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Abstract

Our long-term goal is to develop a general solution to the Life-
long Robotic Object Discovery (LROD) problem: to discover
new objects in the environment while the robot operates, for
as long as the robot operates. In this paper, we consider the
first step towards LROD: we automatically process the raw data
stream of an entire workday of a robotic agent to discover ob-
jects.

Our key contribution to achieve this goal is to incorporate do-
main knowledge—robotic metadata—in the discovery process,
in addition to visual data. We propose a general graph-based
formulation for LROD in which generic domain knowledge is
encoded as constraints. To make long-term object discovery
feasible, we encode into our formulation the natural constraints
and non-visual sensory information in service robotics. A key
advantage of our generic formulation is that we can add, mod-
ify, or remove sources of domain knowledge dynamically, as they
become available or as conditions change.

In our experiments, we show that by adding domain knowl-
edge we discover 2.7× more objects and decrease processing
time 190 times. With our optimized implementation, Herb-
Disc, we show for the first time a system that processes a video
stream of 6 h 20 min of continuous exploration in cluttered hu-
man environments (and over half a million images) in 18 min
34 s, to discover 206 new objects with their 3D models.

1 Introduction

An important goal in the field of service robotics is to achieve
lifelong autonomy, interacting with non-expert users and oper-
ating in regular households. In this scenario, a robot should
learn about the objects in the household to manipulate them;
and learn constantly, as things change often. Large databases of
precomputed objects are useful for common objects, but discov-
ering new objects in the environment is critical for true lifelong
autonomy in service robotics. Our long-term goal is to develop
a general solution to the problem of discovering new objects in
the environment while the robot operates, for as long as the
robot operates. We term this problem as the Lifelong Robotic
Object Discovery (LROD) problem. A specialization of the Un-
supervised Object Discovery problem (e.g., Russell et al. (2006),

∗Alvaro Collet, Martial Hebert, and Siddhartha S. Srinivasa are with
The Robotics Institute, Carnegie Mellon University, USA. {acollet,
hebert, siddh}@cs.cmu.edu
†Bo Xiong is with Connecticut College, USA. bxiong@conncoll.edu
‡Corina Gurau is with Jacobs University, Germany.

cgurau@jacobs-university.de

 
 

 
 

 
 

(a) 

(c) 

(e) 

(b) 

Metadata 

(d) 

Figure 1: Example of Object Discovery with Metadata (figure best
viewed in color). (Top) Robotic agent navigates through office en-
vironment storing an RGBD video stream and localization informa-
tion. (a) Spatial/temporal constraints separate the video stream
in subsets red, green and blue. (b) Images in the sequence are
segmented to generate object candidates. (c) Object Discovery
with Metadata: the different sequence subsets are processed inde-
pendently for efficiency, using robot localization, object size/shape
constraints and external knowledge to find (d) individual object in-
stances. (e) Global Object Discovery performed on discovered object
instances (d) to obtain a single representation for each object.
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Kang et al. (2011)), LROD focuses on massive datasets of dy-
namic human environments gathered by a robotic agent.

As a first step towards LROD, we automatically process the
raw video stream of an entire workday of a robotic agent. Con-
sidering the autonomy and charging times of current service
robots (e.g., Srinivasa et al. (2010)), a robotic workday amounts
to approximately 6-8 hours of raw sensor data (e.g., RGBD
video feed) and over half a million data samples (e.g., RGBD
images). We show for the first time a system that processes, in
under 19 minutes, hundreds of thousands of samples and over 6
h of continous exploration, to discover hundreds of new objects
in cluttered human environments.

The goal of Unsupervised Object Discovery is to jointly seg-
ment and learn the appearance of unknown objects in the envi-
ronment. Unsupervised Object Discovery is a very challenging
problem, partially because it is ill-defined: there is no clear def-
inition of object. Most research in this area models objects as
recurring patterns in the data, thus attempting to jointly seg-
ment and learn the appearance of objects by searching for such
patterns. Generic techniques for Unsupervised Object Discov-
ery do not scale well to the volume and complexity of the LROD
input data stream. In massive datasets of millions of samples,
with cluttered scenes containing many small and similar-looking
objects, recurring visual patterns appear everywhere. In addi-
tion, the computational cost of finding recurring patterns sky-
rockets as the amount of data to process grows.

Consider the example in Fig. 1, in which a robotic agent nav-
igates through an office environment recording an RGBD video
stream (Fig. 1(a)). Unsupervised Object Discovery techniques
(e.g., Kang et al. (2011)) create a pool of object candidates (e.g.,
the RGBD regions in Fig. 1(b)), which are represented as nodes
in a pairwise graph (Fig. 1(c)). The graph edges are computed
by comparing the visual similarity between every pair of ob-
ject candidates. Then, clustering techniques are used to group
similar object candidates —recurring patterns— (Fig. 1(d-e)).
Building the pairwise graph requires O(n2) similarity compar-
isons; as the length of the video stream grows, this cost becomes
prohibitively expensive. Most of the computation time is spent
comparing candidates with very low likelihood of being grouped
together (e.g., the candidates in the corridor in Fig. 1(b)(left)
and the kitchen in Fig. 1(b)(right)). If we analyze the input
data stream based on the visual information alone, we are forced
to evaluate every pair of object candidates. However, we know
intuitively that objects in the kitchen and objects in the corri-
dor have little in common. We also know that two data samples
acquired in the same location within a few seconds of each other
are more likely to contain the same objects than data samples
acquired in different years. We can use this external informa-
tion, this metadata, to drastically reduce the computation time
and improve the quality of the discovered objects.

Our key insight to making LROD feasible is to incorporate
robotic metadata. The data gathered by a service robot is not
just an unordered collection of anonymous images. First, range
data is also available. In addition, we may also know where
and/or when the images are captured, as well as their ordering;
we may know where interesting objects usually appear for a par-

ticular environment, such as in tables or cabinets; we may have
additional sensing (e.g., robot localization, odometry) for some
or all the images; or we may only be interested in objects of cer-
tain sizes or shapes relevant to the robot. In our work, we define
robotic metadata as any source of additional information about
the visual/range data. Our definition of robotic metadata in-
cludes any additional robotic sensing, assumptions, or prior in-
formation about the objects, environment, the robot’s sensors,
or task; in short, any non-visual data that can provide infor-
mation about the object candidates. Consider the example in
Fig. 1, now using metadata. A robotic agent navigates through
an office environment recording an RGBD video stream, using
the robot’s location and data acquisition timestamps to sepa-
rate the data stream (the red-blue-green subsets in Fig. 1(a)).
The object candidates for each subset (Fig. 1(b)) are compared
only within the same subset. The pairwise graphs in Fig. 1(c)
encode the visual similarity between candidates, as well as other
cues such as if candidates overlap in space, or object priors
based on the robot’s grasping capabilities. In the clustering
step (Fig. 1(d)), we group object candidates with similar visual
information and metadata. The metadata-augmented similar-
ity graphs encode local information to discover individual ob-
ject instances, and we may discover multiple instances of the
same objects in different data subsets. We perform a global
clustering step (Fig. 1(e)) to join the multiple object instances
as single object models.

The main theoretical contribution of this work is a general
framework for object discovery that leverages any form of meta-
data, and in particular the natural constraints that arise in ser-
vice robotics scenarios. Multiple works in the robotics litera-
ture use specific types of metadata (see Section 3 for references),
often by imposing restrictions on the environment, data acqui-
sition, or agent motion, to improve performance at the cost of
limited applicability when the assumptions are violated. Spe-
cific solutions could be implemented to use particular sources of
metadata, but the solutions would lack adaptability, degrading
with any environment changes during the lifetime of the robotic
agent. For LROD, we need instead a general architecture to op-
portunistically leverage and adapt to the available metadata,
and incorporate new metadata as it becomes available.

In our formulation, we do not distinguish between visual sim-
ilarity and robotic metadata. We encode all similarities and
metadata as an intermediate representation that we term a
constraint. The definition of a constraint is very simple: a
measurable yes/no question about an object candidate or a re-
lationship between candidates, with some p—a probability of
success—about the answer. For example, an appearance sim-
ilarity function s(·, ·) is encoded as the constraint “are candi-
dates hi and hj similar in appearance?”. The answer would be
yes/no, with probability p = s(hi, hj). Metadata can be simi-
larly encoded as constraints, as we describe in detail in Section 5
and Section 7.

With this intermediate representation of constraints, we can
seamlessly combine multiple similarities and other metadata
sources. We define a set of logic operations over constraints
to form complex constraint expressions that encode all our

2



knowledge relevant to discover objects. We formulate the gen-
eral LROD problem as a distributed partitioning of graphs
built over constraints, which we term Constrained Similarity
Graphs (CSGs). Our distributed graph partitioning formula-
tion is shown in Fig. 1(d-e), and the CSGs are illustrated in
Fig. 1(c).

These CSGs, when coupled with service robotics constraints,
are by construction much sparser than regular visual similar-
ity graphs, and produce many connected components. With
service robotics constraints, this graph sparsity effectively re-
duces the number of visual similarities to compute—the most
expensive operations—from O(n2) (with respect to the number
of images n) to O(n), as well as greatly improving the perfor-
mance of the graph partitioning algorithm. In addition, our
constraints-based formulation is general, in the sense that it
covers both generic Unsupervised Object Discovery algorithms
(e.g., Russell et al. (2006), Kang et al. (2011)) and purpose-
specific algorithms (e.g., Morwald et al. (2010)).

Our main applied contribution is HerbDisc, an optimized im-
plementation of this framework in the robotic system HERB
(Srinivasa et al., 2010). Our framework seamlessly integrates
visual and 3D shape similarity with spatial and temporal con-
straints, size/shape object priors, and motion information in a
flexible and extensible way. We drove our service robot to over
200 offices from 4 floors of a university building, recording 6h
20m of continuous RGBD video of real human environments,
totaling over half a million images. HerbDisc processed this
dataset in 18 min 34 s using a single quad-core machine and
discovered 206 novel objects (44.5% precision, 28.6% recall),
showcasing both the efficiency of this framework and the ro-
bustness of its results.

Preliminary versions of this work have been published at Col-
let (2012), Collet et al. (2013).

2 Problem Formulation

Consider the example of Robotic Object Discovery shown in
Fig. 2. We identify five major components. The World Ω rep-
resents the underlying physical phenomenon (i.e., the environ-
ment) where we discover objects. A physical agent A (e.g., a
robot) gathers data through observation or interaction with the
world Ω. The physical agent uses sensors S (e.g., a camera) to
gather data samples I (e.g., images). A candidate generator H
produces object candidates h from data samples. Finally, the
discoverer D groups recurring object candidates into objects.

In this paper, we describe a general architecture for an object
discoverer D that uses metadata from the world Ω, the phys-
ical agent A and the sensors S, alongside visual information
from the object candidates h, to discover objects robustly and
efficiently.

2.1 Inputs and Outputs

The visual input to HerbDisc is a set I of N images with asso-
ciated range data:

I = {I1, . . . , In, . . . , IN} In = {Irgbn , IPn }, (1)

where Irgbn is the set of color RGB values in image n, and IPn
is the set of 3D points available from the viewpoint of image n.

A candidate generator H generates a set of data fragments h
from image and range data in I, which we consider the object
candidates. Each object candidate

hi = {hrgbi , hPi , h
Φ
i } (2)

is characterized by a set of color pixels hrgbi , a set of 3D points
hPi , and a set of metadata attributes hΦi .

The output of this framework is a set of metric 3D models of
objects M . Each object model

Mk = {Mrgb
k ,MP

k ,M
h
k } (3)

is characterized by the set of object candidates Mh
k =

{h1,k, . . . , hi,k, . . .} used to create object Mk, and by the set

of colored 3D points Mrgb
k ,MP

k that comprise its 3D model.

2.2 Constraints

Constraints encode generic information about an object can-
didate hi or a relationship between candidates hi, hj . In our
formulation, we define these constraints as node constraints Θn

and edge constraints Θe, respectively. We model each constraint
Θ as a Bernoulli distribution with probability of success p (and,
conversely, a probability of failure q = 1− p). Node constraints
Θn encode information about a single object candidate hi,

Θn : hi 7→ {0, 1} (4)

P (Θn(hi) = 1|hi) = p. (5)

Analogously, edge constraints Θe encode information about the
relationship between a pair of object candidates hi, hj , such
that

Θe : hi, hj 7→ {0, 1} (6)

P (Θe(hi, hj) = 1|hi, hj) = p. (7)

We provide a list with all the constraints used in this paper
in Table 1.

In the interest of brevity, we use the shorthand notation
PΘn(h) ≡ P (Θn(h) = 1|h) and PΘe(hi, hj) ≡ P (Θe(hi, hj) =
1|hi, hj) in the remainder of this paper.

3 Related Work

The aim of Unsupervised Object Discovery (Weber et al., 2000,
Russell et al., 2006) is to jointly segment and learn the appear-
ance of unknown objects in the environment. Unsupervised Ob-
ject Discovery is very challenging, in part because the definition
of object is subjective, as it depends on the observer. Further-
more, different works use different input sources (e.g., unor-
ganized collections of images (Weber et al., 2000, Kang et al.,
2011), image sequences (Morwald et al., 2010), images with dis-
parity (Somanath et al., 2009), laser data (Ruhnke et al., 2009))
to produce different data outputs (e.g., clusters of images (We-
ber et al., 2000), clusters of bounding boxes (Lee and Grauman,
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Figure 2: Main components in Robotic Object Discovery. (left) the robot HERB moves through a kitchen searching for novel objects.
(center) The three physical components of Robotics Object Discovery are: the world Ω, the robotic agent A, and the sensors S. (right)
The sensors capture data samples x to be processed by a candidate generator H to produce object candidates. The Discoverer D groups
recurring object candidates into objects, using candidate data and metadata sources ΦΩ (e.g., assumption “objects lie on tables”), ΦA
(e.g., robot localization data), ΦS (e.g., image ordering and timestamps).

2011), clusters of image segments (Russell et al., 2006, Kang
et al., 2011), 3D models (Somanath et al., 2009)), and using
different assumptions (e.g., one object per image (Weber et al.,
2000), only tabletop scenes (Kootstra and Kragic, 2011), multi-
ple views of the same scene (Herbst et al., 2011)) depending on
the application. Comparing the performance between methods
is very challenging due to this disparity in inputs, definition of
objects, assumptions, and outputs.

Methods in Unsupervised Object Discovery that assume an
unorganized collection of images as input are very common in
Computer Vision research (e.g., Weber et al. (2000), Russell
et al. (2006), Lee and Grauman (2011), Kang et al. (2011, 2012),
Philbin et al. (2010), Sivic et al. (2005), and the general survey
of Tuytelaars et al. (2009)). Using an unorganized collection of
images as input implies, in terms of Fig. 2, that we assume no
knowledge about the world, the physical agent, or the sensing.
Some of these methods, such as Weber et al. (2000), Tuytelaars
et al. (2009), focus only on grouping entire images in categories
(i.e., assuming that each image mostly contains a single, large
object), which is equivalent to not using a candidate generator
H.

The key difference between Unsupervised Object Discovery
and LROD is the amount and variety of information sources.
Most methods in Unsupervised Object Discovery assume that
no information is available about the world Ω, the physical
agent A, or the sensors S. As datasets grow larger, visual in-
formation becomes less discriminative and recurring visual pat-
terns appear everywhere. In addition, algorithms often require
pairwise operations over all pairs of candidates, which makes
them computationally expensive. In LROD, metadata—non-

visual information from Ω, A, and S—is not only available, but
necessary; we need a general architecture to leverage both vi-
sual information and metadata to discover objects and adapt
as conditions change.

Prior work in robotics has widely used metadata to limit com-
putational costs and improve robustness in perception. The
metadata is mostly incorporated by imposing restrictions on
the environment, data acquisition, or agent motion, which of-
ten result in single-purpose solutions of limited applicability.
Common assumptions include partial knowledge of the world
Ω, usually about the scene configuration or the appearance or
shape of objects. Marton et al. (2010) assumes that interest-
ing objects lie on tables to segment novel objects in 3D point
clouds. A horizontal plane detector is used to pre-segment the
scene and enforce the tabletop assumption. This same assump-
tion is shared by other works in the robotics literature, such
as Bjorkman and Kragic (2010), Kootstra and Kragic (2011).
Mishra and Aloimonos (2011) use 3-frame sequences, motion
cues, and assume that images contain a table with known color
distribution to discover and accurately segment objects in clut-
tered scenes. Morwald et al. (2010) assume that relevant objects
may be modeled by simple shapes (such as boxes or cylinders)
and that images come in sequences to perform automated mod-
eling of household objects, enforcing temporal consistency with
tracking. Both Mishra and Aloimonos (2011) and Morwald
et al. (2010) assume some knowledge on constraints about the
sensors S (image ordering and sequencing). Herbst et al. (2011)
use datasets consisting of multiple sequences of images collected
in the same locations, in order to compute per-sequence envi-
ronment maps and perform scene differencing to discover mov-
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Constraint Type Information Source Description Section

Θmotion node Relative camera motion ΦA Acquire data samples only if there is motion (no repeated frames). 7.2
Θseq edge “data comes in se-

quences”
ΦS Split data stream in short sequences based on camera motion and

maximum sequence length.
7.2

Θsupport node “objects have surfaces of
support”

ΦΩ Reject candidates not supported by horizontal or vertical planes
(tables or walls).

7.1

Θstatic edge “scene is static for a few
seconds”

ΦΩ Measure 3D overlap between candidates. 7.3

Θsize node Object size ΦΩ Compare candidate’s size with object prior. 7.4
Θshape node Object shape ΦΩ Compare candidate’s shape with object prior. 7.4
Θapp edge Visual Similarity V Compare visual similarity between candidates using color his-

tograms.
7.5

Θ3D edge Shape Similarity V Compare shape similarity between candidates using FPFH fea-
tures.

7.5

Table 1: Constraints used in HerbDisc. For each constraint Θi, we provide: the type of information encoded in Θi; whether Θi is applied
on a single object candidate (node) or a relation between a pair of candidates (edge); the information source(s) encoded in Θi; uses any
metadata or not; a short description of the meaning of Θi; and the section in which Θi is described in detail. The possible sources of
information are: ΦΩ (metadata about the environment), ΦA (metadata about the robot), ΦS (metadata about the sensors), or V (visual
information).

able objects. The implicit assumptions include the knowledge
of the robot location, recording time, and that the robotic agent
A visits the same locations multiple times. Rusu et al. (2008)
assume strong prior shape and location knowledge to segment
cabinets, drawers and shelves in kitchen environments, which
are in turn used as cues for the most likely locations of objects.
Other works assume an active robotic agent A that interacts
with Ω, S and H to modify the environment and improve the
object discovery process; for example, Fitzpatrick (2003) track
movable objects through random interactions with the environ-
ment. All these works use metadata and assumptions to im-
prove performance and efficiency for their particular setups, at
the cost of underperforming (and, often, not working at all) in
alternative types of scenes. Our general architecture addresses
these shortcomings with a common formulation for metadata,
thus allowing us to opportunistically take advantage of different
sources of information as conditions change.

In our framework, we combine multiple sources of informa-
tion (visual similarity and metadata) in CSGs, and cluster the
CSGs to obtain groups of object candidates. In the cluster-
ing literature, this area is known as multi-similarity (or multi-
source) clustering. While multi-similarity clustering applied to
Unsupervised Object Discovery is a novelty of this work, other
fields (e.g., bioinformatics) commonly use multi-similarity clus-
tering to combine multiple heterogeneous data sources. Zeng
et al. (2010) combine gene expression data, text, and clustering
constraints induced by the text data, to identify closely related
genes. Zeng et al. (2010) use a variant of EM in which param-
eter estimation and cluster reassignment are performed over a
single data source picked at random at each iteration. Troyan-
skaya et al. (2003) introduce a Bayesian framework to cluster
protein-protein interaction patterns based on multiple sources
of protein relations. The Bayesian network combines multi-
ple clusterings (one for each data source) using human expert

knowledge to estimate the prior probabilities of the interaction
patterns.

Other fields such as machine learning and data mining have
also shown interest in multi-similarity clustering. Bouvrie
(2004) considers the problem of multi-similarity clustering with
partially missing data, where not all data sources are avail-
able for all points. Bouvrie (2004) optimizes an information-
theoretic objective function over pairs of co-occurrence matri-
ces, which requires

(
n
2

)
clustering steps (for n data sources).

Tang et al. (2009) propose Link Matrix Factorization, in which
multiple graphs for different data sources are approximated by
a graph-specific factor and a factor common to all graphs, where
the common factor is the consensus partition. Strehl and Ghosh
(2002) combine multiple clusterings as a combinatorial opti-
mization problem over the shared mutual information between
clusterings. This method performs clusterings for individual
data sources first, and a clustering over the co-occurrences of
data labels, which the authors term a cluster ensemble. Hore
et al. (2006) modify the cluster ensembles of Strehl and Ghosh
(2002) to use clustering centroids instead of clustering labels.
This change enables the combination of disjoint datasets into
the same cluster ensemble, with centroids acting as representa-
tives for the data in their clusters.

All previously mentioned methods for multi-similarity clus-
tering except Hore et al. (2006) suffer from poor scalability, as
they all require computing and storing multiple clusterings of
the full dataset for each individual data source. In object dis-
covery, some data sources (in particular, visual similarity) are
very expensive to compute; therefore, clustering each individual
data source can be very costly. Some cases, such as Tang et al.
(2009), also require multiple full adjacency matrices in memory,
which is infeasible for large datasets. In our work, we take the
route of Hore et al. (2006) of computing consensus clusters over
disjoint datasets. The key differences between Hore et al. (2006)
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and our work arise from our clustering method being tailored
for object discovery. First, we compute disjoint subsets of data
samples dynamically from metadata, and not random splits.
Second, we use partial 3D object models as intermediate rep-
resentations, and not centroids. The partial 3D models encode
more information than centroids or individual candidates hi, so
our clustering method is asymmetric: the similarity functions
that create the disjoint subsets (visual features and metadata)
are different than the similarity functions in the consensus clus-
tering (more complex visual and 3D features).

4 Framework overview

This section contains a brief summary of the discovery frame-
work and its components, alongside a description of how each
component is implemented in HerbDisc. In the following sec-
tions, we focus on the novel elements of this paper: defin-
ing constraints (Section 5), generating CSGs (Section 5.3), and
the implementation of constraints and CSGs in HerbDisc (Sec-
tion 7). We provide a list of the constraints implemented in
HerbDisc in Table 1.

1. Candidate Generation. We compute object candidates
hi from each data sample In ∈ I. We use the objectness-based
segmentation algorithm of Collet et al. (2011) (Section 7.1).

2. CSG Generation. We create a graph of relationships
between object candidates using constraints Θ. We define the
CSG built by constraint Θ as GΘ = (EΘ, V Θ) (Section 5.3).

If the constraint Θ encodes a visual similarity, then the CSG
GΘ is equivalent to regular pairwise similarity graphs in Unsu-
pervised Object Discovery (e.g., Kang et al. (2011)). Applying
the constraints in Table 1 to create GΘ produces multiple con-
nected components GΘ

g .
3. CSG Clustering. We compute groups of candidates for

each GΘ
g ∈ GΘ with the graph partitioning algorithm of Bran-

des (2001). This algorithm is a greedy community discovery
method based on the Betweenness Centrality metric, which is
very efficient for sparse graphs and works well for our problem.

Each cluster Ci contains a set of object candidates hi, which
are registered together and merged to compute partial 3D mod-
els mi. The set of all partial models discovered is denoted as
m.

Each object mi = {mrgb
i ,mP

i ,m
h
i } is defined by a set of 3D

points mP
i with associated color mrgb

i and the set of object
candidates mh

i used to create object mi.
4. Object CSG Graph Generation. We compute a CSG

graphGm = (Em, V m) over partial object modelsmi ∈m. The
number of nodes in this graph is orders of magnitude smaller
than GΘ, so we can afford to compute more complex constraints
if needed. Only a subset of the constraints from Table 1 are
available for partial object models mi. In particular, we use
Θsize, Θshape, Θapp, and Θ3D, as the others require local infor-
mation that is not relevant for the partial objects.

5. Object Clustering. We compute clusters of partial
3D models using the graph partitioning algorithm of Brandes
(2001) on the graph Gm, analogously to step 3. Each cluster
Ci contains a set of partial object models mi.

6. 3D model generation. We generate full object models
Mi from clusters of partial object models Ci. Each cluster of
partial object models Ci is globally registered to produce full 3D
models. We use the Global Alignment algorithm of Borrmann
et al. (2008) for the global registration of partial 3D models.

5 Information as Constraints

In the introduction, we defined a constraint Θ as a measur-
able yes/no question about a node or edge, with probability
of success p about the answer. In Section 2, we modeled each
constraint Θ as a Bernoulli distribution. In this section, we
describe how to encode information as constraints; we define
logic operations of constraints that allow us to create complex
constraint expressions; and how to compute CSGs from con-
straints.

5.1 Defining Constraints

Constraints encode generic information about the world. Con-
sider the assumptions Θn

planar = “objects are planar”, Θe
static =

“scene is static”, and Θn
tables = “objects lie on tables”, illus-

trated in the example scenes in Fig. 3. To encode these assump-
tions as constraints, we need to express them as as a measurable
yes/no question about a node or edge. For example, Θplanar re-
quires answering the question “is candidate hi planar?”. If we
can measure whether an object is planar or not (e.g., by eval-
uating the reconstruction error of a planar approximation of
hi’s 3D points), then we can encode the assumption as a con-
straint, with the result shown in Fig. 3(row 2, col 2). Similarly,
we must answer the question “is candidate hi on a table?” to
encode Θtables, for which we need to 1) detect a table, and 2)
determine if candidate hi is on it. The assumption can be en-
coded as a node constraint if we can measure those two factors,
with the result shown in Fig. 3(row 2, col 3). To encode the
assumption “the scene is static”, we must answer the question
that “Do candidates hi at time t and hj at time t+1 occupy the
same location in space?” The constraint Θstatic would be satis-
fied if we can register the two scenes and hi and hj occupy the
same 3D location, with p proportional to the overlap between
hi and hj . Fig. 3(row 1, col 3) shows the result of applying
Θstatic to our example scenes.

Basic constraints, as in the example above, operate over a
node or an edge. However, more complex constraints may op-
erate over both nodes and edges. To support this class of con-
straints, we redefine in our formulation the constraint Θ as a
pair Θ ≡ (Θn,Θe). Constraints that operate only on nodes or
edges are considered to implement a default operator for nodes
(Θn = 1) or edges (Θe = 1) which satisfies the constraint with
p = 1 for any input. An example of constraint that operates
over nodes and edges is object tracking. Object tracking can be
encoded as a union of an edge constraint Θe = “are candidates
hi at time t and hj at time t+ 1 the same object?,” and a node
constraint Θn = “is candidate hi being tracked?”

A key advantage of this formulation is that we can encode
any source of information as a constraint, including the pair-
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Candidate Generation Fully unconstrained graph 

“Objects lie on tables” 

“Scene is static” (3D overlap) 

“Objects are planar” 

“Scene is static” AND  
(“Objects lie on tables” 

OR “Objects are planar”) 

Figure 3: Metadata induces constraints on pairwise similarity graphs. We illustrate this effect on a pair of manually segmented images
for simplicity. The fully unconstrained graph is seldom computed in practice, as techniques such as inverted indexes are used to preselect
potential matches (Philbin et al., 2010). Our formulation generalizes such techniques, constraining a graph based on any source of metadata
(columns 2-3). Most importantly, our formulation facilitates the creation of complex rules from the combination of multiple sources of
metadata (column 4).

wise similarity functions typical in object discovery and many
other computer vision problems. In particular, a normalized
similarity function s(hi, hj) ∈ [0, 1] induces an edge constraint
Θe with PΘe(hi, hj) = s(hi, hj). In HerbDisc, we do not distin-
guish between visual similarity and other metadata: they are
all encoded as constraints Θi. In the following sections, we see
how to combine multiple constraints (Section 5.2) and build
CSGs (Section 5.3), both of which are only possible thanks to
this unification.

5.2 The Logic of Constraints

A key consequence of our generic constraint formulation is that
we can seamlessly combine multiple sources of metadata using
logic statements. In order to take full advantage of Boolean al-
gebra, we define the logic operations of conjunction ∧, disjunc-
tion ∨ and negation ¬ over node and edge constraints induced
by metadata. Let Θn

i , Θn
j be independent node constraints in-

duced by metadata, and PΘ(h) the probability of candidate h
satisfying constraint Θn. Then, the negation operator ¬Θn

i is
computed as

P¬Θn
i
(h) = 1− PΘn

i
(h), (8)

which represents the probability of h not satisfying constraint
Θn. The conjunction operator Θn

i ∧Θn
j is then computed as

PΘn
i∧Θn

j
(h) = PΘn

i
(h)PΘn

j
(h). (9)

Finally, the disjunction operator Θn
i ∨Θn

j is computed as

PΘn
i∨Θn

j
(h) = 1− P¬Θn

i∧¬Θn
j
(h). (10)

We analogously define the conjunction ∧, disjunction ∨ and
negation ¬ operators for edge constraints, by substituting
PΘn(·) for PΘe(·, ·) in Eq. (8), Eq. (9) and Eq. (10).

Logic operations over constraint pairs Θ = (Θn,Θe) operate
on Θn and Θe independently, so that

¬Θi = (¬Θn
i ,¬Θe

i ) (11)

Θi ∨Θj = (Θn
i ∨Θn

j ,Θ
e
i ∨Θe

j) (12)

Θi ∧Θj = (Θn
i ∧Θn

j ,Θ
e
i ∧Θe

j) (13)

Any logic operation can be derived from the conjunction,
disjunction and negation operators. A generic constraint Θ can
be composed of multiple constraints Θi using the logic operators
defined above,

Θ = Θ1 ◦Θ2 ◦ . . . ◦Θi ◦ . . . , (14)

where the composition operator ◦ denotes any logic operation
using Boolean algebra.

We can now define arbitrarily complex constraint expres-
sions based on logic operations over primitive constraints. In
Fig. 3(row 1, col 4), we illustrate this behavior with the three
hard constraints: Θstatic, Θtables, Θplanar. To search for objects
assuming that “the scene is static” AND that “objects that
lie on tables” OR “objects are planar”, we simply define the
constraint

Θ = Θstatic ∧ (Θtables ∨Θplanar). (15)

5.3 Constrained Similarity Graphs

CSGs are undirected graphs which encode information from
constraints into nodes, edges, node weights and edge weights.
Let GΘ = (EΘ, V Θ) be an undirected pairwise graph. GΘ is a
CSG of constraint Θ if and only if:

1. Every node hi ∈ V Θ satisfies Θn,
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2. every edge ei,j ∈ EΘ satisfies Θe, and

3. has node weights w(hi) = PΘn(hi), and edge weights
w(hi, hj) = PΘe(hi, hj).

We generate the CSG GΘ for constraint Θ following Algo-
rithm 1. The CSG construction in Algorithm 1 and the entire
framework are independent of the particular choice of Θ. Θ
can be any arbitrarily complex constraint expression, ranging
from the multiple sources of metadata and visual similarity we
implement in HerbDisc, to the visual similarity-only that trans-
forms the CSG into a regular pairwise similarity graph. In Al-
gorithm 1, pmin denotes the threshold probability for nodes and
edges (typically, pmin = 0.5).

Algorithm 1 Building a Constrained Similarity Graph

1: V Θ = ∅
2: EΘ = ∅
3: for hi in h do . Add nodes that satisfy Θ
4: if PΘn(hi) > pmin then
5: V Θ ← V Θ

⋃{hi}
6: w(hi)← PΘn(hi)

7: for hi in V Θ do . Add edges that satisfy Θ
8: for hj in h with j > i do
9: if PΘe(hi, hj) > pmin then

10: EΘ ← EΘ
⋃{ei,j}

11: w(ei,j)← PΘe(hi, hj)

Building a generic CSG has necessarily a worst-case com-
plexity of O(n2), where n = |h|, since the CSG must be able to
build any graph including pairwise similarity graphs, or even
complete graphs, which are O(n2). In addition, evaluating a
constraint expression for a node or edge can be expensive, es-
pecially if computing complex visual similarities. In practice,
we can use conjunctive constraint expressions (as in Eq. (9))
to simplify the construction of a CSG, by positioning the most
restrictive constraints first. Evaluating a conjunctive constraint
expression is much faster than evaluating generic constraint ex-
pressions, as we only need to evaluate a constraint in the con-
straint expression if all previous constraints are successful.

Consider a constraint Θ0 that generates the CSG GΘ0 =
(EΘ0 , V Θ0). We can compute the CSG GΘ from GΘ0 using
conjunctive constraints as in Algorithm 2.

The advantage of conjunctive constraints is clear: the com-
plexity of Algorithm 2 for a given Θ and GΘ0 is O(|EΘ0 |),
where the graph GΘ0 determines the complexity of building
GΘ. Therefore, an appropriate choice of Θ0 to build a sparse
CSG very quickly can greatly improve the performance of the
overall algorithm. Some of the natural constraints in service
robotics are excellent for this purpose, such as spatiotempo-
ral constraints. In HerbDisc, we define motion and sequenc-
ing constraints Θmotion ∧ Θseq in Table 1 (see Section 7.2 for
details) to split the data stream into subsets of samples with
limited motion and at most m samples per subset. Using Θ0 =
Θmotion ∧Θseq yields a CSG GΘ0 with |EΘ0 | = O(nm) ≈ O(n)
edges, considering that m is fixed and n � m in realistic situ-
ations (in the NSH Dataset, m = 50 and n = 521234). Under

Algorithm 2 Building a CSG with conjunctive constraints

1: V Θ = V Θ0

2: EΘ = EΘ0

3: for hi in V Θ do
4: for Θk in Θ do . Erase nodes that do not satisfy Θk

5: if PΘn
k
(hi) < pmin then

6: V Θ ← V Θ − {hi}
7: break
8: else
9: w(hi)← w(hi)PΘn

k
(hi)

10: for hi in V Θ do
11: for Θk in Θ do . Erase edges that do not satisfy Θk

12: for hj in NΘ(hi) do
13: if PΘe

k
(hi, hj) < pmin then

14: EΘ ← EΘ − {ei,j}
15: break
16: else
17: w(ei,j)← w(ei,j)PΘe

k
(hi, hj)

these conditions, the CSG construction given GΘ0 has a com-
plexity of O(n) for the remaining constraints Θk ∈ Θ. Given
that the visual similarities are the most expensive constraints,
it is crucial to perform this optimization to only compute O(n)
similarities. See Table 2 for a quantitative evaluation of the
reduced complexity of this method.

The CSG constructions of Algorithm 1 and Algorithm 2, as
well as the constraints Θ, are designed for both soft constraints
(i.e., Θ such that PΘ ∈ [0, 1]) and hard constraints (i.e., Θ
such that PΘ ∈ {0, 1}). In HerbDisc, we use Algorithm 2 with
a mix of soft and hard constraints. The hard constraints are
positioned first in the constraint expression to purposefully split
the CSG into many small connected components as quickly as
possible. We then use soft constraints to better evaluate the
nuances of appearance and shape similarity for those candidates
with real potential of being part of the same object.

6 Datasets

We evaluate HerbDisc on two datasets of real human environ-
ments: the Kitchen Dataset and the NSH Dataset (see Fig. 4).
We captured both datasets from the sensory data of our robot,
HERB, driving around different working environments of a uni-
versity building. The captured data is an RGBD video stream
from a Kinect camera at 640 × 480 resolution. The framerate
was set to 30 fps, but due to throughput limitations the ef-
fective framerate is approximately 22 fps. For the remainder
of this paper, we refer to each pair of color image and depth
image as a data sample.

The Kitchen Dataset captures four 3-minute recordings of
HERB in a kitchen environment, with relatively clean scenarios
and 20 ground truth objects that HERB must discover. We re-
fer to the four individual recordings as Kitchen-1 to Kitchen-4,
and their union (a 12-minute recording with 14282 data sam-
ples) as the Kitchen Dataset.

8



Figure 4: The Kitchen Dataset (top row) and the NSH Dataset (bottom three rows). Each row depicts the Kinect 3D point clouds (top)
and their corresponding images with ground truth annotations (bottom) for some of the environments we visited. The Kitchen Dataset
captures a low-clutter environment with 20 objects of interest. The NSH Dataset captures office and lab environments, ranging from
moderate to extreme clutter. Some scenes were so challenging (e.g., row 2, col 3-5) that the annotators could not separate the objects in
the scene.
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The NSH Dataset is a workday-length recording of HERB
exploring the NSH building of Carnegie Mellon University, con-
taining 6 hours and 20 minutes of RGBD video and 521234 data
samples. The dataset is divided in four fragments lasting be-
tween 1 h and 1 h 50 min each, one per building floor. We
refer to the four individual recordings as NSH-1 to NSH-4, and
the full-length stream as the NSH Dataset. For this dataset,
we visited over 200 real offices and laboratories to capture the
real conditions in which people work, with scenes ranging from
moderate to extreme clutter. This dataset also captures the
wide differences in lighting conditions in human environments
(from dim light to bright sunlight), which degrade the data ac-
quisition and to which a lifelong agent must be robust. We
labeled a total of 423 unique ground truth objects. We can
analyze the object statistics of this dataset by aggregating the
ground truth objects into common classes. The most popular
object classes are coffee mugs (19 labeled), monitors (17 la-
beled), keyboards (16 labeled), laptops (13 labeled), and books
(12 labeled). Among the object classes with one labeled in-
stance, we find objects as diverse as a toy rocket, a pineapple, a
bike padlock, a quadrocopter, and various mechanic tools such
as a pair of plyers.

We followed the labeling procedure described below to man-
ually annotate both datasets and obtain ground truth. Our
goal is to obtain the list of objects that HERB could poten-
tially grasp. Since it is infeasible to annotate every single data
sample, we process each data stream with a motion filter to
eliminate redundant samples (the same motion filter used in
HerbDisc, described in Section 7.2). Then, we select 10 images
from each office, lab, kitchen, etc., we visited, and label all ob-
jects with the LabelMe tool Russell et al. (2008). As a rough
estimate of the objects that HERB can grasp, we consider valid
any object that:

• is at least 10 × 5 cm in its two largest dimensions (e.g., a
smartphone),

• is at most 60 cm long in its longest dimension (e.g., a mon-
itor),

• appears unoccluded in at least one data sample, and

• is movable, with free space around it to be grasped (e.g.,
a stack of books in a bookshelf is not labeled).

Fig. 4 shows examples of data samples from the Kitchen (top
row) and NSH dataset (bottom 3 rows), alongside the annotated
data.

7 Implementation of HerbDisc

In this section, we describe how to formulate similarities, as-
sumptions, and other metadata from Table 1 as constraints,
and how each component is integrated into our optimized im-
plementation, HerbDisc. The advantage of formulating the
different components as constraints is the adaptability of the
system. We can completely control and modify the behavior of

21 1 10 

24 3 12 

29 0 0 

Collet et al. (2011) Rusu and Cousins (2011) Collet et al. (2011) � 
Rusu and Cousins (2011) 

Figure 5: Examples of Constrained Candidate Generation in the
NSH-1 Dataset (figure best viewed in color). The number of candi-
dates in each data sample is shown at the top right corner of each
image. (left) RGBD Objectness segmentation algorithm of Collet
et al. (2011). (center) Rejected areas according to Θsupport are shown
in red; the connected components of accepted 3D points are shown
in green/yellow/blue. In cluttered scenes, multiple objects are some-
times grouped together. Scenes with no visible support are rejected
(e.g., row 3). (right) Combining Collet et al. (2011) and Θsupport

limits the number of candidates but does not result in undersegmen-
tation.

HerbDisc (e.g., to adapt it a particular task) without modify-
ing a single line of code, as HerbDisc only depends on the con-
straint expression Θ to construct the CSGs. For example, we
could measure if the assumptions for specific algorithms hold
before using them, and revert to safer algorithms if they do
not, modifying only the constraint expression. By modifying
Θ when environmental conditions change, we can adapt and
opportunistically select the best constraints for each task.

We show experimental results on the impact of each compo-
nent in the different subsections. See Section 8 for a description
of the baseline and the evaluation procedure.

7.1 Constrained Candidate Generation

The candidates h produced by a candidate generator H can be
refined with constraints to adapt to the particular algorithm
assumptions, either by entirely enabling/disabling a candidate
generator based on metadata, or by rejecting unnecessary can-
didates for the particular task. An example of such a constraint
would be the requirement that “objects lie on tables”.

Candidate generators that rely on metadata are common in
the robotics literature. For example, algorithms that track
objects (Morwald et al., 2010), that assume tabletop scenes
(Bjorkman and Kragic, 2010), or that perform scene differ-
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Figure 6: Impact of Θsupport (Rusu and Cousins (2011), Baseline
Segm.) vs. HerbDisc’s Objectness + Θsupport in the NSH-1 Dataset.
Rusu and Cousins (2011) achieves higher precision (80% precision at
20% recall, compared to 78% precision of HerbDisc) at the cost of
14% lower maximum recall.

encing (Herbst et al., 2011) usually compute better candidates
than generic objectness segmentation algorithms. These “spe-
cialized” candidate generators all have one thing in common:
they impose restrictions on the environment to simplify the task
and improve performance, at the cost of limited applicability in
alternative types of scenes. In our framework, we can include
multiple candidate generators and use them when their assump-
tions are met, and revert to more generic candidate generators
otherwise.

In HerbDisc, we combine the generic objectness segmenta-
tion algorithm of Collet et al. (2011) with the assumption that
objects have surfaces of support in floors, tables and walls. The
constraint Θsupport = (Θn

support, 1) is defined as

Θn
support(hi) =

{
1,with p = 1 if supported(hi, Ij)
0,with q = 1 otherwise,

(16)

where q = 1 − p is the probability of failure of Θn
support, the

supported(·) function searches for large planes in the data sam-
ple Ij that generated candidate hi, and accepts hi if it lies
within a certain distance above the planes found. In simple
scenes, Θsupport can be used as a standalone candidate gener-
ator, by clustering the point clouds above the detected planes
into a few connected components. For the standalone Θsupport,
we use the implementation of Rusu and Cousins (2011).

In Fig. 6, we compare the performance of Rusu and Cousins
(2011) and the Collet et al. (2011) with Θsupport used in Herb-
Disc. We see in Fig. 6 that the standalone Θsupport achieves
better precision as it accurately segments simple scenes bet-
ter. However, the performance degrades in complex scenes
(see Fig. 5 for examples), as the connected components may

Time (min) Θmotion ∧Θseq Θmotion Raw data

58.0 0.7M 29.1M 2.9B
102.7 1.2M 83.9M 10.4B
186.9 2.5M 263M 30.4B
262.2 3.3M 517M 59.9B
319.9 4.0M 803M 89.2B
380.6 4.9M 1.2B 126.0B

Table 2: Effect of motion and sequencing in computational cost, for
the NSH Dataset. Number of edges to evaluate if using 1) the motion
and sequencing constraints, 2) only the motion constraint, and 3) the
raw data stream.

include large groups of objects. Combining the generic Ob-
jectness segmentation with Θsupport yields a good tradeoff be-
tween generating enough candidates for complex scenes, and
filtering unlikely candidates for efficiency. In Fig. 5, we show
the generic objectness segmentation of Collet et al. (2011), and
compare it with the standalone candidate generator from Rusu
and Cousins (2011) and the combination of (Collet et al., 2011)
and Rusu and Cousins (2011).

7.2 Motion and Sequencing

In the general LROD problem, the incoming data stream should
be continuous (the raw RGBD video stream) and neverending.
In particular, we assume that the data stream is:

1. an ordered sequence of data samples, and

2. recorded at a frame rate high enough so that there is spatial
overlap between data samples.

During the data acquisition, the motion of HERB influences
the amount of spatial overlap between data samples. In partic-
ular, HERB may a) not be in motion and acquiring repeated
data samples, b) be in motion and fulfilling assumption 2, or c)
be in motion and violating assumption 2 (i.e., moving too fast).
We address these issues with constraints Θmotion and Θseq.

In particular, we sample the input data stream at a dynamic
framerate depending on HERB’s motion, and split the subsam-
pled data stream into small subsets that we term sequences.
Using Θmotion and Θseq, we do not process repeated samples,
and we do not consider any edges between data samples that
violate assumption 2. We enforce a maximum sequence length
m to limit the order |V Θseq | of any connected component in the
CSG.

Let Tk,k−1 ∈ R4×4 be the transformation between sample
Ik and the previous sample in the data stream Ik−1, and M :
T 7→ R the magnitude of the motion T . We model the motion
constraint Θmotion = (Θn

motion, 1) for hi ∈ Ik, as

Θn
motion(hi) =

{
1,with p = 1 if M(Tk,k−1) > γmin

0,with q = 1 otherwise.
(17)

Θmotion only samples the data stream when there is enough
motion γmin between data samples.
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The sequencing constraint Θseq = (1,Θe
seq), where

Θe
seq(hi, hj) =

{
1,with p = 1 if seq(hi) = seq(hj)
0,with q = 1 otherwise,

(18)

limits the potential edges to candidates hi ∈ Ik, hj ∈ Il which
belong to the same sequence. We compute seq(·) during the
data acquisition. For data sample Ik, the sequence identifier

seq(Ik) =

{
seq(Ik−1) + 1 if M(Tk,k−1) > γmax

seq(Ik−1) otherwise
(19)

is incremented if there is too much motion (γmax) between
the current sample Ik and Ik−1 (or if we reach the maximum
sequence length m).

M(T ) = ‖T‖F is an estimate of the relative motion T . γmin

and γmax are calibrated so that we capture m data samples in
20 seconds moving in a straight line at HERB’s slowest and
fastest speed. In practice, sequences are finished because γmax

is exceeded in approximately 73% of the sequences (often due
to sharp turns), and reaching our limit of m = 50 in 27% of the
cases, mainly in long, straight corridors. HerbDisc is not very
sensitive to particular choices of the maximum sequence length;
halving or doubling the maximum sequence length (m = 25
and m = 100, respectively) yields a decrease of less than 3% in
maximum recall with respect to our default choice of m = 50.

We evaluate the impact of the motion and sequencing con-
straints Θseq to computational complexity for the NSH dataset
in Table 2. We calculate the total number of potential edges
remaining in the CSG, which is a measure of the computational
cost, in the cases of 1) Using Θmotion ∧ Θseq to generate con-
nected components; 2) Only using Θmotion to downsample the
input data stream; and 3) the raw data stream. Our imple-
mentation in HerbDisc, which uses Θmotion ∧Θseq as the initial
constraint (using Algorithm 2), yields equivalent computational
cost after processing 6 h 20 min as Θmotion after approximately
18 min, or as the raw data stream after 2 min 24 s. Fig. 7 com-
pares the trend in computational cost with respect to the data
stream length. While using Θmotion is two orders of magnitude
more efficient than the raw data stream, it still yields a squared
cost with respect to the data stream length, compared to the
linear cost of Θmotion ∧Θseq.

For the actual implementation, we considered two alterna-
tives: 1) to track the robot motion using the robot’s odometry,
or 2) to track the camera motion using real-time techniques such
as Kinect Fusion (Izadi et al., 2011). We decided to implement
the Kinect Fusion approach, because the odometry does not
track the camera tilt and shake while HERB drives. These ar-
tifacts can be pretty significant depending on the surface (e.g.,
camera shake on floor tiles, and tilt on thick carpeting). To im-
plement this motion filter, we modify the Kinect Fusion 6DoF
tracker available in PCL (Rusu and Cousins, 2011). Our im-
plementation of Θmotion and Θseq in HerbDisc, including the
PCL Kinect Fusion tracking, runs in real time (up to 30 fps)
during the data acquisition process to compute the initial CSG
GΘ0 = GΘmotion∧Θseq from Algorithm 2.

Figure 7: Comparing the computational cost of HerbDisc when using
Θmotion ∧Θseq and Θmotion for the NSH Dataset, with respect to the
data stream length. Using Θmotion∧Θseq results in linear cost in the
number of samples, compared to the squared cost of Θmotion.

7.3 Spatial Overlap

Many objects in human environments are only moved occasion-
ally, and remain static across most observations. The constraint
Θstatic encodes our assumption that objects remain static for
at least a few seconds at a time. To encode this assumption
in our framework, we consider the question “do candidates hi
and hj overlap in space within a sequence?” Relationships be-
tween candidates that do not overlap in space should not be
considered any further, as they most likely belong to different
objects.

The constraint Θstatic = (1,Θe
static), where

Θe
static(hi, hj) =

{
1,with p = soverlap

i,j if soverlap
i,j > soverlap

min

0,with q = 1 otherwise,
(20)

is a soft constraint that measures the amount of 3D overlap
soverlap
i,j = soverlap(hi, hj) between candidates hi, hj , and returns

true with probability soverlap
i,j if the overlap is above a threshold

soverlap
min .
This constraint is designed to operate in unison with the

sequencing constraint Θseq. Θseq splits the data stream into
small subsets of samples close in time (sequences), and Θstatic

ensures that, within the same sequence, we only evaluate groups
of candidates in a similar position in space.

To measure the overlap between hypotheses, we use the incre-
mental registration provided by PCL Kinect Fusion to register
all data samples within a sequence with respect to some com-
mon coordinate frame T s (the first sample in that sequence).
We transform all object candidates h to the common coordi-
nate frame, and measure the 3D overlap soverlap

i,j between 3D

point clouds hPi , h
P
j by comparing their voxel grids.

In Fig. 8, we compare the impact of using the 3D overlap
constraint Θstatic in HerbDisc. We see that Θstatic is a crucial
metadata constraint in HerbDisc, as disabling Θstatic yields a
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Figure 8: Impact of Θstatic in HerbDisc for the NSH-1 Dataset. Not
using the 3D overlap similarity of Θstatic yields a 27% drop in recall
compared to HerbDisc. Comparatively, using the 3D overlap simi-
larity Θstatic alone with no visual features in HerbDisc only results
in a decrease of 7% recall and 12% precision at maximum recall with
respect to HerbDisc.

maximum recall of 8% at 47% precision in the NSH-1 Dataset,
a difference of 27% recall at the same precision when enabled.
Furthermore, disabling the visual similarity features and using
only Θstatic as an edge constraint results in a drop of only 7%
recall and 12% in precision (at maximum recall). These results
reinforce our claim that visual features alone are not descriptive
enough for large-scale datasets, and that metadata plays a key
role in LROD.

7.4 Size/shape priors

Part of the reason why there is no clear definition of object is
because its meaning is subjective: it depends on the observer.
In service robotics, different robots might have different defini-
tions of objects depending on their capabilities. For HerbDisc,
we consider a definition of object based on the manipulation
capabilities of HERB. In particular, we define a prior based on
the sizes and shapes of known objects that HERB can grasp.

In order to build an object prior for our framework, we define
it as a constraint Θprior = Θsize ∧Θshape composed of size and
shape components. Let Θsize = (Θn

size, 1) be a constraint on an
object candidate’s size, such that

Θn
size(hi) =

{
1,with p = ssize

i if ssize
i > ssize

min

0,with q = 1 otherwise.
(21)

The function ssize
i = ssize(hi, hprior) estimates the likelihood

that the longest dimension of hi could be sampled from a Gaus-
sian distribution centered at the size given by hprior.

Analogously, Θshape = (Θn
shape, 1) is a constraint on the can-

Figure 9: Impact of Θprior in HerbDisc for the NSH-1 Dataset. Not
using Θprior yields a decrease of 7% recall and 10% in precision (at
maximum recall).

didate’s shape, such that

Θn
shape(hi) =

{
1,with p = sshape

i if sshape
i > sshape

min

0,with q = 1 otherwise.
(22)

The measure sshape
i = sshape(hi, hprior) estimates the similar-

ity between hi and hprior according to the PCA-based shape
features of Lalonde et al. (2006) (linearity, planarity, and scat-
terness). The effect of this constraint is to essentially require
that object candidates have some volume and are not purely
planes or lines.

In Fig. 9, we evaluate the impact of size and shape priors in
HerbDisc for the NSH-1 Dataset. The main effect of Θprior is to
limit the amount of candidates to cluster, with Θprior rejecting
63% of the original pool of candidates. The increased number of
candidates when Θprior is disabled yields a 301% increase in the
number of objects discovered, most of which are just repetitions
due to cluster fragmentation. The final output without Θprior

yields a decrease of 7% recall and 10% in precision (at maximum
recall), compared to HerbDisc.

7.5 Visual and 3D shape similarity

We describe and compare candidates with features based on 3D
shape and appearance. Using these features alone to compute
a CSG would result in a pairwise similarity graph as in Kang
et al. (2011). For appearance features, we compute the color
histogram of each candidate in LAB color space, as in Hoiem
et al. (2007), and compare a pair of candidates hi, hj with the χ2

distance between normalized color histograms. For 3D shape,
we use the FPFH features of Rusu et al. (2009), which compute
a histogram of the local geometry around each 3D point. We
compare the FPFH features of a pair of candidates hi, hj by
estimating the average χ2 distance among the nearest neighbor
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Figure 10: Impact of Θ3D and Θapp in HerbDisc for the NSH-1
Dataset. Disabling Θ3D in HerbDisc decreases 7% recall and 15%
precision at maximum recall, as well as 20% lower precision at 20%
recall. Disabling Θapp yields a decrease of 1% recall and 3% precision
at maximum recall, and 19% lower precision at 20% recall.

3D points between hi, hj . Both similarity metrics sapp(·, ·) and
s3D(·, ·) are normalized so that s(·, ·) ∈ [0, 1].

In order to use these similarities in our framework, we refor-
mulate them as constraints Θapp and Θ3D. In particular, we
define Θapp = (1,Θe

app) as a soft constraint such that

Θe
app(hi, hj) =

{
1,with p = sapp

i,j if sapp
i,j > sapp

min

0,with q = 1 otherwise,
(23)

where sapp
i,j = sapp(hi, hj). Analogously, we define Θ3D =

(1,Θe
3D) as a soft constraint such that

Θe
3D(hi, hj) =

{
1,with p = s3D

i,j if s3D
i,j > s3D

min

0,with q = 1 otherwise,
(24)

where s3D
i,j = s3D(hi, hj).

In Fig. 10, we compare the impact of Θapp and Θ3D in Herb-
Disc. Disabling the 3D shape similarity Θ3D yields a decrease
of 7% recall and 15% precision at maximum recall, compared to
HerbDisc, as well as a more significant drop in precision at low
recalls (e.g., a 28% decrease in precision at 20% recall). The
contribution of Θapp is less noticeable: disabling Θapp results
in a decrease of 1% in maximum recall at only 3% lower pre-
cision, although it is significant at lower recall (e.g., disabling
Θapp yields a 19% decrease in precision at 20% recall).

8 Experiments

In this section, we evaluate the impact of using metadata to
discover objects. We first compare the performance of Herb-
Disc with and without any metadata on the Kitchen Dataset
in Section 8.3.1. Using metadata, we evaluate the ability of

HerbDisc to discover novel objects during a whole workday of
operating in challenging human environments. We perform an
ablative analysis to assess the impact of each constraint in the
constraint expression Θ. Thanks to our framework, performing
such an analysis only requires modifying the definition of the
constraint expression Θ, but not any change in the source code.
This feature is critical for our goal to develop a system that can
adapt its behavior as conditions change, using metadata oppor-
tunistically.

Our main testbed is the NSH Dataset (Section 6), with 6 h
20 min of HERB driving into over 200 offices and engineering
labs, and containing 423 annotated ground truth objects. We
use the smaller Kitchen Dataset in Section 8.3.1 to evaluate
the visual simlarity-only baseline, as it is too computationally
expensive to execute in the NSH Dataset.

8.1 Baseline and training

The baseline for all our experiments is the full system Herb-
Disc, with all constraints enabled. The default candidate gen-
erator is the Objectness segmentation of Collet et al. (2011)
with Θsupport. In each experiment, we enable/disable individ-
ual components (through the constraint expression) and ana-
lyze the resulting behavior.

The constraint expression Θlocal we use in the CSG construc-
tion step of HerbDisc is

Θlocal =Θmotion∧Θseq ∧Θsupport∧Θstatic∧
Θsize ∧Θshape∧Θapp ∧Θ3D.

(25)

In the Object CSG Clustering, we cluster the CSG built with

Θglobal =Θsize∧Θshape∧Θapp∧Θ3D. (26)

We design the constraints Θapp and Θ3D to be more exhaus-
tive for Θglobal than Θlocal. In Θlocal, we compute the his-
tograms in Θapp with 6 bins per channel, and compute the
FPFH features of Θ3D only for the centers of a 1 cm voxel
grid. In Θglobal, the partial objects contain significantly more
information than individual hypotheses. We use 10 bins for the
histograms in Θapp and compute FPFH features for Θ3D for the
centers of a 3 mm voxel grid. In our experience, the choice of
Θlocal has significantly more impact in the overall performance
than Θglobal for Object CSG Clustering. We therefore focus our
experiments on the local step and modify only Θlocal, while we
keep Θglobal constant throughout the experiments.

We use the first 20% of the NSH-1 Dataset (not included in
the evaluation) to train the parameters and thresholds in Herb-
Disc, by maximizing the average F1-measure (defined in Sec-
tion 8.2). To do so, we discretize each parameter in 5 settings
in the range [0, 1] and choose the best-performer configuration
according to a grid search. We do not modify any parameter in
any experiment after the initial training phase. All experiments
were performed on a computer with an Intel Core i7-920 CPU,
16GB of RAM, a nVidia GTX 580 GPU, and runninng 64-bit
Ubuntu Linux 10.04.
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Figure 11: CSG graphs for the edge constraints in HerbDisc, displayed as adjacency matrices (where a black dot indicates an edge between
candidates), in the Kitchen Dataset. The overall graph EΘ (rightmost column) is the product of each adjacency matrix. (top) Cascaded
CSGs using conjunctive constraints, as implemented in HerbDisc. (center) CSGs computed for each constraint independently. The overall
CSG EΘ is the same for the cascaded and independent CSGs. (bottom) CSGs for the visual similarity constraints Θapp and Θ3D. The overall
CSG EΘ for this case is a regular pairwise similarity graph. The CSGs using metadata (top/center cols) are much more discriminative
than the CSG for visual similarity only.

8.2 Evaluation Procedure

In this section, we describe the metrics to evaluate the ability
of HerbDisc to discover objects during HERB’s workday. For
a given object model Mk, we define the metrics of Candidate
purity, Group purity, and 3D purity, as:

Candidate purity. We describe an object candidate hi as
pure if over 80% of the area in hi,k overlaps with a ground truth
object.

Group purity. Following Tuytelaars et al. (2009), we mea-
sure the group purity of model M as the largest percentage of
pure object candidates in Mh

k = {h1,k, . . . , hi,k} that belong to
the same object.

3D purity. We require that the 3D models reconstruct the
partial viewpoints seen by HERB. Therefore, we define an ob-
ject’s 3D point cloud MP

k as pure if the 3D points in MP
k cover

over 80% of the area visible in the data samples for that par-
ticular object.

Given the open and unsupervised nature of LROD, we often
discover objects that do not appear in the ground truth set,
despite being real objects. Following Kang et al. (2011), we
distinguish between three categories of objects: correct, valid,
and invalid.

We define an object model Mk as correct if 1) it is an object
annotated in the ground truth, 2) its 3D point cloud is pure,
and 3) every object candidate hi,k associated to Mk is pure,
i.e., if the set Mh

k is 100% pure. Other works in the literature

commonly define correct objects as clusters with some minimum
percentage of purity (e.g., 80% in Kang et al. (2011)), but we
believe that object models need to be 100% correct to be of
any use for robotics. Fig. 15 shows multiple examples of correct
objects.

We define an object model Mk as valid if 1) its 3D point
cloud is pure, 2) the set of candidates Mh

k is 100% pure (as with
correct objects), but 3) it has not been labeled as a ground truth
object. We rely on an “oracle” evaluation, as in Tuytelaars
et al. (2009). The “oracle” evaluation is a human annotator who
answers the questions “Is Mk an object?”, and “Does Mk have a
name?” when faced with the set of candidates for object model
Mk. The category valid mainly contains objects too big or
too small to be grasped (e.g., chairs), immovable objects (e.g.,
attached to a wall), or parts of complex objects (which could
be objects themselves, such as a bicycle’s seat). Fig. 16(top)
shows multiple examples of valid objects.

We define an object model Mk as invalid if it is neither
correct nor valid. The category invalid mainly includes mod-
els Mk of groups of objects erroneously segmented, of a single
object but < 100% group purity, or a mix of multiple objects
erroneously clustered together. Fig. 16(bottom) shows multiple
examples of invalid objects.

We define Precision and Recall as in Tuytelaars et al. (2009)
and Kang et al. (2011). In Kang et al. (2011), Precision is the
ratio between the number of correct+valid object models and
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Figure 12: Impact of using metadata in HerbDisc for the Kitchen
Dataset, compared to visual and 3D similarity alone. HerbDisc
achieves with a maximum recall of 65% at 62% precision, compared
to 24% maximum recall at 77% precision. For the same recall of
24%, HerbDisc achieves 90% precision (13% higher than the visual
similarity Θvisual alone).

the total number of discovered models:

Precision =
#correct + #valid

#correct + #valid + #invalid
(27)

We measure Recall as the ratio between the number of unique
correct objects and the total number of ground truth objects.

Recall =
#unique correct obj.

#unique ground truth obj.
(28)

We use the cluster size to estimate the quality of an object,
and use it as the variable to threshold to compute the P-R
curves. To summarize the P-R curves in a single number, we use
the average F1-measure, which balances Precision and Recall
for each sample i in the P-R curve:

F1 =
1

N

N∑
i

2PrecisioniRecalli
Precisioni + Recalli

(29)

8.3 Results

In this section, we evaluate the impact of metadata to discover
objects. We evaluate the use of metadata to using visual simi-
larity alone in Section 8.3.1, and then show that we can lever-
age metadata to process very large datasets such as the NSH
Dataset in Section 8.3.2.

8.3.1 HerbDisc vs. Visual Similarity

Fig. 12 shows the performance of using a CSG with visual sim-
ilarity only (Θvisual = Θmotion∧Θ3D∧Θapp) , compared to the

Component HerbDisc Θvisual

CSG Construction 35.9 s 18981.8 s
CSG Clustering 61.3 s 394.0 s
Object CSG Clustering 4.4 s 2.8 s
Total processing time 101.6 s 19378.6 s

Table 3: Running times of HerbDisc vs. Θvisual in the Kitchen
Dataset. Using no metadata (Θvisual) is 190× slower than using
metadata in this dataset, mainly due to the extra cost of construct-
ing the graph. The Θvisual needs to evaluate 1.6M pairwise visual
similarities from 1806 object candidates, compared to the 16271 pair-
wise visual similarities to evaluate when using metadata in HerbDisc.

full HerbDisc, in the Kitchen Dataset. We include the motion
filter Θmotion in the evaluation of Θvisual so that both systems
have the same initial pool of object candidates.

HerbDisc is the clear winner in the Kitchen Dataset, with
a maximum recall of 65% at 62% precision, compared to 24%
maximum recall at 77% precision. For the same recall of 24%,
HerbDisc achieves 90% precision (13% higher than the visual
similarity Θvisual alone). The additional constraints provided
by the metadata (and especially Θseq) allow HerbDisc to pro-
cess the Kitchen Dataset 190× faster than if using visual sim-
ilarity alone, as shown in Table 3. The main reason for this
speedup is the limited number of pairwise similarities to evalu-
ate in the CSG (mainly due to Θseq) compared to the regular
pairwise similarity graph from Θvisual. Namely, HerbDisc eval-
uates 16271 pairwise visual similarities, compared to 1.6M in
Θvisual.

To illustrate the impact of different constraints on the CSG,
we show in Fig. 11 the graphs (displayed as adjacency matrices)
generated by each edge constraint Θmotion ∧Θseq, Θstatic, Θ3D,
and Θapp, for the Kitchen Dataset. Fig. 11(top) displays the
CSG after each constraint as evaluated in HerbDisc, cascading
the multiple conjunctive constraints for efficiency. Fig. 11(mid-
dle) shows the CSG for each constraint independently. The
product of all adjacency matrices (rightmost column) is the
same for both approaches, but HerbDisc is more efficient. The
metadata-based constraints Θseq, Θstatic are significantly more
discriminative than the visual features Θ3D and Θapp. The ad-
jacency matrix for Θmotion ∧ Θseq also illustrates the behavior
of the dynamic motion filter, generating sequences of different
length (i.e., squares of different size) depending on HERB’s mo-
tion. Fig. 11(bottom) shows the result of using visual similarity
constraints with no metadata. In this case, the product of all
adjacency matrices (rightmost column) is significantly denser
than in HerbDisc, which accounts for the increased computa-
tion time shown in Table 3.

8.3.2 HerbDisc in the NSH Dataset

In Section 7, we explored the impact of each individual compo-
nent of HerbDisc. We provide a summary plot in Fig. 14 that
combines the P-R curves of all components.

The attempt to evaluate Θvisual on the NSH Dataset was
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Component time (s)

Data acquisition 22836
Read sequence/candidate data Θseq 25.9
CSG Construction 710.1
CSG Clustering 211.9
Object CSG Clustering 54.6
Model Registration 111.4
Total processing time 1113.9

Table 4: Running times of HerbDisc in the NSH Dataset. The mo-
tion and sequencing constraint and the candidate generation are ex-
ecuted in parallel with the data acquisition and are not included.
The overall running time is 1113.9 seconds (18 min 34 s), to discover
121 correct and 85 valid objects from an RGBD video feed of 6 h 20
min (521234 samples).

Component Output Quantity

S Input samples I 521234
Θmotion Samples I 19614
Θseq Disjoint Sequences Is 732
H ∧Θsupport Object Candidates h 58682
Θsize ∧Θshape CSG nodes V Θ 49230
Θstatic ∧Θ3D ∧Θapp CSG edges EΘ 431121
CSG Clustering Partial objects mk 2215
Object CSG Clustering Full Objects Mk 464

Table 5: Impact of each component and quantities generated for the
NSH Dataset, from 521234 input images to 464 output models (with
121 correct and 85 valid objects).

unsuccessful, after the testing machine had made barely any
progress after a week of processing. HerbDisc processes the
NSH Dataset in 18 min 34 s. We show an itemized list of run-
ning times for the different steps in Table 4, and the statistics
for images, candidates, edges, etc., in Table 5. The overall run-
ning time does not include data acquisition time (and motion
filtering and candidate generation, which we execute in parallel
with the data acquisition). The most expensive step is the CSG
construction, which processes 732 connected components in the
CSG, for a total of 49230 nodes and 4.9M edges—with 431121
edges satisfying all constraints—in 11 min 49 s. The CSG Clus-
tering step is the second most expensive step, separating 2215
clusters (i.e., partial objects) in 3 min 31 s. The Object CSG
Clustering and model registration are the most expensive per-
unit steps. However, they leverage the filtered information from
the CSGs to cluster and register 464 objects in 2 min 45 s.

Figure 13: Floor-by-floor evaluation of HerbDisc on the NSH
Dataset. HerbDisc achieves a 28% higher recall in regular office
environments (NSH-1) compared to laboratory and machine shop
environments (NSH-3). Mixed environments containing both labo-
ratories and offices (NSH-2 and NSH-4) achieve similar recall. Herb-
Disc achieves a maximum recall of 28.6% in the overall NSH Dataset
at 44.4% precision, compared to 43.9% maximum recall in office
environments (NSH-1) and 15% in laboratories and machine shops
(NSH-3).

We discover a total of 464 object models in the NSH Dataset,
where 121 unique objects are correct (28.6% recall) and 85 are
valid (44.4% precision). In Fig. 13, we show the P-R curves
for the NSH Dataset, as well as a floor-by-floor analysis (NSH-
1 to NSH-4). We see a clear difference in performance as we
move from regular office environments (NSH-1) to laboratories
and machine shops (NSH-3). In office environments, HerbDisc
displays a maximum recall of 43.9% at 52% precision, and 78%
precision at 20% recall. In contrast, we only achieve a maximum
recall of 15% at 41% precision in the laboratories of NSH-3 (e.g.,
Fig. 4(2, 3-5)), which include multiple shiny metallic objects,
specular reflections, and extreme clutter.
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We can also modify the configuration of HerbDisc on the fly
to achieve different behaviors. For example, if we are more
interested in precision than recall, we can use Θsupport as a
standalone candidate generator and achieve 82% precision at
25% recall (on NSH-1), or reject the lowest-ranked models and
achieve 60% precision at 40% recall. We show examples of
correct objects in Fig. 15 and of valid and invalid objects in
Fig. 16.

The correct objects discovered by HerbDisc are predomi-
nantly objects we would expect in an office environment, such as
laptops, books, phones, monitors, keyboards, and mice. Other
objects, such as basketball balls, watering cans, plants, and food
items, showcase the object diversity—and therefore difficulty—
from the NSH Dataset. We require objects to be 100% pure
to be considered correct, which assures a high quality for po-
tential robotics applications. For example, for the maximum
recall configuration, we discover 75% of the labeled keyboard in-
stances, 66% of books, 63% of mugs, and 51% of laptops. Shiny,
metallic objects are particularly hard to discover, as the Kinect
often fails to produce decent point clouds with them. There-
fore, objects such as plyers, screwdrivers, adjustable wrenches,
and other mechanic tools are all outright missed.

In an open task such as object discovery, it is nearly impossi-
ble to obtain comprehensive ground truth. HerbDisc discovers
objects that the annotators considered outside the guidelines for
ground truth in Section 6, such as chairs, trashcans, or wall-
mounted paper holders (see Fig. 16). The discovery of such
objects can be due to several reasons. First, the object priors
specified in HerbDisc may not be specific enough, accepting ob-
jects that HERB cannot manipulate (e.g., chairs and people).
Other objects are not considered correct due to semantic mean-
ing (e.g., the object is a part of a more complex object, such as a
bike seat or a chair’s armrest), because the object is immovable
(e.g., a wall-mounted paper holder), or because the annotators
did not notice or recognize the object (e.g., paper folders, ca-
bles). We believe that the only way to disambiguate between
these cases is to interact with the objects during the discovery
process, which is a future direction. Our framework can be used
to leverage interaction information if available, as well as any
other source of metadata, when formulated as constraints.

Among the invalid objects, we identify three main categories:
1) correct but impure objects; 2) groups of objects; and 3) mix-
tures of fragments. The first case refers to correctly discovered
objects that contain a few (or sometimes only one) misplaced
candidates, such as the red cup or the plastic bag in Fig. 16.
Objects in the second case are usually compound of multiple
objects very close to each other or touching each other, such as
groups monitor-keyboard-mouse or stapler-stapler-table. The
third case comprises unrecognizable groups of object candidates
from multiple objects. Invalid objects in cases 1) and 3) are
mostly due to clustering errors, which improperly unite candi-
dates from different objects. Objects in case 2) are mostly due
to candidate generation/segmentation errors, failing to sepa-
rate the individual objects in complex scenes. At maximum re-
call, 69% of the missed objects are part of invalid objects (i.e.,
at least one image of the object is correctly segmented, but

Figure 14: Summary of P-R curves for the ablative analysis. Herb-
Disc is the best-performing method, combining the results of all con-
straints for improved object discovery in the NSH-1 Dataset.

incorrectly associated to an invalid object), and 31% are out-
right missed (mostly shiny, metallic objects, such as adjustable
wrenches and other mechanic tools, whose images produce very
poor segmentation results). Among the invalid objects, 64%
are groups of objects, 26% are correct but impure objects, and
10% are mixtures of fragments.

9 Conclusions

In this paper, we have proposed a solution to discover objects
during an entire workday of a robotic agent, processing over
6 hours of raw video stream in under 19 minutes. This solu-
tion is a first step toward solving our long-term goal of Lifelong
Robotic Object Discovery (LROD). The LROD problem, which
we have also introduced in this paper, is the problem of discov-
ering new objects in the environment during an entire robot’s
lifetime: while the robot operates, for as long as the robot op-
erates.

We claim that the key to make LROD a feasible prob-
lem is domain knowledge (robotic metadata). We have intro-
duced a novel formulation to encode generic domain knowl-
edge and visual information as graph constraints in a graph-
based framework. In this formulation, we can combine multi-
ple constraints using boolean logic expressions. The resulting
metadata-augmented graphs, which we term Constrained Simi-
larity Graphs (CSGs), provide a common framework to encode
any source of information for object discovery.

To assess the validity of our framework, we have introduced
an optimized implementation of object discovery called Herb-
Disc. In HerbDisc, we efficiently discover objects in large
datasets by leveraging the natural constraints of service robotics
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Laptop (Correct)

Plant (Correct)

Book (Correct)

Basketball ball (Correct)

Watering Can (Correct)

Apple Charger (Correct)

Monitor (Correct)

Printer (Correct)

Keyboard (Correct)

Mouse (Correct)

Phone (Correct)

Speaker (Correct)

Pineapple (Correct)

Bag (Correct)

Paper Bag (Correct)

Figure 15: Examples of Correct objects. For each object, we display its object label (text box); its 3D model (left/right); and 10 randomly
selected images from the set of object candidates hi (center), with the 3D point clouds hP

i overlaid in red or blue over each image.
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Person (Valid)

Cable (Valid)

Chair (Valid)

Bike Seat (Valid)

Folders (Valid)

Paper Holder (Valid)

Trash Bin (Valid)

Cup (Invalid)

Speakers (Invalid)

Plastic Bag (Invalid)

Monitor and Keyboard (Invalid)

Multiple Segments (Invalid)

Partial Part (Invalid)

Folder (Invalid)

Mixture of Fragments (Invalid)

Figure 16: Examples of Valid and Invalid objects. For each object, we display its object label (text box); its 3D model (left/right); and
10 randomly selected images from the set of object candidates hi (center), with the 3D point clouds hP

i overlaid in red or blue over each
image.

20



about the environment, the robotic agent, and the sensors, as
well as the visual information. We have gathered a dataset of
over half a million RGBD images (6 h 20 min of raw RGBD
video) of office and lab environments, ranging from moderately
to extremely cluttered, and containing 423 ground truth ob-
jects, in order to evaluate HerbDisc in a dataset of a realistic
robotic workday. HerbDisc processed this dataset in under 19
minutes and discovered 206 novel objects, such as monitors,
keyboards, plants, and food items, with a maximum recall of
28.6% at 44.4% precision, and 68% precision at 15% recall (and,
for regular office environments, maximum recall of 43.9% at
52% precision, and 78% precision at 20% recall). A key feature
to make LROD feasible is system adaptability to changing con-
ditions. In our framework, we showed that we can opportunisti-
cally leverage different sources of information adaptively, when
conditions change, just by changing the operating constraints
in the graph-based formulation.

And yet, despite discovering hundreds of novel objects, Herb-
Disc failed to discover over half of the total number of objects.
We believe that, in order to truly solve the LROD problem, it
will be necessary to transform the robot from an observer to an
active agent, interacting with objects and leveraging that infor-
mation to discover and validate discovered objects. With our
framework, we can encode the information coming from inter-
action as more effective graph constraints, to discover objects
resulting from that interaction. A future direction for our re-
search is to develop effective interaction strategies to discover
novel objects, to disambiguate when uncertain, and to validate
the discovered objects by interacting with them.

Another related future direction is to explore online tech-
niques for object discovery. The framework described here is
essentially a batch process, so that it can be processed dur-
ing the robot’s downtime. However, online processing could be
performed using the sequences provided by the motion filter.
Once the motion filter generates a new sequence—of up to 20
seconds—we can cluster and generate partial objects for that
sequence. We would perform an Object CSG Clustering step
every few hours, to join the most recent partial objects with
the full objects found in previous Object CSG Clusterings.
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