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Abstract—This paper proposes a new topo-metric repre-
sentation of the world based on co-visibility that simplifies
data association and improves the performance of appearance-
based recognition. We introduce the concept of dynamic bag-
of-words, which is a novel form of query expansion based
on finding cliques in the landmark co-visibility graph. The
proposed approach avoids the - often arbitrary - discretisation
of space from the robot’s trajectory that is common to most
image-based loop closure algorithms. Instead we show that
reasoning on sets of co-visible landmarks leads to a simple
model that out-performs pose-based or view-based approaches.
Using real and simulated imagery, we demonstrate that dynamic
bag-of-words query expansion can improve precision and recall
for appearance-based localisation.

I. INTRODUCTION

Robotic mapping is the task of building a representation of

the world in view of providing robots with the capability of

achieving high-level goals. It is one of the key components

to autonomy. A full mapping system should provide accurate

pose and map estimates, be scalable and provide a way of

relocalising when mapping fails.

Maps are said to be metric when they represent the

position of the robot and landmarks in a particular coordinate

frame and aim to provide accurate estimates. Topological

maps on the other hand typically provide a representation

in the form of a graph with places or landmarks as nodes

and edges encoding some form of connectivity such as

traversability.

Topo-metric maps combine both aspects and typically

provide locally accurate estimates with a connected graph

of regions built for example from the robot’s trajectory and

a loop closure mechanism. The work presented in this article

falls within this category. However it distinguishes itself from

the recent trend of view-based maps by proposing a new

representation that works directly on landmarks and not on

poses. The proposed idea is to build a representation based on

co-visibility (i.e. the fact that landmarks were seen together)

that also provides metric information through a set of relative

frames in which the landmark coordinates are represented.

This relative co-visibility graph can be seen as an extension

to our previous work [1], [2] with a more natural way to

manage landmark matching and leads to a new approach to

loop closure.

In this representation we infer the notion of locality

through the observed landmarks and not through the robot’s

trajectory. This can be beneficial when reexploring pre-

viously visited areas to reduce the dependency on loop

closures for data association (Section II). Furthermore this

Fig. 1. Applying state-of-the-art pose-based loop closure solutions such as
FABMAP [3] to these three images, the results will depend on the order. If
the top two images are provided first, then the bottom image is considered to
be the same location as the top right image with high probability (p > 0.96).
If the bottom image and one of the two top images are provided first, each
will be considered as a new location with high probability (p > 0.99).
Neither of these solutions are very satisfactory as all three images overlap.
This reflects a more fundamental issue with associating the notion of place to
an image. In this article, we propose a solution to this problem by reasoning
on landmarks directly, thus closing loops without places.

representation leads to a loop closure mechanism that no

longer relies on the - often arbitrary - notion of place chosen

by the discretisation of the robot’s path but directly on the

underlying map itself. This is achieved by finding possible

local sets of observed landmarks that could have come from

a particular place at query time and not beforehand as is

typically done in the literature, where the notion of place

is inherited from the notion of document from the natural

language processing literature (Fig. 1). As such the pro-

posed approach can be described as a dynamic bag-of-words

approach. The method shares similarities with the query

expansion literature [4] but in this work we benefit from

the knowledge of a map and a set of co-visible landmarks



that avoids the complex task of building a latent model at

query time and applying subsequent new queries.

After introducing the relative co-visibility graph and how

it relates to a relative pose-graph approach in Section II,

we discuss the concept of virtual location and provide an

efficient way to compute possible loop closures. Finally, in

Section III-B, we will show experimental evidence of the

advantage of dynamic bag-of-words.

A. Related work

Visual SLAM has seen an increasing number of real-

time solutions [5], [6], [7], [2], [8] in recent years. Scala-

bility has been shown to be achievable using a topo-metric

representation that provides precise local estimates [9], [8],

[2]. Furthermore, most recent works combine a form of

relocalisation or loop-closure mechanism [6], [7], [2], [8]

for better robustness and increased precision.

When representing the world for mapping, we have the

choice of mapping using a global or a relative representation

[2] but also to represent the state as the trajectory and the map

combined or just the trajectory. The latter approach leads to

the popular pose-graph or view-based maps [10], [11], [12]

for which efficient optimisation methods exist. The structure

is then represented implicitly. Loop closure for pose-graph

maps are often based on the poses taken individually (similar

to the notion of document for text recognition). We believe

that it can be beneficial to work directly on the landmarks for

loop closure. This motivates the relative co-visibility graph

presented in this work.

A recent survey of loop closure methods can be found

in [13], [12]. The authors classify loop closures in the

following way: (i) image-to-map that consists in mapping

the landmarks of a given image to the map directly [14] (ii)

image-to-image [3], [12] where poses are compared based

on their observations and (iii) map-to-map [15] where larger

portions of the reconstructed environment are used to provide

reliable location matches.

The current article attempts to combine the advantages of

these different methods to achieve high-quality loop closing

using the single underlying map representation. The closest

related work is [7] and [16]. In [7] the authors provide a loop-

closure mechanism that relies on local maps to compute a

matching score. In [16] a similar approach is used where

these “local maps” are replaced by image nodes expanded

to contain neighbouring landmarks. In the current work,

however, we build locations at query time based on all likely

visible landmarks and thus reason on “virtual locations”

based on co-visibility (Fig. 1). This provides a stronger

support to assess correct loop closures than bag-of-words

built on individual images. It should be noted that the

proposed approach is different to the notion of “scan patches”

proposed in [17] that improves the matching when a potential

loop closure has been proposed but does not improve the

finding of potential loop closure candidates.

II. THE RELATIVE CO-VISIBILITY GRAPH

In this section we describe how the relative co-visibility

graph can be used for data association between contiguous

frames and for metric pose estimation, thus providing a topo-

metric representation of the world.

In this work, we move away from the notion of place,

that requires a discretisation of space, to work on landmarks

directly. The relative co-visibility graph is a representation

that captures which landmarks were observed at the same

time. In this sense, it is a topological map where the

connectivity corresponds to co-visibility.

To represent the landmarks in the 3-D world, we require

a metric representation of the environment. We choose to

represent landmark positions in frames that are connected to

other frames by an estimated transform. Typically - but not

necessarily - these frames will be robot poses and the links

will correspond to the estimated inter-frame motion. In this

sense, it is also a relative metric map. We will refer to this

representation as the relative co-visibility graph (RCG).

These two notions - topology and metric estimation -

interact in a specific way: when the robot explores the

environment, it needs to associate data to estimate its pose.

To decide which landmarks to associate with observations in

the image, we use the topological connectivity: we expect

to see landmarks that were seen recently or have been seen

with the ones seen recently. The expected position of these

landmarks can then be estimated through the kinematic chain

relating the current pose to the pose representing a given

landmark’s position. This representation can be seen as an

extension of the recent work on the continuous relative

representation (CRR) [1], [2] and we will now compare the

two methods.

Like most work on relative representations, the CRR is

a pose-based or view-based representation. The connected

poses are used to choose which landmarks to associate during

the exploration of the robot. Specifically, the CRR defines the

notion of active region that corresponds to all the poses and

measured landmarks at a given depth in the relative graph

(obtained for example through a breadth-first-search). Data

associations do not explicitly influence which landmarks are

matched.

Figure 2 illustrates the difference between using connected

poses and co-visibility for data association. The relative

co-visibility graph improves over the CRR by no longer

using the robot poses to choose which landmarks to match

but the fact that landmarks were viewed together (i.e. co-

visible) at a given time. Before any loop closure occurs, the

representations are similar, Fig. 2(d). The advantage of this

approach becomes clear after a loop closure, Fig. 2(f). In

the CRR case, if landmarks are matched but no new links

are added in the graph, features that we might expect to

see are ignored (Fig.2(c)). In the co-visibility graph, as long

as the features are observed, they will belong to the active

region. This avoids a strong dependency of the results of loop

closure. Reliable loop closures are not always possible due

to spatial aliasing for example [3]. It could be argued that

a link could be added in the CRR for each new observation

but this would greatly increase the complexity of the graph.

Another option is to make links close to the last frame

(this possibility is discussed in [2]). However these issues
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Fig. 2. Comparison between the continuous relative representation (CRR) on the top row and the relative co-visibility graph (RCG) on the bottom row on
a spiral motion example with a loop closure. pi corresponds to the robot position at time i. lj is the jth landmark. The active region is defined as the set
of poses and landmarks that are at a given graph distance (two in this example) from the current pose. The active region is used to decide what landmarks
we will try to associate at the following time step. Figures 2(a) and 2(d) show the CRR and RCG representations before a loop closure has occured. The
active regions have the same size and the underlying representations are similar. After a loop closure (Fig. 2(b) and 2(e)) triggered by the observation of
l1 from p5, in both the CRR and RCG, the active regions encapsulate the entire map and a new transform is estimated between p5 and p1 symbolised
by a link. However, in the RCG, a new link is also added to the co-visibility graph between l1 and l5. The importance of this co-visibility link becomes
apparent when the robot explores the environment further (Fig. 2(c) and 2(f)). In the case of the CRR, despite the observation of l1 from p7, the active
region of depth two does not encapsulates landmark l2 even though it is likely to be visible because of the observation of l1. In contrast, the active region
deduced from the RCG encapsulates the entire map as each landmark is less than a distance of two in the co-visibility graph. Reasoning on co-visibility
avoids the data association being dependent on the arbitrary choice of the transform links in the relative representation.
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Fig. 3. A co-visibility map is a set of landmarks connected by an
edge if they were observed jointly (Fig. 3(a)). Given a vocabulary V =

{A,B,C,D}, each landmark has an associated word describing it. An
observation is a count of words (Fig. 3(b)). The aim of loop closure can
be stated as finding the correct association between landmarks based on the
observed words.

illustrate a deeper conceptual difference: co-observability is

a property of the underlying world (and sensor) in contrast

to the robot trajectory that is to a great extent arbitrary.

III. IDENTIFYING LOOP-CLOSURES IN THE

CO-VISIBILITY GRAPH

Currently, the most successful approaches to vision-based

loop closure match a given pose to previous poses in the

map [3], [12], [13]. One of the advantage of pose-based

mapping is the efficiency that can be obtained for recognition

[18], [3]. However, as illustrated by Fig. 1, these approaches

dependent strongly on the chosen discretisation of space.

We will now propose a solution that avoids this issue and

improves recognition by exploiting co-visibility explicitly.

We will start by describing the framework and notations

used and then introduce the concept of “virtual location”

(VL) before describing how efficient loop closures can be

computed at run-time. As we will see, VLs correspond to

co-visible landmarks that share words with the query. We

will not use the position estimates of landmarks or poses

and in this sense the approach is purely topological.

A. Framework and notations

The proposed approach to loop closure falls within the

framework of bag-of-words for place recognition [19]. A

vocabulary, that we will note V , is built by kd-tree clustering



of SURF features1. A different descriptor such as SIFT or

efficient compact signatures [12], [20] could also be used.

A map Mk at a given time k is described by an undirected

graph of landmarks with edges indicating co-visibility. Each

landmark has an associated word from the vocabulary V

(Fig. 3(a)). The aim of loop closure is to find the correct

data association between the landmarks represented by the

words Zk at time k and the map Mk (Fig. 3(a)).

B. Virtual locations

Given words Zk extracted from a single image, instead

of matching them directly with the most likely previously

observed pose, we build clusters of landmarks from the map

that could have generated this observation. The clusters are

generated at query time, with the following steps:

1) Find each landmark in Mk that has a word belonging

to the bag-of-words of Zk.

2) Cluster the landmarks that are co-visible and ex-

tend these clusters with all co-visible landmarks

(these are the landmarks we expect to see). These

non-overlapping clusters are dubbed virtual locations

(VLs).

3) Associate a score to each each VL as described in

Section III-D. (In practise, we would then typically

use geometric checking to improve the precision but

this was not done in this work.)

In the case of relocalisation or kidnapped robot loop

closures, Zk is simply the words found in a given image.

However during the normal operation of the system, the

landmarks from the map are associated with the observations

at each time step through tracking. Discovering new loop

closures can then be done by augmenting Zk with the words

from all co-visible landmarks to provide a stronger support

for loop closure.

In the case of Fig. 3, Zk will induce two VLs: VL1 =
{l1, l2, l3} and VL2 = {l4, l5}.

A naive implementation for building virtual locations at

run-time would be computationally expensive. We will now

explore how to reduce this cost by noting the important role

of cliques in the co-visibility graph.

C. Clique matrix representation of the co-visibility graph

Computing co-visible clusters corresponds to finding

neighbours of particular nodes in the graph. Cliques play

an important role: if a word belongs to Zk and a clique,

all landmarks of the clique will belong to the same VL.

Computing maximal cliques is computationally expensive,

however as observations are made simultaneously at a given

time, we have a natural clique factorisation of the landmarks

through the poses of the graph. For this reason, in the current

work, cliques coincide with poses. However, it should be

noted that poses or images are just a support for computation

but no specific meaning is associated to them.

In this work we represent the co-visibility graph through

its clique factorisation using a (sparse) clique matrix, a

1We use the outdoor vocabulary provided on the FabMap website:
http://www.robots.ox.ac.uk/˜mjc/Software.htm

generalisation of the incidence matrix [21]. Lets assume the

following sequence of landmark observations lead to Mk in

Fig. 3: C1 = {l1, l2, l3}, C2 = {l1, l3}, C3 = {l3, l4} and

C4 = {l4, l5}. Based on the sequence of observations, we

obtain the following adjacency matrix A (with added self-

connections) and associated non-maximal clique matrix Cc:

A =













1 1 1 0 0
1 1 1 0 0
1 1 1 1 0
0 0 1 1 1
0 0 0 1 1













, Cc =













1 1 0 0
1 0 0 0
1 1 1 0
0 0 1 1
0 0 0 1













Cc can be interpreted as a factorisation as A = H(CcC
⊤
c )

with H(.) the element-wise Heaviside function (H(A)ij =
1 if aij ≥ 0, 0 otherwise). This factorisation is not unique

(maximal cliques would provide a Cc with fewer columns)

but in this work they coincide with poses and each row

corresponds to the observed landmarks for a given pose.

When building the clique matrix representation of the

co-visibility graph, we also build an inverted index linking

words to cliques as in [19].

Building virtual locations at run-time can be done in the

following way:

1) Compute the observed words Zk from the image.

2) Find the list of cliques that contain the words using

the inverted index, Lc = {C1, C2, . . . , CM}.
3) Cluster Lc into virtual locations based on co-visibility.

Co-visibility can be easily detected in Cc by checking

for 1s on the same row for two different columns (i.e.

cliques).

Two parameters can be used to control the number and

size of VLs:

1) Minimum number of words required to select a given

clique for Lc. Low values will increase the number

of cliques but make the choice sensitive to common

words and outliers. With large values, relevant lo-

cations might be missed. This parameter can be set

based on the number of landmarks we expect to see:

(probability of finding the correct word)×(number of

visible landmarks). This probability will be denoted by

P in Section IV.

2) Minimum number of co-visible landmarks required

to consider another clique as co-visible, referred to

as M in Section IV. Low values will lead to large

VLs that are not sufficiently discriminative for loop

closure. Large values will increase the fragmentation

of VLs with large local variability of loop closure

scores; at the limit we obtain pose-based loop closure.

It should be noted that pose-based loop closure often

relies on smoothing to avoid this strong variability.

(Alternatively, this term can be written as a percentage

of the number of words belonging to the query.)

D. Matching score

In this work, we use the standard Term Frequency In-

verse Document Frequency score (tf-idf) to rank the VLs



for loop closure [19]. A vector is associated to each VL,

(t1, t2, . . . t|V |) with:

ti =
nil

nl

log
N

ni

nil

nl

is the term-frequency for the specific VL computed as the

number of occurrences nil of word i in the VL divided by

the number of words nl in VL. ni

N
is the document-frequency

computed over all the VLs as the total number of occurrences

ni of word i divided by the total number N of VLs for the

given query. The final score for each VL is then given by

the inner product of its tf-idf vector with the query tf-idf

vector computed from Zk (considered as a VL). The scores

are divided by the largest VL score to obtain values between

0 and 1.

E. Complexity

The complexity of the proposed approach is related to

the inverted index. The inverted index look-up can be made

constant-time (hash table). However the number of returned

cliques (or poses in the current implementation) can be

linear the number of cliques if the same word appears in

each pose. The virtual locations only add an extra factor in

the computation as they require a complexity linear in the

number of cliques returned by the query. To summarise, the

proposed algorithm has a similar complexity to a standard

inverted index scheme.

IV. EXPERIMENTAL RESULTS

A. Evaluating loop closure accuracy

To evaluate the results provided by the proposed approach,

we need to define a metric to decide if a given loop closure

is correct. The relevant poses for a given query are chosen

as the locations that have at least one word in common with

the query and are within a distance t (in this work we choose

t = 4m).

To compute the precision and recall, the result (set of

poses) returned by the system is taken to be the union of

the poses belonging to the virtual locations above a given

value of the score. Figure 3(b) illustrates an example of a

query and loop closure result.

In Section III-C, two parameters were introduced that

influence loop closure: (1) P the probability of measuring

the correct word (for P = 0 we use at least one word to

generate the query) and (2) M , the minimum number of co-

visible landmarks required to consider a neighbouring clique

as co-visible. When M → ∞, we obtain standard pose-

based loop closure. With small values for M , we typically

get large VLs (potentially the entire map). Trivial solutions

are checked for based on distance (if the query size is bigger

than a fixed value it is discarded, here we use 20m) and not

counted as a contribution to precision/recall. The value P

can typically be calibrated for a particular detector as in [3].

We can expect that larger values of P will lead to better

precision with lower recall. In this section, we evaluate its

effect on performance.

(a) Stereo images and trajectory of the simulation sequence.
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(b) Precision-recall curve on the simulation sequence. Different values
of M were tested. Larger contexts are beneficial when common
words are avoided when computing virtual locations.

Fig. 4. Simulation sequence.

In these examples, SURF features and SURF descriptors

provided the image-to-image matching to build the topolog-

ical co-visibility map. We did not compute any pose estima-

tion nor did we reject any outlier matches. Both example

sequences have stereo images but we only processed the

left image in this work. For loop closure and relocalisation,

the SURF descriptors were quantised into words using the

outdoor vocabulary available on the FabMap web-page.

B. Simulation sequence

The simulation sequence consists of a short loop of 500

frames (Fig. 4(a)) built from a rendered 3-D model. The

precision-recall curve (Fig. 4(b)) was computed for P = 0
and M = {15, 20, 30, 50, 80, 100}. The best value of context
size for this data set is around M = 30. For smaller values

of M , the context is detrimental as it returns large, poorly-

defined regions. The performance drops more significantly

for M > 30 as the context size decreases and tends towards

pose-based loop-closure.

C. Begbroke sequence

Loop closure performance was evaluated on the 1km (23K

frames) Begbroke outdoor sequence (Fig. 5). This sequence



(a) Begbroke sequence aerial view.
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(b) Trajectory in time with results of a loop closure query. The cross
indicates the pose used for the query and the circled coloured regions
are the loop closure results.

Fig. 5. Begbroke sequence with three loops. Figure 5(b) shows the planar
trajectory with time on the z axis.

is quite challenging for loop closure as it contains large

stretches with an open space and a paved path where few

SURF features were extracted. The ground truth used to

evaluate the correctness of the loop closures was provided

by the stereo system [2] that gives an accuracy of less than

1m on this sequence.

Figure 6(a) shows the precision-recall curve with P =
0.1 for varying levels of M = {1, 10, 20, 50, 100}. As M

increases, the performance of the retrieval diminishes which

confirms the importance of context for retrieval provided by

the co-visibility. For very low values of M , large unstable

regions are created that impact the precision.

Figure 6(b) shows the precision-recall curve for M =
{20, 60} with P = {0.1, 0.3, 0.5}. The precision is partly

improved for very low recall in the case of large contexts

but the overall performance is degraded. Context reduces the

effect of incorrect words; reducing the number of virtual

locations on which to compute scores is generally detri-

mental. In the pose-based case, the precision does improve

which probably stems from the computation of the inverse

document frequency. In both cases the highest achievable
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(a) Precision-recall curve for varying virtual location sizes (through
M ). Co-visibility generally improves the performance of loop closure
except when common words are used that leads to large unstable VLs.
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(b) Precision-recall curve for varying values of P and M = {20, 60}.
Context provides resilience to incorrect data association so high
values of P are not beneficial for improved precision. Without
context, retrieval does benefit from reducing incorrect data association
at the detriment of the highest achievable recall.
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(c) Precision-recall comparison between FabMap and dynamic
bag-of-words (DBW). DBW shows an improvement over the current
state of the art.

Fig. 6. Precision-recall curves for the Begbroke sequence.



recall rate is reduced.

Figure 6(c) compares FabMap performance to dynamic

bag-of-words with M = {20, 100} and P = 0.1. In the case

of FabMap, only every 100 poses was processed to reduce the

bias due to the re-observation of landmarks. This is a typical

limitation of pose-based methods where overlap affects the

retrieval performance. For this sequence, dynamic bag-of-

words shows an improvement over the state of the art.

In conclusion, these results show that using co-visibility

generally improves precision and recall. It can also have the

detrimental effect of creating large unstable sets of poses if

common words are not taken into account which is consistent

with literature on information retrieval.

V. CONCLUSION

In this article, we investigated the use of co-visibility as

a way to represent the position of landmarks and poses for

mapping but also as an approach to manage landmark match-

ing and represent important contextual cues. We introduced

a way to find potential loop closures at query time using

the notion of co-visibility and virtual locations to avoid the

often arbitrary discretisation of space imposed by pose-based

mapping.

Future work will investigate how loop closure can be

improved through the use of metric information. Another

research direction is the use of the context provided by the

graph to help object recognition.
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