences of matching pairs of signatures.
matching system, the laser scan matching system and the
image–laser scan pair matching system.

As soon as the second loop begins (around the time image 85
was taken) we expect to see off-diagonals appearing indicating
matches with earlier data. In the visual similarity matrix,
(L.H.S. of Fig. 11), the off-diagonals are, for the most part,
well defined. However there are some large blurred off-diagonal
patches which stem from highly visually ambiguous areas.
Considering the central figure, the spatial similarity matrix,
we also see the off-diagonals although they are less defined
reflecting the diminished certainty in matches coming from less
discriminative (relative to the visual images) data.

Finally the R.H.S. figure shows the similarity matrix
resulting from the combination of visual and spatial
descriptions in the matching process. Importantly the blurred
off-diagonal regions present in the visual matrix have been
reduced in magnitude leaving a clear well defined off-diagonal
trail of first loop to second loop correspondences. In particular
note how the false positive visual match highlighted with an
asterisk is down weighted when considered in conjunction with
the local spatial appearance. The dark bands appearing in all
three matrices are when one image (laser or visual) has so few
descriptors that it cannot be reliably matched to anything in the
database. This typically occurs when the vehicle drives very
close to an object — a wall or parked car in our case.

6.3. Sequence detection in similarity matrix

Given a similarity matrix, we then pose the loop closing
problem as the task of extracting statistically significant
sequences of similar scenes from this matrix. Instead of
relying on a single image match or image–laser scan match,
[6] proposed a novel algorithm to detect loop closure from
similarity matrices. It exploits topological links between
neighboring local scenes to detect sequences of matching
images and laser scans that indicate loop closure. The exact
details of this algorithm can be found in [6].

Fig. 12 shows the results from applying the sequence
detection algorithm onto the three similarity matrices, namely
the visual similarity matrix, the spatial similarity matrix and
the combined similarity matrix. It is noted that the second
loop closure occurred from the 85th pose to 155th pose —
a sequence of 71 poses. For the visual similarity matrix, a
sequence of 104 matching pairs of images was detected. For
the spatial similarity matrix, the top three most significant
sequences are illustrated, with the longest sequence consisting
of 8 matching pairs of laser scans. For the combined similarity
matrix, the most significant sequence of 46 matching pairs of
image–laser scans is shown.

The performances of sequence detection for the three
similarity matrices are varied. A long sequence of matching
pairs of images is detected in the visual similarity matrix
but the sequence consists of a substantial amount of false
positive matches. Although sequences detected from the spatial
similarity matrix are very short, they do not contain any false
positive matches. The sequence detected from the combined
similarity matrix is significantly longer and, again, does not
contain any false positive matches. In the light of a policy of
preferring Type II errors over Type I errors (tolerating missed
detections over false positives) the combined spatial/visual
approach resulting in long substantial strings of positive
matches is advantageous for loop-closure detection. In this
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exemplar case detection occurs later for when using combined
similarity matrix than when using the visual similarity and
spatial similarity matrices.

7. Conclusions

We have developed a system which uses both spatial and
visual appearance to guide and aid the detection of loop-closure
events. We described how spatial shape information may be
encoded and compared using entropy and relative entropy
respectively. The spatial matching process is designed to be
robust to occlusion and viewpoint changes. It uses a redundant
number of transformations between salient features on segment
boundaries. Finally, overall spatial similarity between two laser
patches is determined by comparing both the shape of segments
within patches and their mutual spatial arrangements. The
folding in of spatial information has improved performance
and has resulted in a promising and robust system. It is clear
that folding in temporal (sequences) spatial (laser) and visual
(images) terms is advantageous to the loop-closure detection
problem. Although, by intent, we have not made any recourse
to the SLAM p.d.f.s whose estimation we wish to support,
we do not exclude the possibility of couching our approach
in probabilistic terms. This would most likely require off-line
learning of likelihoods and priors over vast hand-labelled data
sets and this is an interesting area of current research.
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