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Abstract—We are concerned with enabling truly large scale

autonomous navigation in typical human environments. To this

end we describe the acquisition and modeling of large urban

spaces from data that reflects human sensory input. Over

181GB of image and inertial data are captured using head-

mounted stereo cameras. This data is processed into a relative

map covering 121 km of Southern England. We point out the

numerous challenges we encounter, and highlight in particular

the problem of undetected ego-motion, which occurs when

the robot finds itself on-or-within a moving frame of refer-

ence. In contrast to global-frame representations, we find that

the continuous relative representation naturally accommodates

moving-reference-frames – without having to identify them first,

and without inconsistency. Within a moving-reference-frame,

and without drift-less global exteroceptive sensing, motion with

respect to the global-frame is effectively unobservable. This

underlying truth drives us towards relative topometric solutions

like relative bundle adjustment (RBA), which has no problem

representing distance and metric Euclidean structure, yet does

not suffer inconsistency introduced by the attempt to solve in

the global-frame.

I. INTRODUCTION

Autonomous navigation in human working environments
is an important problem, and this paper is motivated by our
attempt to make sense of the 121 km path between Oxford
and London depicted in Figs. 1 and 2. The map begins in an
office in Oxford, and proceeds with various forms of transport
including: foot, bicycle, train, subway, escalator, rickshaw,
punting-boat and ferris wheel. Note that we cannot detect
our true position in the global inertial frame – when we
are traveling on the train or subway for instance, motion
with respect to the global inertial frame becomes effectively
unobservable in the presence of inertial sensing noise and
drift. During this ~7 hour experiment we are able to compute
relative metric motion estimates 89.4% of the time, falling
back on a constant velocity model and inertial orientation
sensing for the remainder.

This paper argues that a relative, topometric approach to
autonomous navigation is not only sufficient, in the sense that
one can find shortest paths in a map, but ultimately that it is
necessary as well – that is, in order to solve many real world
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Figure 1: 121 km path between Oxford in the upper left and
London in the bottom right. We compute visual estimates
for 89.4% of this distance. Using appearance-based place
recognition and inertial dead reckoning, 100% is covered
topologically, which is sufficient for path planning. The graph
begins in an office in Oxford, and proceeds with various
forms of transport including: foot, bicycle, train, subway,
escalator, rickshaw, punting-boat and ferris wheel. Note that
we cannot detect our true position in the global inertial frame
– when we are traveling on the train or subway for instance,
motion with respect to the global inertial frame becomes
effectively unobservable in the presence of noise.

navigation tasks, we will have to adopt relative topological
representations. This is in stark contrast to current received
wisdom that it is possible – indeed preferable – to estimate
everything in a single global coordinate frame.

First we describe our optimization framework that allows
us to recover locally optimal structure using a relative metric
manifold that describes the world. Note that it is not clear
that it is necessary to estimate everything in a single coor-
dinate frame – for instance most problems of autonomous
navigation, such as path planning, obstacle avoidance or
object manipulation, can be addressed within the confines of
a metric manifold. Taking this route, we structure the problem
as a graph of relative poses with landmarks specified in
relation to these poses. In 3D this graph defines a connected
manifold with a distance metric based on shortest paths.
Notice that this is not a sub-mapping approach, as there
are no distinct overlapping estimates, and there is only one
objective function with a minimal parameter vector; similarly,
this is not a pose-graph relaxation approach, as it solves
for landmark structure as well. Our solution computes the
optimal local Euclidean metric map structure throughout
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Figure 2: Route around London with topologically interesting
places for navigation. Between Paddington and Piccadilly
the user is underground in the subway. From Piccadilly to
Trafalgar Square and the London Eye the user is on foot.
One loop was closed around the Eye. From the London Eye
the user took the southern route West across the Thames,
at which point he took a Rickshaw to Trafalgar Square and
Piccadilly Circus. From Piccadilly Circus the user walked
across Hyde Park to the Natural History Museum, at which
point the batteries died, approximately 7 hours into the
experiment.

the relative manifold described by the continuous relative
representation.

Second, we describe a large experiment in which 181GB
of stereo data from a day trip to London are processed. No
special care was taken to collect “clean” data that would lend
itself to easy processing; the user collects data that reflect
a typical human experience of the world (see Fig. 3). To
highlight this we compare statistics to data collected by our
Segway robot, shown in Fig. 3. Processing such data from
“the wild” is extremely challenging, and there are numerous
difficulties encountered, which include but are not limited
to: undetected ego-motion, motion blur, dynamic lighting
changes, dropped frames, lens flare, dynamic obstacles, ob-
structed views, non-overlapping frames and power failures.

Third, we discuss the particularities of this data, and why
it leads us to believe that topological methods are not only
sufficient for navigation, they are the only way forward –
that is they are also necessary. In particular, the problem
of undetectable ego-motion deserves special attention as it
ultimately forces the need for topological representations, and
breaks all attempts to estimate a single global solution. Our
data show that in real world situations the sensing vehicle is
frequently on or within a moving frame of reference – with
no recourse to global exteroceptive sensing. Traveling in a lift
or on the subway are two examples. From our data alone, it
is not possible, given the current state of the art, to infer a
map in a single reference frame. Ultimately, we argue, it is
also not desirable.

Fourth, to demonstrate a baseline sufficiency for navigation,
we show that it is possible to find shortest paths in the relative
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Figure 3: Processing data collected from human-like move-
ment in urban spaces (right) is very different, and substan-
tially more challenging than processing stable robot data
(left). In both settings we capture 512x384 grey scale images
at 20Hz.

maps we build – both in terms of time and distance. To
demonstrate this, query images from Google of popular land-
marks around London, such as the London Eye or Trafalgar
Square, are matched to the the relative map to provide goals
for route planning. This is particularly interesting as it allows
users to give goals to robots in a natural way – by presenting
them with images.

We find that there are two fundamental components that
enable navigation over large scales: the first and most im-
portant is reliable place recognition – we have to be able to
close loops in a scalable fashion independent of any metric
estimation; the second component is the wholesale adoption
of a completely relative, topometric estimation framework.
Beyond rudimentary route planning, processing this data so
that it is useful for real-world navigation is a challenging task.
Ultimately, we may need to learn to recognize commonly
encountered moving-reference-frames, such as planes, trains
and automobiles. Clearly, recognizing such high level seman-
tic information is beyond the state of the art, and remains a
challenge.

II. RELATED WORK

Topological navigation is a well studied problem that was
first addressed in robotics by Kuipers and Byun [23]. This
work, and the later work by [4] seeks to describe interesting
places as nodes in a graph of relative representations that
encode metric information. In this context path planning
is a matter of graph-search combined with local obstacle
avoidance; based on this, topological representations have
been used extensively for path planning. Recently numerous
authors have recognized the benefits of vision for topological
navigation and mapping [13][15][31][40], though often with
the explicit goal of producing a globally embedded solution.
To relate visual places, appearance-based recognition based
on bag-of-words image matching is generally recognized as
state-of-the art [6].

When it comes to metric vision-based estimation, bundle
adjustment is the recognized optimal solution [12][22][42],
though the problem is an old one [3][28]. The full problem
tries to optimize the joint vehicle trajectory and map structure
simultaneously given all measurements ever made. There
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are approximate incremental solutions that only optimize a
small local subset of the map [8], and there are methods
that approximate the full solution with various forms of
marginalization [22][36], or by ignoring small dependency
information [25][41]. Many use key-frames to reduce com-
plexity, though at the expense of accuracy [10][21][29]. All
these techniques suffer from computational complexity issues
during loop closure.

In the context of long-term autonomy, roboticists recog-
nize the need for online, real-time, navigation and map-
ping algorithms. This means that localization and mapping
algorithms must operate incrementally within a constant-
time budget. Driven by this need, many authors have rec-
ognized the benefit of relative representations and manifolds
[1][5][9][14][17][20][19][22][24]. On the other hand, the
drawbacks of single-frame solutions have been recognized
for some time [2].. The most common solution is probably
sub-mapping [1][7][9][33], which breaks the estimation into
many smaller mapping regions, computes individual solutions
for each region, and then estimates the relationships between
these sub-maps. Many difficult issues arise in sub-mapping,
including map overlap, data duplication, map fusion and
breaking, map alignment, optimal sub-map size, and con-
sistent global estimation in a single Euclidean frame. In
contrast, relative bundle adjustment is a continuous sub-
mapping approach that avoids these complications.

The most successful global methods currently are the
pose-graph optimization algorithms. Instead of solving the
full problem, these methods optimize a set of relative pose
constraints [16][32]. Like other methods, pose-graph solvers
have worst-case complexity at loop closure that is dependent
on the length of the loop.

The work most similar to our relative formulation is by
Eade [9] and Konolige [22]. The former is akin to sub-
mapping methods with constraints to enforce global Eu-
clidean consistency at loop closure; the latter formulates
the cost function relative to a single Euclidean frame and
then makes a series of approximations to produce a sparse
relative pose-graph. Neither method derives the purely rel-
ative objective function (incrementally, both rely on some
form of privileged-reference frame), neither formulates the
objective function completely without privileged frames, and
both methods carry the burden of finding a globally con-
sistent estimate in a single Euclidean frame. Our approach
is substantially different because of the completely relative
underlying objective function that we optimize.

III. METHODS

In this section we first describe the continuous relative
representation and how to optimize within this framework.
Second we describe our robust stereo front-end processing
pipeline. With this system we are able to achieve the kinds of
metric accuracy shown in Fig. 4 and produce reconstructions
like the one shown in Fig. 4.

A. Problem Formulation

This section re-caps the continuous relative representation
(CRR) and relative bundle adjustment (RBA), which can be
used to compute the MLE robot trajectory and map solution
in a relative space [27][37]. Recall that bundle adjustment
is the optimal global privileged-frame solution, in that its
form matches the definition of the Cramer Rao Lower Bound
(CRLB) [35]. However, BA quickly becomes too expensive
(it is cubic in complexity), so we use a relative approach,
which can be viewed as a continuous sub-mapping approach
that runs with constant time complexity. BA seeks to mini-
mize error between the observed and predicted measurements
of n landmarks sensed from m sensor poses (or frames). Sim-
ilarly, in RBA we minimize the difference between predicted
and measured values. Let lj,k, k ∈ 1, ..., n, j∈ 1, ...,m be a
set of n 3D landmarks each parameterized relative to some
base-frame j. Let tj , j ∈ 1, ....,m be a set of m 6D relative
pose relationships associated with edges in an undirected
graph of frames. This graph defines a connected Riemannian
manifold that is by definition everywhere locally Euclidean,
though globally it is not embedded in a single Euclidean
space. The relationship between parent-frame α and child-
frame j is defined by a 4×4 homogeneous transform matrix,
Tα,j=T̂α,jT(tj), where T̂α,j is the current estimate and T(tj)

is the 4 × 4 homogeneous matrix defined by tj . Each tj
parameterizes an infinitesimal delta transform applied to the
relationship from its parent frame in the graph (i.e. an error-
state formulation). The kinematic chain from frame j to
frame i is defined by a sequence of 4×4 homogeneous trans-
forms Tji = T̂j,j+1T(tj+1)T̂j+1,j+2T(tj+2), ..., T̂i−1,iT(ti);
the sensor model for a single measurement is thus

hi,k(lj,k, ti, ...tj) = K
�
T−1

j,i lj,k
�

= K (gi,k(lj,k, tj+1, ...ti))

where gi,k : Rdim(x) → R4, x �→ T−1
j,i lj,k transforms the

homogeneous point lj,k from base-frame j to the observation
frame i, and K : R4 → R2 , is the standard perspective
projection function [18]. This describes how landmark k,
stored relative to base-frame j, is transformed into sensor
frame i and then projected into the sensor. We make the
usual assumption that measurements zi,k are independent and
normally distributed: zi,k ∼ N(hi,k, Ri,k). The cost function
we associate with this formulation is

J =
n�

k=1

mk�

i∈1

(zi,k − hi,k(x))T R−1
i,k (zi,k − hi,k(x)) (1)

(mk : set of frames that see landmark k) (2)
= �z − h(x)�R−1 , (3)

which depends on the landmark estimate, lj,k and all the

transform estimates tj+1, ...ti on the kinematic chain from

the base-frame j to the measurement-frame i. This problem is
solved using iterative non-linear least-squares Gauss-Newton
minimization for the values of x that minimize re-projection
error — this yields the maximum likelihood estimate (subject
to local minima). This process is slightly more expensive
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Figure 4: Before relaxation, with loop closures (left). After global pose graph relaxation (middle). Example of the metric pose
estimate output by our system from the November 3, 2008 New College Data set [39]. This indicates that for small distances
on the order of ~2km metric accuracy can be achieved to within 1-2m, and to within ~2cm after loop closure[37][27][30].
We posit this is sufficient for most path planning purposes. For example, see the Laser data rendered from the relative
trajectory around New College Quad (right). Clearly, metric structure is available in the relative approach. In our experience
this is sufficient for obstacle avoidance and local scene analysis.

than traditional bundle adjustment, though the ultimate com-
putational complexity is the same. An implementation detail
is that to ensure scalability we have had to extend relative
bundle adjustment with out-of-core graph processing, while
still maintaining frame rate performance on the front end. At
this point, the only limitation on the size of the maps we can
build is storage capacity.

We stress that the relative solution is not equivalent to the
normal Euclidean-space solution and it does not produce an
estimate that can be easily embedded in a single Euclidean
frame. Converting from the relative manifold into a single
Euclidean space is a difficult problem that we argue is best
handled by external resources that do not have constant run-
time requirements - e.g. by operator computers, not on the
robot.

B. Processing Pipeline

This section describes the engineering effort required to
achieve precision, robustness and speed in the visual pro-
cessing pipeline.

1) Image processing: includes rectification to allow fast
scan line searches of corresponding left-right matches.
Images are shifted to obtain the same mean and vari-
ance to aid left-right matching. We use FAST features
[34] extracted at different levels of a scale-space pyra-
mid for robustness to image blur. Detection thresholds
are modified at each timestep to keep the number of
detected features at a desired level independent of the
scene.

2) Image alignment: An estimate of the 3-D rotation
is obtained using the sum-of-squared-distance of im-
age intensity using an efficient second-order gradient-
descent minimization (ESM) as described in [26]. This
greatly helps in cases with perceptual aliasing, such as
bricks, tiles and picket fences.

3) Matching in time: The 3-D coordinates of the land-
marks are projected into the left and right images
and 9x9 patches are matched using mean shifted sum-
absolute-difference error metric. Finally, ESM sub-
pixel refinement is performed. Once matched, the cur-

Feature Tracking
Avg. Min. Max.

Features per Frame 91 45 142
Feature Track Length 14.43 2 622
Re-projection Error 0.12 0.028 0.91

Table I: Typical tracking performance.

rent motion is estimated with a standard combination of
RANSAC and a final robust m-estimation step [11][18].

4) Starting new landmarks: we typically track 100-150
features and use a multi-level quad-tree. At each pyra-
mid level, a quad-tree captures how many features
project into each cell. From these counts we can ensure
an even spatial distribution across the image. Finally,
upon initialization a SIFT descriptor is computed which
can be used during re-localization and loop closure.

These steps help to ensure robustness to the challenging
operating conditions illustrated in Figs. 6 and 7. Table I shows
typical system performance results. Further details can be
found in [27].

C. Loop Closure and Place Recognition

For loop closure and place recognition we rely on fast
appearance-based mapping [6] which represents each place
using the bag-of-words model developed for image retrieval
systems in the computer vision community [38]. At time
k the appearance map consists of a set of nk discrete
locations, each location being described by a distribution over
which appearance words are likely to be observed. Incoming
sensory data is converted into a bag-of-words representation;
for each location, a query is made that returns how likely it
is that the observation came from that location’s distribution
or from a new place. This allows us to determine if we are
revisiting previously visited locations. In a filtering frame-
work, incorrect loop closures are often catastrophic as the
statistical estimates are corrupted. The CRR enables recovery
from erroneous loop closures as removing the incorrect graph
link and bad measurements returns the system to its previous
state.

288



(a) After exploring a floor, taking a flight of stairs followed by
a lift, the robot returns to the same floor. No loop closure has
currently been detected.

(b) A loop closure is triggered. The trajectory cannot be
represented in Euclidean space and a “rip” appears (in this
example in the staircase). Note that these rips are an artifact
of embedding the solution in a single Euclidean space — they
do not exist in the relative manifold. The size of the rip is
related to the distance traveled in the lift. The topometric map
is still usable for exploration because of its relative nature.

Figure 5: Lift sequence demonstrates the complexity of undetectable ego-motion with respect to a global-frame. Even with
inertial sensing, moving-reference-frames like subways, lifts, trains etc. make the global-frame effectively unobservable given
sensor noise.

Human Collected Data
Avg. Min. Max.

Distance Traveled (km) — — 121.4
Frames Processed — — 479726

Velocity (m/s) 1.3 0 8.2
Angular Velocity (deg/s) 8.6 0 191.5

Frames Per Second 33.7 21.3 46.4

Table II: Results for London human collected data. Note the
difference in linear and angular velocity – this reflects the fact
that head swivels result in very fast visual motion estimates.
This type of motion is exactly the kind of challenge not faced
in typical robot data.

D. Path Planning

Presently path planning consists of finding shortest paths
in the relative map with edges weighted either by distance or
time. We use the magnitude of inter-frame motion (excluding
orientation) to compute edge weights for distance based
searches. Time-based searches use an edge weight that is
simply the time between key frames, with an average value
used for loop closure edges.

IV. RESULTS

Our data consist of a largely unbroken stream of stereo
measurements captured at 20hz, with relocalization across
temporal gaps. The run to London consists of ~181GB of
data spread over 6.9 hours. Every 50ms we update the relative
motion estimate from visual methods, and fall back on the
IMU or a constant velocity motion model in the absence or
failure of visual tracking. This strategy succeeds with visual
estimation 89% of the time, and falls back on dead-reckoning
for the remainder, giving an unbroken linear chain of relative
relationships.

To illustrate the metric accuracy of the local estimation
engine see Fig. 4, which shows an accuracy of ~1m after 2km
of travel. Such performance is achieved via the combination
of sub-pixel refinement, multi-level matching, spreading fea-
tures across the image within a quad-tree, and exploiting loop
closures to re-localize against the map [27][37].

Robot Collected Data
Avg. Min. Max.

Distance Traveled (km) — — 0.8
Frames Processed — — 29489

Velocity (m/s) 0.6 0 1.3
Angular Velocity (deg/s) 4.8 0 59.8

Frames Per Second 20.3 7.4 28.6

Table III: Robot data collected on a Segway RMP (see Fig. 3).
Note the difference in linear and especially angular velocity
in Table II.

We adopt the view that closures produced by FABMAP
can be viewed as pinch-points between disparate points
along this chain [30]. Note however, that a consistent global
representation is impossible to compute in the presence of
undetected ego-motion, such as the lift example in Fig. 5
or the numerous cases shown in Fig. 7. Given noisy inertial
sensing, any attempt to compute a global solution is doomed
to failure as the measurements are inconsistent with a single
Euclidean embedding.

A. Path Planning

To plan a route in the graph we begin with a Google
image from Trafalgar Square matched to an image from the
graph with FABMAP (for example see Fig. 8). Given this
query, we can find a path from Oxford to London based on
either metric, temporal or topological distance. Note however
that information can also go in the other direction – that is,
given such appearance-based matches from the Internet, it is
possible to label relative map with search words describing
places.

In the relative representation, shortest paths in the graph
can be computed in a variety of ways; for instance, we
might ask for the shortest path metrically, with respect to
time, or purely topologically. Two paths from the Natural
History Museum in Oxford to the London Eye are computed.
The first path, based on a desired shortest time travel, takes
the southern bridge from West to East (see Fig. 2). This
route is shorter due to the rickshaw the user rode during
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(a) A smooth constant velocity trajectory from a bicycle.

(b) Track estimated from the rickshaw showing user head swivel. Not as
fast as the bicycle.

(c) Walking in the Oxford Natural History Museum. Note the clearly visible
gait.

(d) Walking into a subway car. Not that at some point in this trajectory, the
car beings to move, a fact not visually discernible here. Detecting linear
acceleration with off-the-shelf inertial sensors is difficult in this situation.

(e) Walking on a train looks like walking anywhere else. Note the extreme
motion blur in the windows from the quickly passing external terrain.

Figure 6: Excerpts from the London experiment show typical
visually estimated trajectories for various modes of transport.

exploration. The second path which gives shortest distance,
traverses the loop closure at Trafalgar Square, and then takes
the northern bridge to the London eye, which was traversed
on foot and is indeed the more direct route (see Fig. 9
for representative loop closures). Clearly, paths planned in
the relative representation can take advantage of metric and
temporal information.

(a) Walking on the London Eye. It is difficult to detect loop closure
metrically in the trip around the wheel.

(b) Extremely challenging escalator ride. Tracked motion oscillates between
moving and stationary (note the bunched axes where it is stationary).
Detecting linear acceleration with off-the-shelf inertial sensors is difficult
in this situation.

(c) Visual motion estimation while punting is challenging due to reflections
which appear to cause a slight instability.

(d) Successful feature tracking under challenging lighting conditions.

Figure 7: More trajectories for various modes of transport.

B. Undetected Ego-Motion

In practice, undetectable ego-motion due to inertial drift is
a common phenomenon – as illustrated in the lift example in
Fig. 5 or the numerous cases shown in Fig. 7. Navigation in
the real world frequently travels on and inside various forms
of moving-reference-frames, without the ability to accurately
sense the global-frame. In the challenging motions shown in
Figs. 6 and 7 note that walking is always similar, even though
it is often taking place within a moving-reference-frame, such
as the Tube, a train, or the London Eye. Fig. 7 in particular
shows trajectories estimated from sequences on an escalator,
in a boat, and under harsh lighting conditions. Tables II and
III compare the London dataset to data collected on a Segway
RMP, which highlights the difficulty in processing human-
like sensory input.

V. DISCUSSION

Algorithms that solve for robot position in the privileged
inertial coordinate frame are very different from relative
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Figure 8: Google image from Trafalgar Square (left) and
matched image from the graph (right). Given this query, we
find a path from Oxford to London based on either metric,
temporal or topological distance. Note however that infor-
mation also goes in the other direction – that is, given such
appearance-based matches from the Internet, it is possible to
label relative map with search words describing places. This
is not surprising, especially for highly distinctive places like
the London Eye, Piccadilly Circus, Trafalgar Square or the
Natural History Museum [38].

approaches – they have different objective functions and they
solve for different quantities. Privileged-frame solutions seek
to embed the entire robot trajectory in a single Euclidean
space; relative solution solves in a connected Riemannian
manifold. The relative manifold is a metric space, and
distance between two points can be computed from shortest
paths in the graph. We have shown that the relative repre-
sentation is amenable to planning (because path planning
algorithms are commonly defined over graphs). Further,
because the manifold is (by definition) locally Euclidean, we
have access to highly accurate local metric structure at any
time (for instance see Fig. 4 which shows lasers rendered
from the relative trajectory around New College Quad). We
posit that topometric solutions are not only sufficient for
real world navigation, they are increasingly necessary. For
instance, given undetectable ego-motion, it is not possible
to build consistent map structures in a privileged-frame on
which to navigate. We have endeavored to show that it is
possible within a purely relative approach.

While it is certainly possible to build large scale, consistent
global world models (especially with the use of GPS), we
find that there are numerous real world situations where it
is impossible to do so – that is, even GPS is not sufficient.
There is no such thing as drift-free inertial sensing, and there
are many examples in which position in the global inertial
frame is effectively unobservable – places like lifts, subways,
trains – and these are places where we want to navigate
autonomously. This fact bears scrutiny, and helps us focus
on much harder problems we will have to solve in order to
move forward. These are problems such as learning when
and where undetectable ego-motion becomes probable – that
is, automatically discovering the location of transportation
portals. It is interesting that one solution appears to be
learning to recognize high-level semantic objects, such as
lifts, escalators, planes, trains and automobiles. Given such
labels then perhaps we can relate the topometric world to
the global inertial frame. But the question remains – why?
Certainly, if it is possible to embed useful metric information

Figure 9: Loop closure candidates at Trafalgar Square
and Piccadilly Circus. Loops closure allows finding poten-
tially shorter paths in the map, though of course such co-
observability does not guarantee traversability.

into a relative approach, and if it suffices completely for
autonomous navigation, then why should we seek a global
embedding?

While we claim that a topological approach is necessary
for large scale real world navigation, note that our claims
of navigational-path-planning-sufficiency are based on the
assumption that co-observability implies traversability, and
that we know how to handle the various modes of transport
encountered during the traversal of paths. So, while it may
be sufficient from the pure graph-search point of view, it is
clearly limited because of the lack of higher-level knowledge
about moving-reference-frames – that is, path planning along
routes that include train, lifts, etc, must be informed about the
temporal schedule of the trains, lifts, etc – it needs to know
how to board a train or a lift. This is a substantially harder
problem, and one that we argue is necessary to solve if we
are going to effectively use these transportation modes for
autonomous navigation. Presently, we side step this problem
by simply defining sufficiency in terms of the ability to
find shortest paths in a graph – i.e. we use the traditional
definition, even though it is no longer appropriate once we
have moving-reference-frames. This is interesting grounds for
future research.

VI. CONCLUSION

In the presence of moving-reference-frames, and in the
absence of drift-free global exteroceptive sensing, motion
with respect to the inertial-frame can go undetected. We posit
that this fact severely limits the scalability and applicability
of single-coordinate-frame SLAM approaches. Undetectable
ego-motion is a common phenomenon encountered in human
operating environments — for instance on trains, planes,
automobiles, lifts, etc. This underlying fact motivates relative
topometric solutions like relative bundle adjustment, which
has no problem representing distance and metric Euclidean
structure, yet does not suffer inconsistency introduced by the
attempt to solve in a global-frame. In a continuous relative
formulation we find that moving-reference-frames can be
accommodated without having to identify them first, and
without inconsistency. The relative representation is tolerant
to structures that are frequently encountered in real situations.
To explore the feasibility and scalability of our approach, over
181GB of image and inertial data are processed to produce
relative estimates covering 121 km of Southern England. We
describe the acquisition and modeling of large urban spaces
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from data that reflect a typical human experience of the
world. We point out the numerous challenges that ensue, and
highlight in particular the problem of undetected ego-motion,
which is encountered when the robot finds itself on or within
a moving frame of reference. We are concerned with enabling
truly large scale autonomous navigation in typical human
environments. In stark contrast to current received wisdom
that it is possible – indeed preferable – to estimate everything
in a single global coordinate frame, we argue that a relative,
topometric approach to navigation is not only sufficient, but
that it is necessary as well.

REFERENCES

[1] M. C. Bosse, P. M. Newman, J. J. Leonard, and S. Teller. SLAM
in large-scale cyclic environments using the atlas framework. Inter-

national Journal of Robotics Research, 23(12):1113–1139, December
2004.

[2] R. Brooks. Visual map making for a mobile robot. In IEEE

International Conference on Robotics and Automation, 1985.
[3] D.C. Brown. A solution to the general problem of multiple station

analytical stereotriangulation. Technical report, RCP-MTP Data Re-
duction Technical Report No. 43, Patrick Air Force Base, Florida (also
designated as AFMTC 58-8), 1958.

[4] H. Choset and K. Nagatani. Topological simultaneous localization
and mapping (SLAM): toward exact localization without explicit
localization. IEEE Transactions on Robotics and Automation, 17:125–
137, 2001.

[5] L. A. Clemente, A. J. Davison, I. Reid, J. Neira, and J. D. Tardos.
Mapping large loops with a single hand-held camera. In Robotics:

Science and Systems, 2007.
[6] M. Cummins and P. Newman. FAB-MAP: Probabilistic localization

and mapping in the space of appearance. International Journal of

Robotics Research, 27(6):647–665, 2008.
[7] A. Davison, I. Reid, N. Molton, and O. Stasse. MonoSLAM: Realtime

single camera SLAM. IEEE Transactions Pattern Analysis and

Machine Intelligence, 29(6):1113–1139, 2007.
[8] M. C. Deans. Bearings-Only Localization and Mapping. PhD thesis,

School of Computer Science, Carnegie Mellon University, 2005.
[9] E. Eade and T. Drummond. Unified loop closing and recovery for

real time monocular SLAM. In Proceedings British Machine Vision

Conference, September 2008.
[10] C. Engels, H. Stewenius, and D. Nister. Bundle adjustment rules. In

Photogrammetric Computer Vision, 2006.
[11] M. A. Fischler and R. C. Bolles. Random sample consensus: A

paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24:381 – 395,
1981.

[12] A. W. Fitzgibbon and A. Zisserman. Automatic Camera Recovery for

Closed or Open Image Sequences. Springer, 2004.
[13] F. Fraundorfer, C. Engels, and D. Nister. Topological mapping,

localization and navigation using image collections. In IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2007.
[14] U. Frese and T. Duckett. A multigrid approach for accelerating

relaxation-based SLAM. In Proceedings IJCAI Workshop on Reason-

ing with Uncertainty in Robotics (RUR 2003), pages 39–46, Acapulco,
Mexico, 2003.

[15] T. Goedem’e, M. Nuttin, T. Tuytelaars, and L. V. Gool. Omnidirec-
tional vision based topological navigation. International Journal of

Computer Vision, 74(3):219?236, 2007.
[16] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree

parameterization for efficiently computing maximum likelihood maps
using gradient descent. In Proceedings Robotics: Science and Systems,
2007.

[17] J.E. Guivant and E.M. Nebot. Optimization of the simultaneous
localization and map-building algorithm for real-time implementation.
IEEE Transactions on Robotics and Automation, 17(3):242–257, June
2001.

[18] R.I. Hartley and A. Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, 2000.

[19] A. Howard. Real-time stereo visual odometry for autonomous ground
vehicles. In IEEE Conference on Robots and Systems (IROS), 2008.

[20] A. Howard, G. S. Sukhatme, and M. J. Mataric. Multirobot si-
multaneous localization and mapping using manifold representations.
Proceedings of the IEEE, 94(7):1360–1369, 2006.

[21] G. Klein and D. Murray. Improving the agility of keyframe-based
SLAM. In European Conference on Computer Vision, 2008.

[22] K. Konolige and M. Agrawal. FrameSLAM: from bundle adjustment
to realtime visual mapping. IEEE Transactions on Robotics and

Automation, IEEE Journal of Robotics and Automation, International

Journal of Robotics Research, 24(5):1066–1077, 2008.
[23] B.J. Kuipers and Y.T. Byun. A robust qualitative method for spatial

learning in unknown environments. In Proc. National Conference. of

Artificial Intelligence, 1988.
[24] A. Martinelli, V. Nguyen, N. Tomatis, and R. Siegwart. A relative map

approach to SLAM based on shift and rotation invariants. Robotics and

Autonomous Systems, 55(1):50–61, 2007.
[25] P. F. McLauchlan. The variable state dimension filter applied to

surface-based structure from motion. Technical report, University of
Surrey, 1999.

[26] C. Mei, S. Benhimane, E. Malis, and P. Rives. Efficient homography-
based tracking and 3-d reconstruction for single-viewpoint sensors.
IEEE Transactions on Robotics and Automation, 24(6):1352–1364,
2008.

[27] C. Mei, G. Sibley, M. Cummins, I. Reid, and P. Newman. A
constant-time efficient stereo SLAM system. In British Machine Vision

Conference, 2009.
[28] E. M. Mikhail. Observations and Least Squares. Rowman & Littlefield,

1983.
[29] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyse, and P. Sayd. Real

time localization and 3d reconstruction. In Proceedings of Computer

Vision and Pattern Recognition, 2006.
[30] P. Newman, G. Sibley, M. Smith, M. Cummins, A. Harrison, C. Mei,

I. Posner, R. Shade, D. Schroeter, L. Murphy, W. Churchill, D. Cole,
and I. Reid. Navigating, recognizing and describing urban spaces with
vision and lasers. International Journal of Robotics Research, 1:1–28,
2009.

[31] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry. In
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 652–659, Washington, DC, 2004.
[32] E. Olson, J. Leonard, and S. Teller. Fast iterative alignment of

pose graphs with poor initial estimates. In Proceedings of the IEEE

International Conference on Robotics and Automation, pages 2262–
2269, 2006.

[33] P. Pinies and J. D. Tardos. Scalable slam building conditionally
independent local maps. In IEEE conference on Intelligent Robots

and Systems, 2007.
[34] E. Rosten and T. Drummond. Machine learning for high-speed corner

detection. In European Conference on Computer Vision, May 2006.
[35] G. Sibley. Long Range Stereo Data-fusion from Moving Platforms.

PhD thesis, University of Southern California, 2007.
[36] G. Sibley, L. Matthies, and G. Sukhatme. A Sliding Window Filter for

Incremental SLAM, chapter 7, pages 103–112. Springer Lecture Notes
in Electrical Engineering, 2007.

[37] G. Sibley, C. Mei, I. Ried, and P. Newman. Adaptive relative bundle
adjustment. In Robotics: Science and Systems, 2009.

[38] J. Sivic and A. Zisserman. Video google: Efficient visual search of
videos. In Toward Category-Level Object Recognition, pages 127–144,
2006.

[39] M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman. The new
college vision and laser data set. International Journal of Robotics

Research, 28(5):595–599, 2009.
[40] B. Steder, G. Grisetti, S. Grzonka, C. Stachniss, A. Rottmann, and

W. Burgard. Learning maps in 3d using attitude and noisy vision
sensors. In IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2007.
[41] S. Thrun, D. Koller, Z. Ghahmarani, and H. Durrant-Whyte. SLAM

updates require constant time. In Workshop on the Algorithmic

Foundations of Robotics, December 2002.
[42] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle

adjustment – A modern synthesis. In W. Triggs, A. Zisserman, and
R. Szeliski, editors, Vision Algorithms: Theory and Practice, LNCS,
pages 298–375. Springer Verlag, 2000.

292


