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Abstract This paper presents a unified and model-free framework for the detection
and tracking of dynamic objects with 2D laser range finders in an autonomous driv-
ing scenario. A novel state formulation is proposed that captures joint estimates of
the sensor pose, a local static background and dynamic states of moving objects.
In addition, we contribute a new hierarchical data association algorithm to asso-
ciate raw laser measurements to observable states, and within which, a new variant
of the Joint Compatibility Branch and Bound (JCBB) algorithm is introduced for
problems with large numbers of measurements. The system is calibrated systemati-
cally on 7.5K labeled object examples and evaluated on 6K test cases, and is shown
to greatly outperform an existing industry standard targeted at the same problem
domain.

1 Introduction

In this paper, we describe a unified framework for the detection and tracking of
moving objects from a 2D laser range finder for autonomous driving applications.
The aim of this work is to formulate a light-weight standalone system that takes a
minimal number of sensory inputs to produce reliable motion estimates for only ob-
jects that are dynamic at the time of observation. Moreover and central to this work,
we place no requirement on the shape or parametric form of the tracked objects.

Recent years have seen a succession of triumphs of autonomous navigation sys-
tems on the road. Both the successes of the DARPA Grand [11] and Urban [14]
Challenges and recent demonstrations across the world heighten our community’s
belief that self-driving vehicles are truly within our reach. Safe navigation of such
systems is a challenging but yet arguably the most critical task that requires sen-
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Fig. 1 A typical system output. Detections are highlighted with bounding boxes. Frame axes at-
tached to each detection show objects’ local reference frames, and coloured points indicate esti-
mated locations of object boundary points (cf. Section 4.1). Uncertainty ellipses are shown for each
object’s estimated position, and numbers next to each detection denote unique tracking ID’s. Three
manoeuvring cars and one walking pedestrian are detected, of which two cars’ motions are being
predicted in the absence of direct observation. Note the scene clutter and it is far from easy to say
what is a car and what is not. Note also that the vehicle itself is moving from frame to frame.

sible interactions with complex dynamic environments. To be able to perceive the
dynamic aspects of the environment and predict future movements of the manoeu-
vring objects is thus essential to every successful autonomous vehicle on the road.

It has been observed by many authors [8, 16] that the problems of sensor pose
estimation, map-building and detection and tracking of dynamic objects are closely
related to each other. Removal of dynamic objects from the map-building process
enhances the quality of the map, while knowledge about the static structure of the
environment helps significantly in the successful detection of dynamic objects. Both
are in turn tightly coupled with sensor pose estimation because all observations are
made relative to the sensor. To this end, our proposed system also estimates jointly
the sensor pose, a local static background that maps the static structure around the
sensor and the dynamic states of the tracked moving objects, but with an emphasis
on the task of dynamic object detection.

Fig. 1 shows a typical output of the proposed system. As can be noted, detec-
tion and tracking of dynamic objects is particularly challenging in the urban driving
scenario due to the presence of a significant amount of background clutter, further
complicated by the fact that the sensor itself is also attached to a moving vehicle.
Despite of the difficulties, our system is able to successfully identify and track mov-
ing objects without any restriction to their type.

In what follows, Section 2 reviews existing approaches to detection and tracking
of dynamic objects. Section 3 states our main contributions in the paper. Section 4
presents the details of our proposed system. We then quantitatively evaluate the per-
formance of the proposed system with real-world data, and show that it outperforms
an industry standard solution that was designed for the same problem domain of
object tracking from a moving sensor in Section 5. Finally we conclude the paper in
Section 6.
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2 Related Works

The problem of detection and tracking of multiple manoeuvring targets has been
under active research for decades. Early efforts have been focused on the tracking
of disjoint point-like targets, and it was soon realised that the challenge lies in ob-
taining the correct association between noisy measurements and object tracks [2].

In the autonomous driving application domain, however, further complications
arise when moving targets are usually buried deep within significant background
clutter and they exhibit more complex motions than single point targets. The fact
that all observations are made relative to a moving sensor adds additional difficulty
because static obstacles may also appear dynamic due to occlusion and noise. Most
existing practical dynamic tracking systems, for example, systems deployed in the
Urban Grand Challenge [6, 7], function by first segmenting measurements from
multiple laser range finders, and then extracting geometric features from the seg-
ments, which are used to compile a list of object hypotheses. Then, the dynamic
objects are extracted as objects having a significant manoeuvring speed.

Most related to our work is a body of work that jointly estimates a static map
of the environment along side detecting and tracking of moving objects. Examples
include Toyota’s tracking system [8] and Wang’s system [16] that combines SLAM
with dynamic object tracking. Both approaches take an occupancy grid representa-
tion of the environment, and use knowledge of occupancy probabilities from the map
to propose likely moving object detections.Yang and Wang [18] propose a system
that jointly estimates the vehicle pose and moving object detections using a variant
of RANSAC, and track merging and splits are handled via a decision tree based on
spatiotemporal consistency tests. Works by Tipaldi et al. [12, 15] focus on the detec-
tion part of the problem, and formulate it under a joint Conditional Random Field
(CRF) framework for solving both the data association and moving object detection
problems.

We also mention another body of work that is targeted at detection and tracking
of particular object classes of interest. For example, Arras et al. [1] and Topp and
Christensen [13] focus on the detection and tracking of people from a laser range
finder by first detecting legs from a segmented laser scan and group them into person
tracks. Our proposed system is different in that moving objects of any class and
shape may be modelled.

3 Contributions

Our main contribution in this paper is the formulation of a unified framework that
jointly estimates the pose of the sensor, a continuously updated local static back-
ground, and the motion states of dynamic objects, with the focus on reliable detec-
tion of moving objects. All three aspects are tightly coupled through a novel joint
state representation that allows for objects of arbitrary shapes and sizes to be mod-
elled and tracked.
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In addition, we propose a hierarchical data association algorithm to assign raw
laser measurements to potential state updates, and present a greedy variant of the
Joint Compatibility Branch and Bound (JCBB) algorithm [9] that is suitable for
associating a large number of measurements.

4 Model-Free Tracking of Moving Objects

The system we propose is run within a recursive Bayesian framework (implemented
as an Extended Kalman Filter). In this section, we describe in detail the system
formulation in terms of state representation, prediction and measurement models as
well as how data association is handled within the same framework.

4.1 An Unusual State Representation

The motions of dynamic objects can be arbitrary and independent of each other. The
sensor, however, does not observe their motions directly but ranges and bearings of
points on the surface of the objects. Thus once conditioned on the measurements,
motions between different objects become correlated, due to the fact that these ob-
servations are taken from a moving sensor.

In order to correctly account for this correlation, the states of the objects and that
of the sensor have to be estimated in a single joint distribution. A local static back-
ground is also simultaneously estimated as part of the joint state which is essential to
distinguishing measurements belonging to dynamic objects from those from static
objects. The state therefore consists of three parts: the sensor pose, the dynamic
objects, and the static map.

Sensor Pose Representation and Related The sensor pose xS = [α,β ,ψ]T is rep-
resented by a 2D transform from the sensor’s frame of reference to a stationary
world frame of reference as depicted in Fig. 2(a), which is updated by vehicle odom-
etry measurements at the prediction stage, and by laser measurements as part of the
update stage as will be described in Section 4.2.

Since the holonomic constraints apply to the vehicle but not to the sensor di-
rectly, and odometry measurements are naturally referenced to the vehicle’s frame
of reference, the transform between the sensor and vehicle’s frames of reference are
required. To account for uncertainties in this estimated transform, we include it as
part of the state as xC = [δα,δβ ,δψ]T . This is the 2D transform that transforms
points from the sensor frame into the vehicle frame.

Model-Free Object Representation For convenience of description, in what fol-
lows, we will also refer to dynamic objects as “tracks”, since their motion state is
continuously being tracked. Each dynamic object i has its own set of axes Ti, thus
its motion state is represented by the 6-vector xi

T = [γi,δi,φi, γ̇i, δ̇i, φ̇i]
T as shown in
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Fig. 2 Illustrations of frame conventions and variable definitions. (a) Transform from the sensor
frame to the world frame. (b) Transform from a track frame to the world frame, with boundary
points represented locally to the track frame.

Fig. 2(b) (the subscript i is dropped to avoid clutter). What is unusual about our
representation is however, that none of these states are directly observed according
to the observation model. Instead, each object has additional state parameters at-
tached, named the “boundary point” coordinates, that are 2D cartesian coordinates
represented locally to the object’s frame of reference as illustrated in Fig. 2(b). It is
these boundary points that are directly observed according to our observation model.

To understand the intuition behind boundary points, consider the case of a mov-
ing object being illuminated by the lidar for the first time. The set of raw range and
bearing measurements Z is used to initialise a new track with its 6-vector states plus
boundary points at the locations of the raw measurements in Z but transformed into
the object’s frame of reference (hence the name “boundary points” because the lidar
impinges on the boundary of the object). All subsequent measurements (lidar illu-
minations) will be taken to be noisy observations of these boundary points on the
object.

This model-free representation raises an interesting and central data association
question. We must decide whether or not to extend the object’s boundary by ini-
tialising additional boundary points with new raw lidar measurements or simply
associate the laser returns to the existing boundary points as it stands. Furthermore,
which of the laser returns belong to the static background and hence have nothing
to do with dynamic objects whatsoever? Our approach to data association lies at the
heart of this work and is detailed in Section 4.3.2.

We make the assumption that dynamic objects observed in the 2D scanning plane
of the sensor behave as rigid bodies. This assumption, though does not hold strictly
true due to deformable bodies such as a walking pedestrian, is a close approximation
when observations are constrained to the 2D plane. Under this assumption, boundary
points stay fixed relative to the object’s frame of reference and hence their states are
unaltered at forward-prediction.

With the introduction of boundary points, each object is thus parameterised with
a partial outline of its perimeter allowing objects of arbitrary shapes and dimensions
to be modelled under the same representation.



6 Dominic Zeng Wang, Ingmar Posner and Paul Newman

Static Background Representation The representation for the static part of the
state is simply a collection of boundary points as in the case of a dynamic object,
except boundary points on the static background are represented with their global
2D cartesian coordinates in the world’s reference frame.

The Complete State Structure The complete state x consists of all parts described
above, and is arranged as follows:

x = [xT
S ,x

T
T ,x

T
b ,x

T
p ,x

T
C ]

T , (1)

where xS is the sensor pose, xT the collection of all 6-vector motion states of dy-
namic objects, xb the collection of boundary points on the static background, xp the
collection of all boundary points of all dynamic objects arranged sequentially, and
finally, xC, the extrinsic calibration parameters of the sensor.

4.2 Top Level Algorithm Description

In this section, we give a top level description of the algorithm. Each time a new
measurement arrives, the mean x̂ and covariance P of the joint state are updated
differently according to the type of the measurement (odometry or laser).

Odometry Measurement Processing In general, odometry measurements arrive
at a much higher frequency than laser measurements, they need to be processed very
efficiently, and therefore only forward-prediction of the sensor pose state taking the
odometry measurement as a noisy control input is carried out in this case.

Laser Measurement Processing When a new laser scan frame arrives, the current
state is first tested against out-of-date dynamic tracks and boundary points on the
static background that have fallen out of the sensor’s field of view. These are re-
moved from the joint state. It also determines parts of the static background that
have changed due to a static object transitioning into a dynamic state, hence must
be removed to allow a new dynamic track to be initiated. Next, the motion part of
all dynamic tracks is forward-predicted according to an appropriate motion model
as will be described in Section 4.3.1, and followed by data association and mea-
surement updates (Section 4.3.2). Finally, any tracks appear to be static are merged
with the map, and adjacent tracks following the same rigid body motion are merged
into a single track. The latter is to account for the situation that occasionally a large
object is tracked as different “pieces”, and this allows for the pieces to be put back
into a single object. This merging procedure is described in Section 4.3.3.
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4.3 Detailed Algorithm Description

4.3.1 Dynamic Object Motion Prediction

At the prediction step after conducting a laser measurement, all dynamic tracks are
predicted forward according to a generic motion model before being updated with
the measurements. To capture a wide range of dynamic objects, it is desirable to use
a general motion model. In this work, all dynamic tracks are assumed to follow the
constant velocity model [2, Chapter 6].

4.3.2 Hierarchical Data Association

Not all state variables in the joint state (Section 4.1) are directly observable, for the
ones that are, namely boundary points on either the static background or any dy-
namic object, it is ambiguous which is being observed, which is not, and indeed,
whether a new boundary point needs to be initialised. Thus when new laser mea-
surements arrive, it has to be determined for each measurement that

1. It is an observation on a static object.

a. It is an observation of an existing boundary point.
b. It is an observation of a new boundary point.

2. It is an observation on an existing dynamic object.

a. It is an observation of an existing boundary point on the object.
b. It is an observation of a new boundary point on the object.

3. It is an observation on a new dynamic object.

In addition, in case 2, it has also to be determined to which of the existing dynamic
objects the measurement belongs to, and in case 3, how many new tracks need to be
initialised.

This data association problem naturally breaks down into two levels. The first
level operates at the coarse scale, in which measurements are first divided into clus-
ters, and each cluster is assigned to either the static background, or a dynamic object,
or used to initialise a new dynamic track. At the fine level, for each object (or the
static background), measurements from the associated clusters are further associated
with its existing boundary points or used to initialise new boundary points.

Coarse Level Data Association The measurements in a given laser scan are first
divided into a set of clusters C = {C1,C2, . . . ,C|C |}. The clusters are then assigned
to the static background and dynamic objects recursively with the ICP [3] algorithm
as follows. First, boundary points on the static background are aligned to the set of
measurements Z with ICP, and clusters in C which contains measurements matched
to any boundary points on the static background in this way are associated to the
static background, and used to update or initialise new boundary points at the fine
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level for the static backgournd. Then the associated clusters are removed from C
and a similar procedure follows recursively for each dynamic track. The clusters that
remain in C at the end of this process are thus not associated with any existing track
(or the static background), and each cluster will initialise a new tentative dynamic
track as will be detailed in Section 4.3.3.

Fine Level Data Association Given a set of clusters associated with a certain track
(or the static background), the fine level data association must find a matching sat-
isfying certain desirable criteria that assigns measurements contained in the clusters
to boundary points on the track. Correct assignment is critical to successful track-
ing, and, the stability of the system as a whole, due to the fact that correlation is
introduced between all pairs of variables in the joint state. In particular, all state
variables we would like to infer: the sensor pose, the dynamic states of the tracked
objects, are not directly observed.

Joint Compatibility Branch and Bound (JCBB) [9] is a well-known data associ-
ation algorithm that takes into account the correlations between observations. Ex-
plained in our nomenclature, an association between the set of measurements and
the set of boundary points is called a feasible association if:

1. Each measurement is associated to at most one boundary point, and no two mea-
surements are associated to the same boundary point (one-one association).

2. Each matching of a measurement to a boundary point is individually compatible
as described below (individual compatibility).

3. The overall data association is jointly compatible as described below (joint com-
patibility).

To clarify the concepts of individual and joint compatibilities, consider a bound-
ary point whose observation model has the standard form z j = h j(x)+w j. Here x
is the joint state defined in Section 4.1, and w j is the additive zero-mean measure-
ment noise. Thus its innovation covariance matrix is S j = H jPHT

j +R. Here H j
is the Jacobian of the function h j evaluated at the current state mean, and R is the
measurement noise covariance matrix (we assume all measurements have the same
noise covariance matrix).

Individual Compatibility Individual compatibility requires the assigned measure-
ment ẑi must fall within a certain confidence region of boundary point j’s validation
gate, i.e. an assignment of ẑi to z j is individually compatible if:

(ẑi−h j(x̂))T S−1
j (ẑi−h j(x̂))≤ χ

2
d,α , (2)

where χ2
d,α is the χ2 validation gate threshold of degree of freedom d and confi-

dence level α . Here, d is the measurement dimension, hence d = 2, because each
measurement contains a range and a bearing ẑ = [r̂, θ̂ ]T .

Joint Compatibility Under the assumption of independent observations, the joint
observation model of a complete association σ is given by

hσ (x) = [hT
σ(1)(x),h

T
σ(2)(x), . . .]

T , (3)
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with the innovation covariance

Sσ =




Hσ(1)PHσ(1)
T +R Hσ(1)PHσ(2)

T . . .

Hσ(2)PHσ(1)
T Hσ(2)PHσ(2)

T +R
...

. . .


 , (4)

where σ(1) denotes the index of the boundary point associated to the first assigned
measurement and so on. Thus the joint measurement has dimension Nad if the num-
ber of assigned measurements is Na. An association σ is jointly compatible if

(ẑσ −hσ (x̂))T S−1
σ (ẑσ −hσ (x̂))≤ χ

2
Nad,α . (5)

Here ẑσ is the collection of the measurements that are assigned to some boundary
point according to association σ .

The JCBB algorithm then finds the feasible association that has the largest num-
ber of assigned measurements N∗a . Since there are in general many feasible associa-
tions with Na = N∗a , the algorithm finds the association σ∗ that gives the lowest joint
Normalised Innovation Squared (jNIS, defined to be the expression to the left of the
inequality in Equation 5).

The JCBB-Refine Algorithm Unfortunately, the JCBB algorithm is an exponen-
tial algorithm in the number of measurements to be assigned. This means it is not
directly applicable to our application domain, since in our case observations are raw
laser measurements.

We introduce the JCBB-Refine algorithm, which instead of aiming to find the
optimum assignment σ∗, we only find a good association σ̃ that is feasible. Of
course, there are many feasible associations, a good association must be measured
relative to some gauge. The JCBB-Refine algorithm we propose here takes an initial
association σ0 as a starting point, and finds a feasible association that has as many
assigned measurements and as low a jNIS as possible in a greedy manner while
respecting the initial association σ0. The initial association σ0 can be arbitrary, i.e.
it does not have to be feasible. In fact, none of the feasibility conditions has to be
satisfied.

Given σ0, the algorithm first removes assignments that do not comply with in-
dividual compatibility (i.e. noncompliant measurements become unassociated with
any boundary point), and then removes duplicate assignments with a single pass
through the measurements. After these, the resulting association satisfies feasibility
conditions 1 and 2. The algorithm then proceeds to iteratively removing the assign-
ment that leads to the most jNIS reduction until condition 3 is satisfied. Starting
from this minimal set of assignments that is now feasible, the unassociated mea-
surements are then tried in turn, and assigned to the boundary point (among the
boundary points that are individually compatible and yet unassigned) that gives the
lowest jNIS if the assignment does not violate joint compatibility. The resulting
association is thus guaranteed to remain feasible.

The JCBB-Refine algorithm can be initialised with any sensible starting assign-
ment σ0. In our particular application, the assignment as a result of the ICP matching
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at the coarse level association is a natural starting point. The association after the re-
finement is then used to update the joint state with the associated measurements, and
all unassociated measurements initialise new boundary points to extend the object
boundary. Explicit forms of our observation models for different types of boundary
points are stated in an appendix.

Recursive Updates in Triangular Form It is shown [9] that the innovation covari-
ance matrix S, its inverse, and the jNIS can be computed recursively as hypotheses
are being tested. However in its direct form, the recursion suffers from numerical
stability issues when the number of measurements becomes large because both S
and S−1 have to be maintained to be positive definite. We show the same computa-
tion can be achieved in the triangular form, which is a numerically stable represen-
tation for positive definite matrices.

To begin with, at step k, assume a decomposition for Sk is given such that
Sk = UT

k Uk for some upper triangular matrix Uk, for example through Cholesky
decomposition, so that S−1

k = GkGT
k , Gk = U−1

k (note Gk is also upper triangular).
And the next iteration selects a new boundary point to be assigned to a measurement
such that

Sk+1 =

[
Sk WT

k
Wk Nk

]
. (6)

Then it can be shown that

Uk+1 =

[
Uk RT

k
0 Fk

]
, (7)

where Rk = WkGk, Fk = chol(Nk−RkRT
k ), and

Gk+1 =

[
Gk −GkRT

k Mk
0 Mk

]
, (8)

where Mk = F−1
k . In addition, we keep track of a vector ξξξ k = GT

k νννk. Its update
equation is given by ξξξ k+1 = [ξξξ T

k ,µµµ
T
k ]

T where µµµk = MT
k (ν̃ννk −Rkξξξ k). Here, ν̃ννk is

the innovation vector of the newly assigned measurement. And the jNIS can be
updated simply as jNISk+1 = jNISk + µµµ

T
k µµµk. Given Uk, Gk and ξξξ k at any stage of

the computation, the innovation covariance Sk, its inverse and the innovation vector
νννk can be easily retrieved if needed.

We note this form has the same computational complexity as the recursion intro-
duced in [9], but is more numerically stable.

4.3.3 Track Initialisation and Merging

The initialisation of new dynamic tracks is non-trivial because we have to ensure
that only new dynamic objects are initialised into new tracks and static objects are
merged with the static background. To this purpose, we apply the technique of con-
strained initialisation [17], where each new track’s motion status is deferred until it
has accumulated enough evidence to make the correct decision. Specifically, a new
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track is first marked as “tentative” when initialised, and becomes “mature” only if it
is continuously being observed for more than a fixed number of frames (otherwise
it is dropped). Then it is tested against the static background, and each existing dy-
namic track in turn for merging. The test and merging are all handled consistently
within the same Bayesian filtering framework. If all merging tests fail, it is declared
“established” and added to the set of existing dynamic tracks.

In the case of testing against merging with the static background, a fictitious
noiseless measurement of values all zero on the absolute velocity (including the
angular velocity) of the tentative track is considered. If this measurement passes
the validation gate, the tentative track is considered to be a static object, therefore
should be merged into the static background. The fictitious measurement is hence
used to update the joint state x as if it was an actual sensor measurement. After the
update, all available information from the track will have been transferred to the
rest of the joint states, and it can be safely marginalised out after copying over its
boundary points to the static background to complete the merge. A similar procedure
applies to merging tests with an existing dynamic track. In this case, the fictitious
measurement applies to the relative motion of the tentative track to the existing track
under consideration.

The same merging procedure is also conducted at the end of each processing
cycle for testing each existing track against merging with the static background and
other existing tracks as mentioned in Section 4.2.

5 System Evaluation

In this section, we quantitatively evaluate the proposed system, and compare its
performance against an industrial standard solution for benchmarking. We note there
exists a large body of work on similar application domains (For example, [8, 7, 16]),
however it is often difficult to obtain a fair quantitative comparison to the methods
due to either a lack of quantitative results or difficulty of a direct comparison using
a common dataset.

5.1 Experiment Setup

Our experiment platform is a modified Nissan Leaf that is equipped with a SICK
LDMRS laser scanner, which is a scanner targeted at object tracking applications
on mobile platforms. It scans the environment in four vertically separated scanning
planes at 12.5Hz and produces native object tracking information at the same time.
Odometry information is provided internally as part of the vehicle state at 100Hz.

We collected data of busy traffic at the centre of Oxford containing a variety of
dynamic objects including pedestrians, cars, bicyclists, buses, trucks, motorcycles
and so on, and extracted two busy sections of the log right at the centre of the city
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Table 1 Details of the training and test datasets. Here each count of an “object” is a single obser-
vation of an object instance in a single laser scan frame.

Dataset No. Laser Frames Duration (min) Drive Length (km) No. Objects

Training 3508 4.68 1.04 7517
Test 2151 2.87 0.82 5928

for evaluation. One dataset is used to find the best-performing parameter set, and is
hence named the training set, and the other, the test set, is used to obtain unbiased
test results running under the trained parameter set for fair comparison. Table 1
lists the details of the two datasets respectively. Ground truth detections of dynamic
objects are obtained from both datasets by manual labelling.

5.2 Evaluation Metric and System Training

We evaluate the system’s ability to detect dynamic objects against the ground truth
using the standard Precision and Recall metrics. Specifically, Precision and Recall
are computed over the detected object boxes against the hand-labeled ground truth
object boxes using the overlapping criterion as is commonly used in the computer
vision community [4]. An object box is marked as a true detection if it overlaps
with a ground truth object box by more than a fixed percentage threshold. In all our
results, we use 0.5 as the percentage overlap threshold. And a detection is matched
to at most one ground truth object, and multiple detections of the same ground truth
object are treated as false positives.

To train the system for best performing parameter sets, we follow an approach
similar to that described in [5] as follows: both Precision P and Recall R are func-
tions of system parameters, thus if the number of system parameters exceeds one,
the set of all feasible (R,P) pairs will in general occupy a continuous 2D space in the
R-P plane. The best parameters are then the parameters that give rise to the (R,P)
pairs at the frontier of the feasible region (conceptually corresponds to the top-right
boundary of the feasible region, see Fig. 3(a) for an example).

Formally, the 2D feasible region parameterised by the set of all possible param-
eters P is given by F = {(R(p),P(p)) : p ∈P}, the frontier parameter set of F
is given by F = {q ∈P : ∀p ∈P, R(p)≤ R(q) or P(p)≤ P(q)}. In other words,
a parameter set is in F if and only if it is not possible to achieve both a higher
Precision and a higher Recall.

To find this frontier parameter set, we apply a Bayesian parameter tuning al-
gorithm developed by Snoek et al. [10] to bias the search in the high-dimensional
parameter space to look for satisfactory parameter settings, and obtain an approxi-
mation to the frontier parameter set by finding the upper part of the convex hull of
the obtained (R,P) scatter plot. Fig. 3(a) shows the obtained 1803 sample parameter
settings with the algorithm, and the the blue curve shows the extracted frontier.
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Fig. 3 (a) Scatter plot of the obtained 1803 sample parameter settings using [10] with the estimated
frontier overlaid. (b) Precision-Recall tuning curves for the proposed system and the SICK LDMRS
native tracking system.

Since the SICK LDMRS native tracking system clusters each incoming scan and
keeps track of every cluster, it makes no distinction between static and dynamic ob-
jects. To compare the systems under the same setting, we take tracks with estimated
speeds higher than a given threshold to be the detected dynamic objects. It would
be desirable to be able to fine-tune the parameters of the LDMRS’s native tracking
system. However, the most critical parameters are fixed internally to the sensor, and
modifications are unfortunately not feasible.

Fig. 3(b) presents the Precision-Recall curves for the proposed, and LDMRS’s
native tracking systems. The curve of the LDMRS’s native system is generated by
varying the speed threshold as described above. As can be seen, the proposed system
outperforms the LDMRS’s native system by a significant margin. This is somewhat
expected, since the LDMRS’s native system tracks only the cluster centroids, which
are not stable reference points on the objects to track due to occlusions and depen-
dency on the sensor viewpoint. On the other hand, the proposed system enforces
each track’s frame of reference to be attached rigidly to the object, and dynamic
objects are explicitly handled differently to static ones.

5.3 Test Case Performance

Given a range of operating points along the Precision-Recall curve, we choose em-
pirically a single parameter setting that achieves the best balanced performance
from Fig. 3 for each system. Specifically we choose the parameter setting that gives
R= 0.53 and P= 0.57 for the proposed system and the speed threshold that achieves
R = 0.69 and P = 0.05 for the LDMRS’s native system. All experiments that follow
report metrics evaluated on the test dataset using these chosen operating points.

Fig. 4(a) and (b) show performance metrics for the two systems on the test dataset
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Fig. 4 (a) Precision and Recall versus operating radius for the proposed system. (b) Precision
and Recall versus operating radius for the SICK LDMRS’s native system. (c) F1-measure versus
operating radius for both systems. (d) F1-measure over past 100 frames versus frame number for
both systems.

as the detection range is varied. Both show a decreasing trend on both Precision and
Recall as the detection radius increases. Fig. 4(c) places the systems under common
axes for comparison. From the figure, although the close-range performances are
similar (with the proposed system slightly outperforming), the difference is signifi-
cant from 20m onwards.

Fig. 4(d) compares the instantaneous performance at each frame of the two sys-
tems. F1-measures are evaluated at each frame based on detections of the past 100
frames for each system, and results are plotted against the frame number. While
the proposed system outperforms the LDMRS at most frames, there are occa-
sional performance drops. Closer inspection into the dataset reveals that around
Frame 400 there exists a period of driving with very few number of dynamic ob-
jects present, hence the apparent low performance from both systems. However,
near to Frame 1300, many walking pedestrians close to background clutter are
present which are missed out by the proposed system due to segmentation failure.
The LDMRS performs better in this scenario but in sacrifice of Precision.

Our current prototype implementation of the proposed system in MATLAB runs
in real-time at 2Hz on a MacBook Pro equipped with a duo-core 2.4GHz Intel i5
CPU and 4GB of RAM.

6 Conclusions

We presented a unified framework for jointly estimating the sensor pose, a local
static background and dynamic states of moving objects, focused mainly on accu-



A New Approach to Model-Free Tracking with 2D Lidar 15

rate moving object detection. Observations in our formulation are raw sensor mea-
surements and object states are inferred as hidden variables under a rigid body con-
straint.

Within the same unified framework, we proposed a novel two-level data asso-
ciation algorithm that takes benefits of both the density of observations and strong
correlations between them. A new variant of the JCBB [9] algorithm was suggested
to tackle with large numbers of measurements, and a solution to numerical stability
issues under such scenarios was also presented.

The proposed system was tuned systematically, and demonstrated to outperform
an existing industry standard.
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Appendix

In this appendix, we state the exact forms of the observation models applied to
boundary points on the static background and dynamic objects respectively. All
variables involved in what follows are defined in Section 4.1, and the function u
maps a pair of 2D cartesian coordinates into polar coordinates.

Each boundary point j on the static background may potentially generate a laser
measurement z = [r,θ ]T , and hence its measurement model is the boundary point’s
location in polar coordinates in the sensor’s frame of reference:

h j(x) = u(g(xS,b j)) , g(xS,b j) = RT (ψ)

([
x j
y j

]
−
[

α

β

])
. (9)

Each boundary point j on any dynamic track i may also give rise to a laser mea-
surement, and the measurement model in this case is the 2D polar coordinates of the
boundary point in the sensor frame, and is given by:

h j(x) = u(g(xS,xi
T ,p

i
j)) , g(xS,xi

T ,p
i
j) = RT (ψ)

(
R(φi)

[
xi

j
yi

j

]
+

[
γi
δi

]
−
[

α

β

])
.

(10)
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