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Abstract

This paper is about robots that autonomously learn how to interpret their environ-
ment through use. Specifically, robot perception is improved with every outing
through effortless human assistance. This is made possible by the fact that robots
operate repeatedly in specific application domains. Our approach, which we call
Experience-Based Classification (EBC), is similar in spirit to the concept of hard
negative mining (HNM), but it is entirely self-supervised. In the context of au-
tonomous driving we use 17km of data to show that EBC is a practical alternative
to HNM, and demonstrate the advantages of experience-specific classifiers. We
believe that our approach presents a fundamental shift in how robot perception is
viewed, and advocate for lifelong learning systems that excel in a specific appli-
cation domain instead of providing mediocre performance everywhere.

1 Introduction

Accurate situational awareness is a pivotal requirement for safe autonomous operation in complex
environments. Object detection lies at the heart of this, with the conventional desire of fast, reliable
performance across a number of workspaces. This is explicitly encouraged in the machine vision
community by competitions such as the ImageNet Large Scale Visual Recognition Challenge [1].

While much progress is being made, the error rates of state-of-the-art approaches are still pro-
hibitive, particularly for safety critical applications. We believe that the desire for generality leads to
mediocre performance everywhere. Instead, we advocate for a radically different detection deploy-
ment model from the status quo. If we admit that robots will only be used for specific tasks, then we
can alternatively strive for excellence in a particular application domain. This leads to three major
points. First, learning a single model for object detection is insufficient for robust performance.
Second, operation in dynamic environments implies the need for a robot to adapt over time. Third, a
robot should make effective use of its feedback from cycles of interaction with the world. One way
detectors can improve is by identifying additional relevant negative samples from the environment,
whose variation is not captured in the original training data.

The standard method for obtaining relevant negative samples is known as hard negative mining
(HNM) [2, 3]. In HNM, the classifier is first trained on the original training data and then used
for object detection on a labelled dataset. False positives are identified using the ground truth la-
bels provided and included for classifier retraining. While this environment-specific tuning pro-
vides considerable improvement over the original classifier, the labelling effort required for HNM is
labour-intensive and limited to a selected set of data.

However, a key characteristic of robotics not available in general computer vision problems is that
we work in specific application domains, and often traverse the same workspace over and over
again. As a result, we can exploit scene context. This context – often obtained through online
sensing or contained in (semantic) map priors – is commonly leveraged as a filter (e.g. [4, 5]) to
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Figure 1: Images from a route in Oxford at two different times (January and May) on which we
performed pedestrian detection. We demonstrate a great improvement in performance over a few
EBC iterations by automatically adapting the detector to different seasons. False positives are shown
in purple, while true positives have a yellow bounding box. Figure best viewed in colour.

discard detections if certain validation criteria are not met. Instead of just filtering, we also use the
scene context to replace the need for human labels. Concretely, we conduct hard negative mining
in a self-supervised manner by continuously feeding back any false positives identified by the scene
context into the detector training process throughout the lifetime of the system. We call this process
Experience-Based Classification (EBC).

In effect, EBC automatically adapts detectors to specific environments, which permits us to easily
train new detectors as desired. While this may lead to overfitting to the background encountered,
we argue that this is exactly what is required in mobile robotics. EBC is a self-supervised and
environment-dependent approach that is able to incorporate considerably more data without the need
for human fine-tuning. We evaluate this approach for a pedestrian detection problem (see Figure 1)
using 17km of urban driving data gathered in Oxford over two seasons.

2 Related Work

3D scene information has been primarily used in object detection to generate Regions of Interest
(ROIs). For example, a ground plane computed from stereo imagery can provide a search space
for positive detections (e.g. [4, 5]), or enforce scale [6]. Instead of generating ROIs to present to
our classifier, we invert the order and apply scene information after we compute detections. While
both approaches provide us with a set of valid positive classifications, this ordering also allows us to
obtain a set of hard negatives that can be used for classifier improvement.

As mentioned in the introduction, the conventional approach for obtaining these hard negatives is
HNM. Initially introduced by Sung and Poggio [2] as a bootstrap method for expanding the training
set, Felzenszwalb et al. [3] tailored it for structural SVMs by defining ‘hard’ negatives as examples
that are incorrectly classified or within the margin of the classifier. Instead of HNM, Henriques et
al. [7] used block-circulant decomposition to train SVMs with an approximation to the set of all
negative samples from a series of images. In effect, training with a vast set of negatives reduces
the need to specifically mine for hard negatives. While efficient, the training remains limited by
computational resources, and does not escape the core requirement of labelled data.

We share some similarities with the concept of group induction [8], where self-supervised training is
performed by alternating between classifying unlabelled tracks and incorporating the most confident
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Figure 2: The EBC architecture and our scene filter implementation which employs a 3D prior. The
detector improves through successive outings as it automatically adjusts to its experiences.

positive classifications in retraining. Our approach differs by the fact that we use an external signal
in the form of an environmental prior to provide labels for the whole scene. This allows us to focus
only on hard samples and provides a means to automatically tune to specific environments.

3 Framework Description

EBC augments the standard perception pipeline by introducing a scene filtering step after object
detection, a memory bank of negative samples and classifier retraining. Our implementation of this
system is depicted in Figure 2a.

3.1 Object Detector

In general terms, an object detector processes a data stream and produces detections. In this work
we employ a linear SVM classifier trained on Histogram of Oriented Gradients (HOG) features [9]
for pedestrian detection. Given an input image, we first compute HOG features for the entire image,
and then employ a sliding window approach to obtain classification scores. Multiscale detection is
performed by resizing the image and repeating the process. Finally, non-maximal suppression is
used to filter out overlapping detections. The output is a set of bounding boxes which correspond to
subwindows that score above a threshold, which are deemed to be positive detections.

3.2 Scene Filter

The scene filter is the core component of the EBC framework. Given a set of detections, the scene
filter employs local context to filter out false positives according to strong heuristics. Accepted
detections are passed on to the remainder of the perception pipeline, while rejected detections are
stored in the memory bank. Since the rejected samples are detections that scored highly in the
previous step, these are by definition hard negatives.

Given localisation information and a 3D scene prior, we first project the local ground plane into the
image. This is used by a first filter, which rejects detections that lie outside of a ground polygon.
Our second filter then projects each remaining bounding box into the 3D scene to ensure detections
are of a viable scale. The application of these heuristics is illustrated in Figure 2b.

The scene filtering step should be conservative and avoid false negative errors. This is because
incorrectly classified positives will lead to semantic drift [10]. For false positives, we appeal to the
fact that we can use multiple filters, and that classifier performance will improve overall in retraining.

3.3 Memory Bank and Retraining

The final step of the EBC cycle augments the original training set with the rejected samples and
retrains the classifier model. Since these additional negatives are obtained during operation, each
subsequent training cycle further adapts the classifier to the specific environment. It should be
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North Oxford January North Oxford May
Average per EBC Total Total Average per EBC Total Total

training cycle training testing training cycle training testing
Kilometers 2.11 8.45 1.99 1.35 5.40 1.01

Images 9651 38605 9155 5680 22720 4656
Minutes 8.05 32.2 7.63 4.73 18.9 3.88

Table 1: A summary of the datasets used for evaluation.

noted that data streams gathered from mobile robotic platforms tend to be spatially and temporally
correlated. This can cause problems in retraining as most classifiers assume independent, identically
distributed data. Subsampling may be required to avoid these issues.

4 Experimental Evaluation

Our baseline classifier was trained using LIBLINEAR [11] and OpenCV [12] on the Daimler Pedes-
trian Detection Benchmark Dataset [13]. We performed ten-fold cross validation on the training set
consisting of 52112 positive and 32465 negative samples.

To show the impact of environmental variation and to evaluate our self-supervised approach, we used
ten different datasets gathered with a Bumblebee2 stereo camera mounted on our vehicle driving in
an urban environment. These datasets consisted of two routes (over the same location) split into four
runs for training and one for testing. They are referred to in this section as North Oxford January
and North Oxford May. In both datasets, we used only the left image with a capture rate of 20Hz.
This provided a total of 14km of unlabelled training data and 3km of labelled test data. The datasets
are summarised in Table 1.

4.1 Comparison with Hard Negative Mining

We initially compared EBC to traditional HNM to see if we could achieve comparable improvement
without the need for labelled data. Since HNM requires ground truth labels, we split the labelled
North Oxford January test set into two parts, with 70% allocated for training and 30% for testing.
Figure 3 shows the six training iterations performed for each method and the raw detector perfor-
mance without scene filtering.

While the classifier performed well in training, we see that the baseline detector performance was
poor. This was because detection employed a sliding window, which resulted in tens of thousands of
windows being presented to the classifier per image with the majority being negatives. Other reasons
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(a) Hard Negative Mining
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(b) Experience-Based Classification

Figure 3: Precision-Recall curves comparing HNM to EBC iterations for a portion of the North
Oxford January dataset. There is a dramatic improvement after the first iteration, and similar perfor-
mance from both approaches. This demonstrates the value of environment-specific tuning and that
EBC is a practical alternative to HNM. Figures best viewed in colour.
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(a) The area under the precision-recall curves for
EBC classifiers trained on one set of routes and
tested on the other. The plot was split by test set,
with each line in the graph indicating a different
set of training data. As can be seen, a classifier
performed better when trained and tested on data
from the same season.
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(b) Performance increase provided by the scene
filter (referred to as ‘validating’ a classifier) when
applied to both the base classifier and the final
EBC classifier on the North Oxford January test
dataset. Though the EBC classifier was trained
using samples rejected by the scene filter, a size-
able performance boost remains.

Figure 4: Plots depicting the experience-specific performance and the continued value of the scene
filter. Figures best viewed in colour.

for the performance drop were sampling resolution and change in test environment. In effect, the
training set was not representative of the test data. However, we see a dramatic improvement in
performance when retraining, and that EBC has similar performance to HNM. This demonstrates
that using scene context is a practical alternative to using manually labelled data.

4.2 Environment-Specific Tuning

After establishing EBC as a viable alternative to HNM, we investigated the effects of tuning to
specific environments. We do this by training separate classifiers for each route, and presented the
datasets in the order in which they were collected. This represented different outings on succes-
sive days. Four EBC iterations were performed for each dataset. Figure 4a suggests that there
are perceptual differences between the two seasons and a detector trained in January has a better
performance in January rather than May. This corroborates our argument for experience-specific
classifiers. Additionally, there is an improvement over time, which demonstrates the capability of
the EBC framework to facilitate lifelong learning.

Finally, we note that the results so far only show the raw detector performance. Since the scene filter
is already incorporated into the EBC framework, we can also validate our detections while running
online if a 3D scene prior and localisation information is available. However, one may wonder if the
scene filter has any effect if samples rejected by the scene prior are already used for retraining. This
is answered in Figure 4b, which shows that the scene filter still provides substantial improvement
for both the baseline and EBC classifiers. This is due to the fact that there remains ambiguities that
cannot be resolved through appearance alone.

5 Conclusion

Though general object detection remains a noble goal, applications in robotics tend to be constrained
to particular operating environments. We can exploit this fact to obtain practical systems which
excel in a specific application domain. This is a major step towards reliable performance for real-
world safety-critical systems. In particular, we make use of scene context to validate detections, and
feed the rejected samples back to retrain the detector. This augmentation to the standard percep-
tion pipeline provides self-supervised, environment-dependent improvement over the lifetime of the
system. We call this process Experience-Based Classification.
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We believe that this approach offers robots the ability to iteratively improve their perceptual ability
over time with effortless human assistance. In the autonomous driving context, a human simply
drives the car around its operating environment while the detector learns in the background. Us-
ing urban driving data gathered over two seasons, we demonstrated the advantages of experience-
specific models, constant adaptation and exploitation of environmental feedback. This was accom-
plished by showing that EBC provides comparable performance to HNM without the impractical
requirement of manually-labelled data, and that EBC continually improves with experience.

Our experimental results show that environment-specific tuning provides benefits in performance at
the cost of generality. While we manually divided the datasets in this paper, we require an auto-
mated method to determine when to train new classifiers. This may be achieved by reinitialising the
training framework according to localisation estimates, but we may also find benefit in transferring
classifiers to different locations with similar environmental conditions. Probabilistic topic modelling
[14] offers a possible alternative. Finally, as we desire lifelong learning, we must address the issues
of positive mining and semantic drift [10].
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