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Abstract

This paper presents a large-scale evaluation of a visual

localisation method in a challenging city environment. Our

system makes use of a map built by combining data from

LIDAR and cameras mounted on a survey vehicle to build

a dense appearance prior of the environment. We then lo-

calise by minimising the normalised information distance

(NID) between a live camera image and an image generated

from our prior. The use of NID produces a localiser that is

robust to significant changes in scene appearance. Further-

more, NID can be used to compare images across different

modalities, allowing us to use the same system to determine

the extrinsic calibration between LIDAR and camera on the

survey vehicle. We evaluate our system with a large-scale

experiment consisting of over 450,000 camera frames col-

lected over 110km of driving over a period of six months,

and demonstrate reliable localisation even in the presence

of illumination change, snow and seasonal effects.

1. Introduction

The success of future autonomous vehicles depends on

their ability to navigate from one place to another to perform

useful tasks, which necessitates some form of prior map.

The progress of Google’s fleet of map-based autonomous

vehicles [29] and the recent purchase of Nokia HERE maps

by a consortium of automotive manufacturers [30] illustrate

the importance of prior maps for autonomous road vehicles.

A key requirement for these vehicles will be the ability to

reliably localise within their prior maps regardless of the

lighting and weather conditions.

To date, successful map-based autonomous vehicles

have typically used 3D LIDAR sensors [15], which are ro-

bust to most outdoor lighting and weather conditions but

significantly increase the cost of the sensors onboard the ve-

hicle. Vision-based approaches have the potential to signifi-

cantly reduce the sensor cost, but reliable visual localisation
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Figure 1. Direct visual localisation with a dense appearance prior.

We use a robust whole-image approach to compare the live image

(top left) with a rendered 3D textured prior map (top right) col-

lected as part of a survey. At run-time, we are able to recover the

location of the vehicle (bottom) using only a single camera, de-

spite extreme changes in illumination and weather conditions (e.g.

morning snow matched to sunny afternoon). We use the same ap-

proach over multiple images to calibrate the sensors on the survey

vehicle.

in the range of illumination and weather conditions experi-

enced in a road network environment remains a challenging

open problem.

In this paper we present a large-scale evaluation of a

visual localisation system designed to handle changes in

scene appearance due to illumination intensity, direction

and spectrum as well as weather and seasonal change. We

employ a ‘direct’ approach where all pixels from the input

image are used for localisation (in contrast to interest point
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methods), and use a robust metric based on Normalised In-

formation Distance to compare the input image to a dense

textured prior map of the scene. We show how the pose of

the camera relative to the prior map can be recovered us-

ing an optimisation framework and how incorrect localisa-

tions can be rejected using odometry information, and how

the same optimisation framework can be adapted to perform

camera-LIDAR calibration for a survey vehicle.

We evaluate our system in a challenging large-scale ex-

periment using over 112km of video data from a vehicle

platform in a city environment collected over a period of

six months. Over this period of time we capture slow sea-

sonal changes in the environment, along with local dynamic

objects and weather conditions. We believe successful vi-

sual localisation results for experiments of this scale (both

in distance and duration) demonstrate promising progress

towards vision-only autonomous driving.

2. Related Work

Visual localisation in the presence of scene and illumi-

nation change is a widely studied topic; in this section we

present related work focusing on visual localisation in large-

scale outdoor environments towards autonomous road vehi-

cle applications.

Successful methods for performing outdoor visual

odometry, localisation and SLAM have typically made use

of robust point feature detectors and descriptors, such as the

well-known SIFT [17] and SURF [5]. Although effective

in applications including large-scale outdoor reconstruction

[1] and loop closure detection [8], these features have lim-

itations when used over long periods of time [12], large

viewpoint changes [11] and environmental change [31].

Recent attempts to learn robust descriptors [14] have led

to large-scale vision-based autonomous driving demonstra-

tions [33], but these methods require large amounts of train-

ing data from the same environment under different condi-

tions, which can be expensive to collect.

An alternative to point-based features for long-term out-

door localisation was presented in [24], where an indus-

trial vehicle operated autonomously in an urban environ-

ment using an architectural survey consisting of line models

of buildings as a prior map. By optimising the camera expo-

sure settings for the localisation task [23], the vehicle was

able to localise reliably in extremely challenging lighting

conditions using edge features alone. However, this method

relies entirely on man-made structures with strong edges,

which is not guaranteed for road environments.

Recent dense and semi-dense approaches to visual lo-

calisation and SLAM offer promising performance in chal-

lenging conditions. The method in [21] builds a dense scene

representation using all pixels from the input camera im-

ages, and demonstrates robustness to significant viewpoint

changes and motion blur, but has only been tested in small

indoor environments. Semi-dense approaches such as [9]

and [10] have been tested in larger outdoor environments,

but only across short periods of time. Both these meth-

ods use a photometric cost function that directly compares

pixel intensities between the camera images and the map,

and are therefore not robust to changes in lighting direction,

intensity and spectrum that occur in typical outdoor envi-

ronments over time.

To perform direct (whole-image) localisation in the

presence of illumination changes, many researchers have

made use of information-theoretic methods. Originally

adopted by the medical imaging community to align im-

ages from different modalities [19], information-theoretic

methods have become popular for matching camera im-

ages under different conditions. Caron et al. [6] performed

mutual-information-based image alignment using a vehicle-

mounted camera and a commercial 3D model of a city, eval-

uated on a number of short trajectories. Wolcott et al. [32]

demonstrated SE(2) visual localisation on an autonomous

vehicle platform using a LIDAR-based appearance prior.

Localisation in SE(3) was demonstrated using a 3D point-

cloud in [28] and using a textured mesh in [27], however

both of these were only evaluated on short trajectories in

urban environments.

Methods used to localise cameras across different

modalities have also enabled targetless camera-LIDAR cal-

ibration approaches. Napier et al. [20] generate synthetic

LIDAR reflectance images and align gradients with cam-

era images; the calibration is updated over time using a re-

cursive Bayesian process. Pandey et al. [25] perform an

optimisation process to maximise the mutual information

between the camera image and reprojected LIDAR points.

These methods offer promising results towards lifelong vi-

sual localisation and calibration; in the following sections

we present our progress towards these goals.

3. Normalised Information Distance

In this section we briefly summarise an approach to di-

rect visual localisation using the Normalised Information

Distance (NID) metric [16]. Given a camera image IC , we

seek to recover the most likely SE(3) camera location GCW

in the world frame W by minimising the following objec-

tive function:

ĜCW = argmin
GCW

NID (IC , IS (GCW , SW )) (1)

where SW is the world-frame scene geometry and texture

information, dubbed the scene prior, and IS is the render-

ing function that produces a synthetic image from location

GCW . An example camera image IC and corresponding

synthetic image IS is shown in Fig. 1. The NID metric is

defined as follows:



NID (IC , IS) =
2H (IC , IS)− H (IC)− H (IS)

H (IC , IS)
(2)

The terms H (IC) and H (IS) represent the marginal en-

tropies of IC and IS and H (IC , IS) is the joint entropy of

IC and IS , defined as follows:

H (IC) = −

n
∑

a=1

pC (a) log (pC (a)) (3)

H (IC , IS) = −
n
∑

a=1

n
∑

b=1

pC,S (a, b) log (pC,S (a, b)) (4)

where pC and pC,S are the marginal and joint distributions

of the images IC and IS , represented by n-bin discrete his-

tograms where a and b are individual bin indices. H (IS)
is defined similarly to (3) for IS . Further derivation of the

discrete distributions and their derivatives can be found in

[26].

The key advantage of the NID metric over direct photo-

metric approaches is that the distance is not a function of

the pixel values in the camera and reference images, but

a function of the distribution of values in the images [16].

Hence, NID is robust not only to global image scaling (due

to camera exposure changes) but also arbitrary colourspace

perturbations. As will become evident, this property makes

NID particularly suited to matching images under different

conditions, including changes in lighting intensity, direction

and spectrum.

The normalisation property of NID offers similar advan-

tages over conventional mutual information (MI) metrics,

as it does not depend on the total information content of

the two images; hence it will not favour matches between

highly textured image regions to the detriment of the global

image alignment [28].

4. Scene Prior Construction

To produce the world-frame scene geometry and tex-

ture information SW required for localisation, we employ a

mapping process combining cameras, low-cost 2D LIDAR

and odometry information. We assume that a subset of ‘sur-

vey’ vehicles equipped with such sensors traverse the road

network infrequently (similar to Google Street View [3]),

providing all road users with a 3D prior map that reflects

the structure and appearance of the environment at survey

time. Fig. 2 illustrates the sensor configuration of the sur-

vey vehicle.

An additional consideration is the time synchronisation

of all sensors on the survey vehicle; this is critical to ensure

points measured from the LIDAR reproject to the correct

location in the camera when the vehicle is in motion. We
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Figure 2. Vehicle configuration for mesh generation. The vehicle

is equipped with a camera C and LIDAR L related by the calibra-

tion transform GLC . As the LIDAR moves through the world it

observes points pi

t
; the collection of all point geometry and texture

information makes up the scene prior SW . The mapping process

involves generating the scene prior SW using camera images ICt

and LIDAR scans Lt using known world frame locations GCtW ;

the localisation process involves recovering the camera locations

GCtW using only camera images ICt
and the scene prior SW .

employ the TICSync library [13] to guarantee accurate syn-

chronisation between camera and LIDAR timestamps.

4.1. Scene Prior Geometry

The geometry of the scene SW is represented by a tri-

angle mesh, chosen for ease of use in graphics and render-

ing pipelines. The 2D LIDAR is mounted to the vehicle

in a vertical ‘push-broom’ configuration [4], and therefore

experiences significant out-of-plane motion. Each LIDAR

scan returns points pi
t at index i in the local frame Lt; these

points can be transformed to the world frame W pi
t as fol-

lows:

W pi
t = GCtWGLCpi

t (5)

Due to the prismatic nature of push-broom LIDAR scans,

a triangle mesh can be formed by stitching together suc-

cessive scans based on point index. We accept triangles
W t = {W p1,

W p2,
W p3} from triplets of points that sat-

isfy the following conditions:

max

∥

∥

∥

∥

∥

∥

W pi
t −

W pi+1
t

W pi+1
t −W pi

t+1
W pi

t −
W pi

t+1

∥

∥

∥

∥

∥

∥

< δ, or (6)

max

∥

∥

∥

∥

∥

∥

W pi+1
t −W pi

t+1
W pi+1

t −W pi+1

t+1
W pi

t+1 −
W pi+1

t+1

∥

∥

∥

∥

∥

∥

< δ (7)

The parameter δ represents the maximum acceptable tri-

angle edge length; for urban environments we found δ =
1m to be an acceptable threshold for meshing without in-

terpolating triangles between different objects. Fig. 3(b)

illustrates a typical mesh generated using this process.



(a) (b)

(c) (d)

Figure 3. Stages of the map building process. (a) Camera image for

a single position in the map dataset. (b) Geometric information for

map obtained from LIDAR data. (c) Mesh textured with camera

images. (d) Novel viewpoint synthesised from textured mesh.

4.2. Scene Prior Appearance

To capture the scene appearance information at survey

time, we texture the mesh using camera images collected as

part of the survey process. We use a projective texturing ap-

proach, where for each camera image ICt
we project every

triangle W t onto the camera frame:

Ct t = KG−1

CtW
W t (8)

where K is the perspective projection matrix of the camera.

For each triangle W t we find the camera pose Ct that max-

imises the area (in pixels) of the reprojected triangle Ct t; we

then store the corresponding portion of ICt
as the texture

information for W t. Using this textured mesh as the scene

prior SW we can generate synthetic images IS (GCW , SW )
at any location GCW as required for (1). Fig. 3(d) illustrates

a textured mesh generated using this process.

5. Monocular Localisation

At run-time we wish to localise a vehicle within the

scene SW using a single monocular camera C. Starting

from an initial guess ĜCW provided by the previous vehicle

position or a weak localiser such as GPS or image retrieval

[7], we seek to solve (1) using an optimisation framework.

Concretely, we iteratively solve the following quasi-Newton

objective:

xk+1 = xk − αkB
−1

k

∂NID (IC , IS (g (xk) , SW ))

∂xk
(9)

where x is a minimal 6-parameterisation of the SE(3) cam-

era location GCW and the function g (x) = GCW . Bk rep-

resents the Hessian approximation at time k, obtained using

the BFGS method [22], and αk is the step distance resulting

from a robust line search. We compute analytical deriva-

tives of the NID cost function using the method in [26] and

solve using the BFGS implementation in Ceres Solver [2].

5.1. Outlier Rejection

Due to dynamic objects occluding the scene or extreme

changes in appearance, the optimisation in (9) will occa-

sionally either fail to converge or converge to an incorrect

location. To increase robustness we use the odometry infor-

mation GCt+1Ct
to verify the consistency between succes-

sive localisations GCt
and GCt+1

. We first use the odometry

to estimate the camera location ĜCt+1
as follows:

ĜCt+1W = GCtWGCt+1Ct
(10)

We then make use of the final Hessian approximation Bk

from (9) at time t, denoted Bt, to estimate the uncertainty

of ĜCtW and propogate it to time t+ 1:

Σ̂t+1 =
∂ĜCt+1W

∂xt
B−1

t

∂ĜCt+1W

∂xt

T

(11)

where Σ̂t+1 is the estimated covariance matrix at time t+1.

Note that we assume the uncertainty of GCt+1Ct
is small

compared to the localisation uncertainty. From this we can

compute the squared Mahalanobis distance s between the

localisation estimate predicted using odometry ĜCtW and

the one obtained by camera localisation GCtW as follows:

e = g−1

(

Ĝ−1

Ct+1W
GCt+1W

)

(12)

s = eT
(

Σ̂t+1 +B−1

t+1

)

−1

e (13)

If the distance s exceeds a threshold φ, the localisa-

tion estimate GCt+1W is deemed to be an outlier and the

odometry-only estimate ĜCt+1W is substituted. In practice

we find the optimisation (9) either yields correct localisa-

tion estimates, or confidently asserts the solution is far away

from the correct location. By rejecting inconsistent sequen-

tial localisation estimates as outliers rather than attempt-

ing to fuse estimates based on their Hessian approxima-

tions (which are typically overconfident), we significantly

increase the robustness of the localisation process.

6. Multisensor Calibration

Both the meshing and texturing pipelines in Section 4

rely on accurate knowledge of the camera-LIDAR trans-

form GLC . However, if the survey vehicles traverse the

environment frequently over many years, it is unlikely that
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Figure 4. Camera-LIDAR calibration rendered using LIDAR re-

flectance information. (a) shows the reference camera image, and

(b) the resulting scene prior with a calibration estimate with an

orientation error less than 10 degrees. (c) shows the correct cal-

ibration recovered by the NID minimisation over a series of ten

images.

(a) (b)

Figure 5. NID cost surface for the calibration transform GLC in

x and y axes for (a) one image and (b) ten images. With a sin-

gle image the cost surface is rough and contains multiple minima,

depending on the local structure. By optimising over multiple lo-

cations simultaneously, the cost surface is smoother and contains

a distinct single minima. The effect is similar for the other four

axes.

a single calibration procedure performed at the factory will

be valid for the lifetime of the vehicle. A calibration error

of only a few degrees can significantly degrade the scene

prior geometry, as illustrated in Fig. 4. Instead, we wish to

determine the optimal calibration for any survey as a post-

processing stage using only data collected during normal

driving.

The key property of NID enabling camera-LIDAR cali-

bration is the ability to match between sensor modalities; in

this case, the visible light wavelengths observed by the cam-

era and the near-infrared (NIR) surface reflectance observed

by the LIDAR scanner. By observing that the scene geom-

etry SW depends on the camera-LIDAR calibration trans-

form GLC during meshing in (5), we can pose the calibra-

tion problem as follows:

ĜLC = argmin
GLC

N
∑

i

NID (ICi
, IR (GCiW , SW (GLC)))

(14)

Here IR is the rendering process that produces a synthetic

image textured using LIDAR reflectance information, as il-

100m

Figure 6. Dataset collection route. The route consists of twelve

traversals of a 9.3km route through a city centre over a period of

six months, a total of 112km of driving.

lustrated in Fig. 4. By performing the optimisation across

N images in different locations, we reduce the effect of in-

dividual scene geometry on the resulting calibration trans-

form. Empirically, we have observed that N = 10 or more

evenly spaced images (without overlap) produce smooth

cost surfaces with clear minima, as shown in Fig. 5.

7. Evaluation

We evaluated the localisation with a large-scale exper-

iment intended to test the system in a challenging au-

tonomous road vehicle scenario. We collected camera, LI-

DAR and odometry data from an autonomous vehicle plat-

form for twelve traversals of a 9.3km route in a city environ-

ment over a period of six months. The dataset consists of

over 450,000 camera images over a total distance of 112km.

The dataset collection route is shown in Fig. 6. An ex-

periment of this duration revealed conditions not often en-

countered by existing visual localisation systems; seasonal

effects including snowfalls and changes in deciduous trees

were captured as shown in Fig. 7.

For camera-LIDAR calibration and scene prior genera-

tion, we used Dataset 1 collected in November 2014. For all

remaining datasets we localised the camera relative to the

scene prior for Dataset 1 using only the camera and odome-

try information. The traversal of Dataset 12 was performed

in April 2015, 161 days after Dataset 1.

Ground truth for a dataset of this scale was challeng-

ing to obtain; although the vehicle platform was equipped

with a GPS-aided INS system, the inherent drift in the

GPS constellation over this period introduced significant

global translational offsets between datasets. We instead

performed a large-scale pose graph optimisation using all

twelve datasets with loop closures provided by FAB-MAP

[7] and manually corrected, yielding a globally consistent
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Figure 7. Camera images from a sample location for all twelve

evaluation datasets. The traversals include significant variation in

lighting and weather, including direct sunlight in dataset 5, snow in

dataset 6 and seasonal vegetation change in dataset 9. Dataset 1 is

used to build the scene prior; all subsequent datasets are matched

to dataset 1.

map for offline evaluation.

The scene prior rendering, NID value and derivative cal-

culations were all implemented in OpenGL and computed

using a single AMD Radeon R295x2 GPU. Localisation on

640x480 resolution images was performed at approximately

6Hz, where each localisation consisted of approximately 20

cost function and derivative evaluations.

8. Results

In this section we present the results obtained from eval-

uating our localiser across the datasets shown in Fig. 7.

8.1. Localisation Performance

The localisation performance of the system is shown in

Table 1. All datasets except for the one including snow

(dataset 6) achieved RMS errors of less than 30cm in trans-

lation, and most had errors of less than 1° in rotation.

Fig. 8 presents histograms of the absolute translational

and rotational localisation errors across all the evaluation

datasets. The reduction of errors beyond 5m and 5 degrees

indicates the outlier rejection method is successfully remov-

ing incorrect localisation estimates that would otherwise in-

troduce large errors. Fig. 9 illustrates the distribution of out-

liers by analysing the likelihood of travelling a certain dis-

tance without a successful localisation relative to the prior.

Despite an outlier rate of close to 10% on some datasets, the

likelihood of travelling more than 10m without a success-

ful localisation is less than 3%, and the worst-case distance

travelled using only odometry information is 40m over the

entire 100+km experiment.

8.2. Failure Cases

As shown in Table 1, close to 10% of our localisations

on some datasets result in outliers. Some typical examples

Dataset RMS Translation RMS Rotation Outlier

Error (m) Error (°) Rate (%)

2 0.2300 0.7391 3.46

3 0.2219 0.9912 2.76

4 0.2284 1.0600 8.06

5 0.1779 0.8422 2.76

6 0.3307 1.4037 7.44

7 0.2295 1.3751 5.86

8 0.2059 0.7620 1.72

9 0.2496 0.8301 9.58

10 0.2872 0.8480 4.82

11 0.2510 0.9568 5.79

12 0.2082 1.0451 4.06

Table 1. RMS errors in translation and rotation, for each dataset.

Also shown is the percentage of rejected outliers, determined as

described in Section 5.1. We achieve RMS errors less than 30cm

and 1.5° on all datasets except number 6, in which the scene was

covered in snow.

(a) (b)

+ +

Figure 8. Error histograms for translation (a) and rotation (b) for all

datasets combined. 94.5% of translational errors were under one

metre in magnitude, and 79% of rotational errors were under one

degree. Outlier rejection successfully removed the vast majority

of errors over 5m or 5°.

Figure 9. Probability of travelling more than a given distance with-

out a successful localisation. The likelihood of travelling more

than 10m without localisations (using odometry alone) is less than

3%.



(a) (b)

Figure 10. Failed localisation due to limited dynamic range. (a)

shows a location where the camera autoexposure algorithm failed

to provide a well-exposed image, and (b) shows a location with

direct sunlight in the field of view. These cases could be resolved

with a logarithmic or HDR camera.

of these failures are shown in Figs. 10–11.

Many of the localisation failures are due to poor quality

imagery, for example over-exposure and direct sunlight as

shown in Fig. 10. Imagery such as this preserves little of

the structure of the scene, resulting in shallow basins in the

NID cost surface.

Large occlusions, either in the map or the live camera

imagery, are also a common cause of localisation failure.

For example, Fig. 11(a) shows a case with a large occlusion

taking up the majority of the camera image, hence causing

localisation to fail. Fig. 11(b) has occlusions in both the live

camera imagery and the prior, and there is little in common

between the appearance of the two scenes.

9. Conclusions

We have presented a large-scale evaluation of a visual lo-

calisation approach based on Normalised Information Dis-

tance. We demonstrated its robustness and reliability in a

range of challenging conditions, including snow and sea-

sonal changes, where it was able to maintain localisation

estimates within 30cm and 1.5 degrees of the true location.

Additionally, we have illustrated progress towards lifelong

calibration for vehicles equipped with both camera and LI-

DAR sensors. We hope these results highlight the chal-

lenges of visual localisation in changing environments, and

pave the way for low-cost and long-term autonomy for fu-

ture road vehicles.

9.1. Future Work

There remain a number of scenarios for which even

NID is not able to localise; principally, localisation at night

(a) (b)

Figure 11. Failed localisation due to occlusions. (a) shows the

field of view almost entirely occluded by a bus, and (b) shows

a narrow street with many occluding vehicles and differences in

parked cars. These cases could be resolved with a higher-level

classification layer to detect and ignore dynamic objects for the

purposes of localisation.

(a) (b)

Figure 12. Failed localisation between a night-time dataset (a) and

daytime prior (b). The localisation failed to converge for all im-

ages collected at night, due to the highly non-uniform illumina-

tion. A possible solution is a separate appearance prior collected

at night, but this doubles storage requirements.

against a prior collected during the day or vica versa. We

experimented with a night-time dataset and found the op-

timisation in (9) failed to converge for all locations, as il-

lustrated in Fig. 12. Results in [18] present promising re-

sults towards 24-hour localisation, but required an appear-

ance prior collected at night as well as one collected during

the day and therefore doubles the storage requirements for

mapping any given location. We aim to continue to test

the system in more challenging scenarios (e.g. fog, heavy

rain) and characterise the performance for larger datasets

over longer periods of time.

References

[1] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless,

S. M. Seitz, and R. Szeliski. Building rome in a day. Com-



munications of the ACM, 54(10):105–112, 2011. 2

[2] S. Agarwal, K. Mierle, and Others. Ceres Solver. 4

[3] D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon,

R. Lyon, A. Ogale, L. Vincent, and J. Weaver. Google street

view: Capturing the world at street level. Computer, (6):32–

38, 2010. 3

[4] I. Baldwin and P. Newman. Road vehicle localization with

2d push-broom lidar and 3d priors. In Robotics and Automa-

tion (ICRA), 2012 IEEE International Conference on, pages

2611–2617. IEEE, 2012. 3

[5] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up

robust features. In Computer vision–ECCV 2006, pages 404–

417. Springer, 2006. 2

[6] G. Caron, A. Dame, and E. Marchand. Direct model based

visual tracking and pose estimation using mutual informa-

tion. Image and Vision Computing, 32(1):54–63, 2014. 2

[7] M. Cummins and P. Newman. FAB-MAP: Probabilistic Lo-

calization and Mapping in the Space of Appearance. The

International Journal of Robotics Research, 27(6):647–665,

2008. 4, 5

[8] M. Cummins and P. Newman. Appearance-only slam at

large scale with fab-map 2.0. The International Journal of

Robotics Research, 30(9):1100–1123, 2011. 2
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