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Abstract

We present an information-theoretic approach for direct localisation of a monocu-
lar camera within a 3D appearance prior. In contrast to existing direct visual localisa-
tion methods based on minimising photometric error, an information-theoretic metric
allows us to compare the whole image without relying on individual pixel values, yield-
ing robustness to changes in the appearance of the scene due to lighting, camera motion,
occlusions and sensor modality. Using a low-fidelity textured 3D model of the envi-
ronment, we synthesise virtual images at a candidate pose within the model. We use
the Normalised Information Distance (NID) metric to evaluate the appearance match be-
tween the camera image and the virtual image, and present a derivation of analytical NID
derivatives for the SE(3) direct localisation problem, along with an efficient GPGPU im-
plementation capable of online processing. We present results showing successful online
visual localisation under significant appearance change both in a synthetic indoor envi-
ronment and outdoors with real-world data from a vehicle-mounted camera.

1 Introduction
Real-time visual localisation is a key technology enabling mobile location applications [33,
35], virtual and augmented reality [8, 17] and robotics [12, 24]. The recent availablity of low-
cost GPU hardware and GPGPU programming has enabled a new class of ‘direct’ visual
localisation methods that make use of every pixel from an input image for tracking and
matching [28], in contrast to traditional feature-based methods that only use a subset of the
input image. The additional information available to direct methods localising against a
dense 3D map increases robustness against typical failure modes for feature-based methods,
such as motion blur and viewpoint change [10].

For computational reasons these direct methods minimise a cost function based on pho-
tometric error on a per-pixel basis, which assumes both the live image and the reference map
are embedded in the same space. While methods such as this are reasonable for frame-to-
frame tracking or small environments with controlled illumination [28] or for optical flow
problems [14], it is not robust to strong changes in illumination intensity, direction and spec-
trum (e.g. in large outdoor environments or across long periods of time) or differences in
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Figure 1: We localise the pose of a camera by registering a rendered image of our prior
against the live camera image. Here we show an example from both a synthetic indoor
scene and a real-world outdoor scene. (a) Camera image; (b) a render of the prior as used
for localisation; and (c) the localised pose and viewing frustrum of the camera within the
prior. Our information-theoretic metric is robust to changes in illumination, motion blur, and
sensing modality between the live image and prior map.

sensing modality between the image and the map (e.g. if the map is produced by a different
camera or LIDAR scanner) where no simple transform exists to map pixel intensity values
from the live image to the reference map. The photoconsistency metric therefore limits cur-
rent direct methods to small-scale environments or short-duration experiments, and although
more robust metrics have been proposed for direct localisation against a dense 3D appear-
ance prior [4, 16], these have typically been too computationally expensive for real-time
operation.

In this paper we present a direct visual localisation approach based on the Normalised
Information Distance (NID) metric, which provides robustness to both viewpoint change
and motion blur (in contrast to feature-based methods) as well as illumination change and
sensor modality (in contrast to direct photometric methods). Using a low-fidelity 3D ap-
pearance prior of the environment, e.g. from a dense reconstruction [27], CAD model or
LIDAR scanner as shown in Figure 1, our method is able to localise a camera under a wide
range of conditions, including image under/overexposure, outdoor lighting changes, signifi-
cant occlusions, motion blur, colour space changes, and differences between image and map
modality. We present a full derivation of our metric and analytical derivatives for use within
a SE(3) optimisation framework, and illustrate how to leverage GPU rendering and GPGPU
programming to accelerate the computation of the metric for online applications. We present
localisation results on a synthetic indoor dataset and real-world outdoor data using a LIDAR
map as well as computation time analysis demonstrating real-time performance, illustrating
the robustness and utility of our method in a wide range of applications in computer vision
and robotics.
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2 Related Work

Typical approaches to robust visual localisation in changing environments make use of sparse
robust feature descriptors, such as SIFT [22], SURF [2], BRIEF [3] and others. These de-
scriptors use combinations of gradients and histograms of local grayscale patches to provide
a degree of invariance to viewpoint and illumination conditions. Systems built on these fea-
ture descriptors have demonstrated localisation and mapping at large scales [6, 19, 37, 48],
but are not robust to strong viewpoint changes [12], changes in outdoor illumination condi-
tions [13, 44] or motion blur induced by fast camera movement [17].

The recent advent of GPGPU programming has enabled so-called ‘direct’ methods for
visual localisation, where every pixel in the image is used to produce an estimate of the
camera position relative to a 3D prior map. Direct approaches have been successfully used
for monocular SE(2) visual odometry at large scale [21, 26], SE(3) monocular localisation
and mapping in indoor environments [28], and visual odometry with stereo [5] and RGB-D
[38] sensors. Direct approaches have also been combined with sparse feature approaches to
produce ‘semi-direct’ methods [10, 11]. These methods are able to localise against dense
3D stucture with large viewpoint changes and significant motion blur [28]. However, these
methods have not been evaluated in scenarios where areas in the map are revisited after
significant illumination change, or where the map is constructed using a different camera or
sensing modality.

An effective metric for aligning images from different modalities is mutual information
[36], frequently used in medical imaging for aligning X-ray and MRI scans [23, 32, 46].
The advantage of mutual information is that the metric is not a function of the values in
each image, but instead a function of their entropies; hence, images from different sen-
sors that are not normalised or even correlated (as in [16]) can be successfully aligned [9].
Mutual-information-based metrics have since been used for visual servoing [7], SE(2) local-
isation against a LIDAR map [47], camera-LIDAR calibration [30], and SE(3) localisation
against a coloured pointcloud [40] or textured mesh [4, 31]. However, mutual information
metrics are typically computationally expensive, requiring multiple seconds per frame [4]
or offline processing [30]. In the following sections we present an efficient approach to
mutual-information-based direct SE(3) localisation, and illustrate its robustness to changes
in illumination intensity and spectrum, blur and sensor modality.

3 Problem Formulation

Our stated goal is to find the pose of a camera with respect to a 3D prior appearance model
of the environment. We pose this as a minimisation problem, in which we wish to find the
camera pose, ĜC, such that:

ĜC = argmin
GC

ρ (Ir,GC,S) (1)

where Ir is a reference image captured by the camera, S is the virtual scene (including 3D ge-
ometry and texture information) used to generate the synthetic image rendered for a camera
at pose GC, and ρ is a metric that quantifies the match between the reference and synthetic
images. A frequently-used metric in the domain of dense tracking and reconstruction is the
photoconsistency metric [18], which computes the sum of squared differences between pixel
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values in a reference image Ir and a synthetic image Is as follows:

SSD(Ir,GC,S) = ∑
x∈Ir

‖Ir (x)− Is (x,GC,S)‖2, (2)

where x = (u,v)T is a pixel location within the image.
Although photoconsistency is efficient to compute and find derivatives for (in order to use

in an optimisation framework), as mentioned in [28] it suffers from a number of limitations.
Principally, it requires Is provide a photorealistic rendering of the scene S from location GC,
such that the resulting synthetic image matches the reference image Ir on a pixel-by-pixel
basis. A true match would only be possible if the synthetic scene S captured all relevant
geometry and material properties of the real-world environment, and the synthetic image
rendering function Is (GC,S) accurately modelled scene illumination intensity, spectrum and
direction in accordance with the true lighting, which both remain challenging to render for
real-time applications. This limitation restricts photoconsistency to applications involving
frame-to-frame tracking, where the synthetic image Is can be derived from a warping of the
previous reference image Ir [5, 21, 38], or applications in small indoor environments with
controlled illumination where the scene S does not change over time [28].

An alternative metric, Normalised Information Distance (NID) [20], is given by:

NID(Ir, Is) =
H(Ir, Is)−MI(Ir; Is)

H(Ir, Is)
, MI(Ir; Is) = H(Ir)+H(Is)−H(Ir, Is) (3)

where H(Ir, Is) is the joint entropy of Ir and Is, MI(Ir; Is) is the mutual information between
Ir and Is, and H(Ir) and H(Is) are the marginal entropies of Ir and Is respectively. Unlike
mutual information, the NID is a true metric as it is strictly non-negative and satisfies the
triangle inequality [45]. The marginal and joint entropies are defined as follows:

H(Is) =−
n

∑
b=1

ps (b) log(ps (b)) , H(Ir, Is) =−
n

∑
a=1

n

∑
b=1

pr,s (a,b) log(pr,s (a,b)) (4)

where H(Ir) is defined similarly to H(Is). ps and pr,s are the marginal and joint discrete
distributions of the images Ir and Is, represented by n-bin discrete histograms where a and b
are individual bin indices. The values in each histogram bin are computed as follows:

ps (b) =
1
|Is|∑x∈Is

βs (b,x) , pr,s (a,b) =
1
|Is|∑x∈Is

βr (a,x)βs (b,x) (5)

The histogram weight functions βr () and βs () are normalised such that ∑
n
b=1 β (b,x) =

1∀x ∈ I, therefore a change in intensity Is (x) at location x will update the histogram weight
function βs () in multiple locations. In the following section we will expand upon the choice
of histogram weight function β () to ensure continuous derivatives from discrete histograms.

Computing the joint distribution is the most computationally demanding process of eval-
uating the NID between two images, as it requires a bin update for every pixel pair between Ir
and Is. We make use of atomic integer addition in local GPU memory provided by OpenCL
[41] to significantly accelerate this process, taking less than 5ms for a 640x480 image.

An important consequence of using an information theoretic metric such as NID to com-
pare images is that the metric is not a function of the (pixel) values contained in the images,
but instead a function of their distribution. Therefore, an arbitrary perturbation of the colour
space for the reference image Ir will strongly affect a photoconsistency metric such as SSD,
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but will have minimal impact on the NID. Figure 2 illustrates some examples of reference
image perturbations and the consequences for both metrics.

Figure 2: Effect of various image degradations on NID and SSD metric. Each graph shows
the NID and SSD compared to the original camera image in (a) with horizontal offsets ap-
plied. Whilst NID yields a distinct minima at zero offset under all degradations, SSD is only
minimised at zero offset for the simplest of cases.

4 NID Derivatives
In order to incorporate NID into a gradient- or Newton-based optimisation framework, it is
necessary to define derivatives of NID for each of the parameters that form the camera pose
GC. Applying the quotient rule to differentiate Equation 3 yields the following:

∂NID(Ir, Is)

∂GC
=

∂H(Ir ,Is)
∂GC

MI(Ir; Is)−H(Ir, Is)
∂MI(Ir ;Is)

∂GC

H(Ir, Is)
2 (6)

Noting that the reference image Ir does not depend on the camera pose GC, we can
express the mutual information derivative as follows:

∂H(Ir)

∂GC
= 0⇒ ∂MI(Ir; Is)

∂GC
=

∂H(Is)

∂GC
− ∂H(Ir, Is)

∂GC
(7)

The marginal and joint entropy derivatives can be expressed in terms of the marginal and
joint distributions as follows:

∂H(Is)

∂GC
=−

n

∑
b=1

∂ ps (b)
∂GC

(1+ log ps (b)) (8)

∂H(Ir, Is)

∂GC
=−

n

∑
a=1

n

∑
b=1

∂ pr,s (a,b)
∂GC

(1+ log pr,s (a,b)) (9)
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The marginal distribution derivative is a straightfoward differentiation of the histogram
weighting function βs () for the synthetic image Is as follows:

∂ ps(b)
∂GC

=
1
|Is|∑x∈Is

∂βs (b,x)
∂GC

(10)

By noting that the histogram weighting function βr () for the reference image Ir does not
depend on camera pose GC, we can simplify the joint distribution derivative as follows using
the product rule:

∂βr (a,x)
∂GC

= 0⇒
∂ pr,s(a,b)

∂GC
=

1
|Is|∑x∈Is

βr (a,x)
∂βs (b,x)

∂GC
(11)

The derivative of the histogram weighting function βs () can be expressed using the chain
rule as follows:

∂βs (b,x)
∂GC

=
∂βs (b,x)

∂ Is (x)
∂ Is (x)

∂x
∂x

∂GC
(12)

In this expression ∂βs(b,x)
∂ Is(x) represents the change in the histogram weighting function βs () for

all pixels in Is given a change in pixel value Is (x) at location x. We follow the approach in
[39] and represent the histogram weighting function with cubic B-spline representation [43],
yielding C2 continuous derivatives for each histogram bin, again evaluated using OpenCL
atomic operations. The image intensity derivative ∂ Is(x)

∂x is represented by a B-spline surface
constructed over the synthetic image Is, approximated using efficient causal and anti-causal
Z-transform filters implemented on the GPU [34], requiring approximately the same process-
ing time as the histogram building operation. Finally, ∂x

∂GC
is the change in the reprojected

location of scene structure S given a change in camera pose GC. For a minimal Euler angle
parameterisation of GC = (x,y,z,α,β ,γ)T, the structure reprojection derivative is as follows:

∂xi

∂GC
=

[
−1/zi 0 ui/zi uivi −

(
1+u2

i
)

vi
0 −1/zi vi/zi 1+ vi −uivi −ui

]
(13)

where zi is the depth associated with the pixel at location xi = (ui,vi)
T, obtained during the

rendering process from the z-buffer from an OpenGL [42] rendering operation. Each of the
12 elements in Equation 13 is obtained using a fragment shader during the rendering of Is,
allowing both appearance and derivatives to be computed simultaneously.

Figure 3(a) shows an example of the derivatives calculated at various offsets from the
ground truth pose, along with numeric derivatives calculated via central differences. As can
be seen, our analytic derivatives match the numerical approximations very closely.

We found that with scenes that include fine-grained textures, such as that on the couch
in Figure 1, the derivatives are dominated by the differences between adjacent pixels in the
same texture, and thus don’t provide useful information. To obviate this effect, we apply a
5x5 kernel Gaussian blur to our rendered image before calculating NID. Figure 3(b) shows
the effect of this blurring on the derivatives for the camera pose shown in Figure 1.

The NID cost function described in Equation (3) is dependent on the number of bins
used for the respective histograms. Figure 3(c) shows the NID between a camera image and
a render of the prior with varying number of histogram bins. All bin counts produce NID
minima at zero offset, with 8 bins producing the clearest minima and 16 bins providing a
good trade-off between cost surface steepness and computation time.
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5 Evaluation

We evaluate the performance of our algorithm using the Living Room dataset by Handa et
al. [15]. This dataset contains a model of a living room approximately 10m×5.5m×3m in
size, as well as photorealistic renders of a camera following a specified trajectory through
the room. This provides us with a high quality ground truth for the camera pose at which
each of the live images were taken. We preprocessed the data to produce a basic textured
mesh of the room without any lighting information, in order to evaluate our system’s ability
to handle a low-fidelity prior (e.g. from a 3D CAD model) with a different appearance to the
camera images. Figure 1 shows an example of a virtual camera image and one of our renders,
demonstrating the significant differences in appearance between our low-fidelity prior and
the photorealistic live images. The reviewer is encouraged to view the accompanying video
submission illustrating the localisation process for different input images and map textures.

5.1 Optimisation Methods

For SE(3) localisation, our search space for Equation (1) is far too large to explore exhaus-
tively. We thus turn to a gradient-based method to find the minimum of the cost function.
Common candidates for an optimisation such as this are the Levenberg-Marquardt (LM) [25]
and Broyden-Fletcher-Goldfarb-Shanno (BFGS) [29] algorithms. Both of these algorithms
use an approximation to the Hessian, allowing the use of a second-order optimisation without
the computational overhead of calculating second derivatives. The LM algorithm, however,
is most effective for problems in which the number of residuals is greater than the number
of parameters [29]. Given that we have a single residual (NID) and six parameters in SE(3)
space, BFGS would appear to be the more appropriate choice for this problem.

We evaluated both BFGS and LM, using the implementations from Ceres Solver [1].
Each optimiser was tested using each pose of a trajectory through the model, with an initial
guess randomly offset from the ground truth pose. The offsets were uniformly distibuted
between 0 and 0.6m and between 0 and 10°. We also evaluated BFGS using the-built in
numerical differentiation in Ceres Solver, in place of our own analytic derivatives. The
results of these evaluations are presented in Table 1. These results show that BFGS with
analytic derivatives is superior to the two alternatives for this use case.

Figure 3: (a) Translational and rotational analytic derivatives (solid lines) compared to nu-
merical approximations (dashed lines). (b) Translational derivatives before (left) and after
(right) a Gaussian blur is applied to a rendered image. (c) NID of camera image vs rendered
prior for different numbers of histogram bins.
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Optimiser RMSE (m) p(error < 5cm) RMSE (°) p(error < 0.5°)
BFGS (analytic) 0.1692 0.7619 0.2497 0.9263
BFGS (numeric) 0.2553 0.1032 15.5739 0.4444
LM 6.0324 0.1247 38.6402 0.3515
Table 1: RMS errors and success probabilities for random initial offsets.

5.2 Robust Direct Localisation
We evaluate the robustness of our localisation algorithm by applying various degradations
to the prior and the live camera images. We test the following degradations to the camera
image as shown in Figure 2: (a) Unmodified input images; (b) Applying a Gaussian blur,
with a window of 15×15 and 25×25 pixels around each pixel; (c) Underexposed and (d)
overexposed images; (e) Inverting all colours in the image; and (f) Obscuring the image with
a randomly placed circle of radius 50, 100, and 150 pixels. In addition, we evaluate reducing
the bit depth of the input images to 2 and 4-bit colours.

We also test altering the prior, shown in Figure 2(g), by replacing the textures on all
surfaces with different colours, as illustrated in Figure 2(h).

We do not show results for a cost function using photometric error, as this failed to
converge in all cases. This is due to the fact that the per-pixel photometric error between the
photorealistic renders and the prior does not provide a meaningful signal for localisation, as
is shown in Figure 2(g).

Scenario RMSE (m) RMSE (°) p(error < 5cm) p(error < 0.5°)
Unmodified 0.0410 0.5819 0.9725 0.9817
Gaussian blur (15×15) 0.0441 0.6274 0.9725 0.8073
Gaussian blur (25×25) 0.0589 0.6435 0.9541 0.5505
Underexposed 0.0407 0.5928 0.9462 0.9355
Overexposed 0.0450 0.6301 0.9541 0.9617
Inverted image 0.0400 0.5592 0.9633 0.9725
Circle occlusion (50px rad.) 0.0427 0.6146 0.9905 0.9905
Circle occlusion (100px rad.) 0.0450 0.6260 0.9558 0.9469
Circle occlusion (150px rad.) 0.0526 0.5634 0.9619 0.9429
2-bit colours 0.0395 0.5713 0.9725 0.9725
4-bit colours 0.0419 0.6118 0.9908 0.9908
Altered Prior 0.0397 0.5488 0.9633 0.8899
Table 2: RMS errors from an 882-image trajectory through the living room dataset.

We use an 882-pose trajectory through the room, starting our localiser from the previous
ground truth pose for each image. Table 2 shows the RMS errors in position and orientation,
and the probabilities of converging to within 5cm and 0.5° respectively for each scenario.

All but two of the scenarios show RMS positional errors less than 5cm. Only the most
extreme Gaussian blur and the largest occlusion (which obscures over 20% of the image)
exceed 5cm in RMS position error; even these scenarios show RMS errors less than 6cm.

The largest reduction in convergence likelihood comes from the most extreme Gaussian
blur, which shows a probability of less than 0.6 of converging with an error of less than 5cm.
This is a result of the blurring making accurate localisation difficult, as evidenced by the
shallow basin around the NID minima in Figure 2(b).

5.3 Computation Time
Figure 4 shows the total time required to localise from a single image, along with the num-
ber of cost function evaluations required for localisation. All timings are shown for images
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640×480 pixels in size. We achieve a mean localisation frequency of just over 2Hz, consist-
ing of approximatly 25 cost function evaluations where each evaluation takes approximately
16.75ms, with the largest constituent parts being rendering, application of the B-spline pre-
filter, and building of the joint histogram. The largest variation is in rendering time due to
differences in scene complexity at different locations.

Figure 4: (a) Total time taken for for localisation. (b) Number of cost function evaluations
required for localisation. (c) Time taken for different stages of cost function evaluation. All
computation is performed with an NVIDIA GTX Titan GPU using OpenGL and OpenCL.

5.4 Outdoor Results

Our system is designed to handle situations in which the appearance of the prior does not
exactly match the appearance at localisation time. One application domain in which this is
extremely important is outdoor localisation for mobile robots. Here we present results from
testing our system using outdoor data, using images acquired from a vehicle-mounted camera
and a map provided by a 3D LIDAR survey coloured by near-infrared (905nm) reflectance.

We found that the system works well in downtown areas where there is significant struc-
ture close to the road. Table 3 shows the results from localisation along a 140m route in a
downtown area. Figure 5 shows examples of locations along this route where localisation
was successful. These results illustrate the viability of our system in an outdoor environment,
and its ability to handle data from different sensor modalities.

(a) (b)
Figure 5: Examples of places with successful localisation against a laser reflectance prior.
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RMSE (m) p(error < 5cm) RMSE (°) p(error < 0.5°)
0.1035 0.7291 0.6749 0.9016

Table 3: RMS error and probability of obtaining an error less than 5cm and 5°along a 140m
stretch of road in the centre of a city.

6 Conclusions
In this paper, we have presented a direct visual localisation method that is robust to sig-
nificant changes in the appearance of the scene. We use an information-theoretic metric for
whole-image comparisons, removing a need for exact colour correspondence between pixels.
Through the use of a quasi-Newton optimisation method, we are able to minimise our cost
function without an exhaustive search, and by exploiting GPUs for much of the computation,
we demonstrate localisation at a rate of approximately 2Hz.

We have shown our system’s ability to localise to within 5cm of the true pose in a syn-
thetic indoor environment, even with significant degradations to the prior map and camera
images. Furthermore, we have presented results indicating our system’s ability to be used
across sensor modalities in a large outdoor environment. Further work is required to evaluate
the system in larger-scale outdoor environments, along with investigating approximations to
the full cost function presented here in order to improve on the 2Hz localisation rate.
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