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Abstract. This paper explores the idea of predicting the likely performance of
a robot’s perception system based on past experience in the same workspace. In
particular, we propose to build a place-specific model of perception performance
from observations gathered over time. We evaluate our method in a classical deci-
sion making scenario in which the robot must choose when and where to drive au-
tonomously in 60km of driving data from an urban environment. We demonstrate
that leveraging visual appearance within a state-of-the-art navigation framework
increases the accuracy of our performance predictions.
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1 Introduction
Reliable robot perception is a difficult yet fundamental problem, as robots interact

directly with the world and any misconduct can have adverse consequences. Our goal
is to equip a robot with the introspective capability of predicting when the operational
environment is challenging and its perception system is underperforming. Such a high
level understanding of the operational environment constitutes a useful diagnostic tool
for any decision making agent. Just as humans have the ability to anticipate a diffi-
cult road situation, such as an approaching busy intersection or a narrow and crowded
street, the robot should be equipped with the ability to forsee its perceptual shortcom-
ings. While significant effort is being devoted to building highly performant perception
systems ([1], [2], [3]), the problem of predicting their failure in action is, to the best
of our knowledge, overlooked. As robots operate in complex, continuously-evolving,
dynamic workspaces, it is critical to analyse and predict how robustly their perception
systems operate at any given moment in time.

Our work is additionally motivated by our previous observations that perception
performance for mobile robots is environment-dependent. In some places of operation
performance is excellent, while in others failure occurs more often [4]. We attribute this
to the vicissitudes of the environment – changes in appearance due to external factors
such as weather or illumination conditions.

In this work we propose to model the robot’s perception capabilities using a prob-
abilistic framework. Our goal is to allow the robot to drive autonomously only when
it is confident of its performance and require human assistance otherwise. Some ex-
amples of this scenario can be seen in Figure 1. Requiring a human to intervene in an



2 Corina Gurău, Chi Hay Tong and Ingmar Posner

autonomous operation falls under the autonomy on offer paradigm, in which the robot
offers autonomy only when it is extremely confident in its capabilities and hands over
control to a human otherwise. More specifically, the contributions of this work are:

– Introducing performance records: a probabilistic framework used to incorporate
place-specific performance estimates gathered over time, which allow the robot at
test time to estimate the likelihood of the perception system making a mistake.

– The description of two modalities for using performance records, one of which
makes use of the visual appearance of a place.

– A classical decision making scenario which allows the robot to take an optimal
action regarding offering autonomy.

2 Related Work

There are several works that touch upon the fluctuating performance levels of a
robot during operation. However, we believe to be the first to estimate the likelihood of
success of a vision system by modelling its outcome as a function of space and time.
The system we propose is deeply relevant to the work of [5] who describe the sensitivity
of object detectors to factors such as weather and location and train local experts by in-
corporating place specific hard negative examples in the training procedure. When data
the robot is unlikely to encounter during operation is replaced with mistakes, they are
able to significantly improve the detection results. Unreliable perception performance
has also been observed by [6] and [7] who attribute it to sensor data integrity and anal-
yse the effects of challenging operational conditions on the perceptual integrity of the
robot. The works of [8] and [9] identify the use of biased training datasets as a cause
for poor generalisation performance to new tesing conditions. Similar problems are re-
ported for localisation performance. [10] and [11] propose embedding spatial models of
expected localiser performance in localisation maps in order to aid trajectory planners.

(a) Example data on which the robot decides that it is safe to operate autonomously.

(b) Example data on which the robot can ask to switch the control back to a human.

Fig. 1: Example data encountered by a robot as it traverses an urban environment in the
proximity of pedestrians, cyclists and other road users. On some sections of the road on
which it belives its perception system is underperforming the robot can ask to switch
control back to a human operator.
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This higher-level characterisation of when and where an algorithm fails is similar
in spirit to the concept of introspection introduced in [12]. In that work, the authors
looked at the introspective capacity of different classification frameworks, which refers
to a classifier’s ability to assign an appropriate measure of confidence to any test data.
Mistakes are not considered catastrophic when they are made with high uncertainty as
this gives the system the ability to ask for help and correct itself. Our framework is
independent of the classification algorithm. It bears some similarity with [13], which
introduces ALERT, a system used to predict the accuracy of a computer vision system
on various tasks. We share with ALERT an aspiration to prevent failure by flagging
a warning when predicting that performance will be low. However, our work stands
apart from that of [13] as our approach is tailored specifically to robot perception by
exploiting location and past experiences of a place. These provide useful contextual
information, which can improve the robot’s decision making capabilities.

3 Approach

We rarely allow robots to drive autonomously somewhere totally new. In fact, most
successful autonomous operation techniques exploit the fact that the robot often tra-
verses the same workspace over and over again ([14]). If a robot has traversed a route
in the past, then we would like to leverage its past experience in order to predict the
robot’s performance in subsequent visits of the same place. Based on these predictions,
we would like the robot to offer autonomy only if its estimates of performance are high,
and deny it otherwise. Figure 2 shows how we leverage past information: we drive the
same route multiple times and gather performance estimates along it. Specifically, what
we estimate in this paper is the image-based pedestrian detection outcome. In order to
achieve this we need to address the following:

– estimating detection performance at a particular location
– formulating offering/denying autonomy as a decision making problem

3.1 Building Performance Records

We consider the environment (the place of operation) to be an underlying hidden in-
fluence on the detection outcome. For a traversal T of a route, we denote as Ti the ith

location along it. We define θi as the probability that at Ti the detection system will be
successful, and we model it as a random variable with the probability p(θi) assumed to
be a beta density of the form

p(θi;α,β ) =
1

B(α,β )
θ

α−1
i (1−θi)

β−1, 0≤ θi ≤ 1, (1)

where α > 0, β > 0 and B(α,β ) is the Beta function. Our canonical prior at a new loca-
tion that we see for the first time and where we have no knowledge of the success of the
detector is given by α = 1,β = 1. As the robot traverses the route, at each location Ti it
observes a set of detections: true positive, false positive and false negative respectively.
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Fig. 2: A new traversal (black line) of a route which has been travelled previously (grey
lines) can make use of past estimates of detection performance. For instance, at Loca-
tion A where we have repeatedly observed false positive detections, the performance
record yields a low probability of success for the detector, while at Location B, where
the detector has only produced true positive detections, the probability of success is
very high.

They represent the success or failure of the detection system and we record them as
binary observations x j

i ∈ {0,1} such that:

x j
i =

{
1, if the jth observation at Ti is a true positive
0, if the jth observation at Ti is a false positive or a false negative

(2)

We let the observations x be modelled by a Bernoulli random variable: x∼ Ber(θ) with
probability mass function:

p(x;θ) = θ
x(1−θ)1−x, x ∈ {0,1}. (3)

We additionally make the assumption that the set of obsevations Xi = {x1
i ,x

2
i , ...,x

ni
i } are

conditionally independent given the probability of success θi, and express the likelihood
of successful performance for a particular location Ti as:

p(Xi|θi) ∝

ni

∏
j=1

p(x j
i |θi) ∝ θ

ki
i (1−θi)

ni−ki , (4)

where ki represents the number of observations indicating good performance (xi = 1)
out of a total of ni observations at location Ti along the route. Using Bayes Theorem,
we calculate the probability of the detector being successful at location Ti as:

p(θi|Xi) =
p(Xi|θi)p(θi)∫

θi
p(Xi|θi)p(θi)

(5)
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Since the Beta distribution is a conjugate prior to the Bernoulli distribution, the posterior
p(θi|Xi) is also a Beta distribution. The hyperparameters of the posterior are updated
as:

α̂i = α + ki, β̂i = β +ni− ki (6)

This gives us a simple procedure for incorporating observations over time. We refer to
all p(θi; α̂, β̂ ) at locations Ti as the performance record of the detection system on a
chosen route after traversal T and use it to estimate the likely performance of the robot
at test time.

3.2 Decision Making using a Performance Record

Using Bayesian decision theory we can translate the posterior probability of perfor-
mance into optimal actions. In this paper we focus on the case in which the robot can
take either of the following two actions: a0, denying autonomy or a1, offering autonomy
at every location along a test route. The robot should choose action a0 when it believes
that its perception system is failing and a human operator should take over control and
it should choose action a1 when it believes that its perception system is functioning well
and it can reliably operate autonomously.

We make the simplifying assumption that there are only two states that the percep-
tion system can be in: failing (and producing false detections), or performing well (and
the robot presents no risk when operating autonomously). In order to discriminate be-
tween the two states, we introduce hyperparameter τ and denote by s0 the event that the
perception system is failing at location Li. We compute its probability as

p(s0|θ ,τ) = p(θ ≤ τ) =
∫

τ

0
p(θ ; α̂, β̂ )dθ , (7)

where p(θ ; α̂, β̂ ) has been estimated using the performance records proposed. We de-
note by s1 the event that the perception system is performing well and compute the
probability of it happening as p(s1|τ) = 1− p(s0|τ). In order to select an optimal ac-
tion, we associate a loss to each of the event-action pairings, which reflects how serious
it is to take action ai when the actual state is s j, for i, j ∈

{
0,1
}

:

L(a,s) =
(

0 Loffer
Ldeny 0

)

We choose the action which minimises the expected loss computed as

Lτ(a) = ∑
i

p(si)L(a,si). (8)

In our scenario, denying autonomy and asking for help (even if un-neccessary) is
more desirable than driving autonomously while the perception system is performing
poorly, as the latter can have catastrophic consequences. In Figure 3 we show the effect
of adjusting the losses associated with each type of error on the actions selected. Type I,
or false positive errors, correspond to the situations in which the robot denies autonomy
(a0) but its perception system is in reality performing well (s1) and incur a loss of
Ldeny. Type II, or false negative errors, occur when the robot fails to recognise that it is
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underperforming (s0) and continues to operate autonomously (a1). Figure 3 shows that
by making type I errors more expensive (increasing Loffer), the robot employs the safer
action of denying autonomy more often.

Deny
Offer

Deny
Offer
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šk
a,

C
or

in
a

G
ur

ău
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Peter Ondrúška, Corina Gurău, Letizia Marchegiani, Chi Hay Tong and Ingmar Posner

I. INTRODUCTION

p(zt|x1:t) /
X

zt�1

p(xt|zt)p(zt|zt�1)p(zt�1|x1:t�1) (1)

p(zt|x1:t, x
c
t) /

X

zt�1

p(xt|zt)p(zt|zt�1)p(zt�1|x1:t�1)p(zt|xc
t)

(2)

L(action)
P (s1)
f⇥|X Deny
Offer

Authors are members of Mobile Robotics Group, University of Oxford,
United Kingdom {ondruska, corina, letizia, chi, ingmar}@robots.ox.ac.uk.

Scheduled Perception for Energy-Efficient Path Following
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šk
a,

C
or

in
a

G
ur

ău
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Fig. 3: Figure shows the expected loss of choosing an action for a posterior distribution
p(θ |x) and two different loss matrices used. When Loffer =Ldeny, for τ = 0.6 (grey line),
the action chosen by the robot is to offer autonomy because it has a lower expected
loss Lτ=0.6. However, by setting Loffer = 3×Ldeny, the optimal action becomes to deny
autonomy. Increasing Loffer creates a more cautious system that will offer autonomy
less often.

3.3 Performance Records and the Experience Paradigm

In order to assign different observations to the same location we use geographical prox-
imity given by GPS measurements. While this distance metric is useful for gathering all
the observations close to a desired location, it does not take into account which of them
are most relevant. Imagine the following test case: while driving at night, past obser-
vations gathered during night time should be more relevant than observations gathered
during day time. Similarly, detection in bright sunny conditions might have a different
outcome than detection during rain. In these situations having a distance metric that
also incorporates visual similarity is crucial. Here is where Experience-Based Naviga-
tion (EBN) comes in. EBN ([15], [16]) is an ideal framework for our problem as it
selects, through a camera-based localisation system, which of the past appearances of a
location most resemble what the robot is experiencing at test time. In order to do this,
EBN distinguishes between different visual appearances of a place and, as any vision
based feature matching system, it works better at matching images when visual features
are common. We hypothesise that visual features similar enough for localisation will
produce a similar detection outcome.

We denote the method of estimating performance using all past observations, re-
gardless of the visual appearance of the environment by LOC, since it only incorporates
observations that are close in location. We denote a second method, which leverages
EBN to select observations from locations that are close both in physical distance and
visual appearance by APP. We expect the second method to give better estimates of
performance as it accounts for more than structural changes of environment (different
locations) but also for appearance changes caused by lighting, weather, or even time of
the day, that can significantly influence a detection system.
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7/26/2016 Google Maps

https://www.google.co.uk/maps/@52.0412362,-0.7579708,16z?hl=en 1/1

Map data ©2016 Google 100 m Fig. 4: Figure showing the platform and the route chosen for experiments. The vehicle
is equipped with a Bumblebee3 stereo camera, Velodyne Lidars HDL32E and an INS
system used for data collection. We produce both 2D and 3D pedestrian detections in
image and laser data along the route in Milton Keynes shown on the right.

Estimating performance on a given image first requires localising it against an EBN
map and returning the highest scoring localisation candidates. With APP, we build the
performance record using observations from these candidates only. We refer the reader
to [16] for a comprehensive description of the EBN framework employed.

4 Experiments and Results

We evaluate the two methods proposed for estimating performance, LOC and APP,
on 60km of driving data gathered in an urban environment in Milton Keynes over the
course of six months. The same route has been traversed eight times under different
environmental conditions using the data collection platform shown in Figure 4 and
comprise a total of 70k image frames. Some examples can be seen in Figure 1. Since
manually annotating such large datasets requires a considerable effort, we make use
of a surrogate metric of performance which evaluates the pedestrian detections against
laser detections in order to obtain observations neccessary for building the performance
record. The image detector used for the experiments presented in this paper is a sup-
port vector machine on Aggregate Channel Features (ACF) [17] trained on the INRIA
Person dataset [18] following best practice. The laser detector used for providing a
surrogate ground truth metric was trained on KITTI Velodyne data [19] and achieves
high levels of performance as described in [20]. Note that although we require the laser
sensor in order to build the performance record at training time, we do not require the
sensor at test time. We estimate performance and take optimal actions either using only
the performance record and the location of the robot (required by LOC), or using the
performance record and the incoming image feed (required by APP).

In order to evaluate the accuracy of the estimates of performance given by LOC and
APP, we analyse the number of wrong decisions the robot takes while employing them.
Each image frame that the robot records while driving a test trajectory is used in order
to take one of the two decisions: to offer autonomy or to deny it, as described in Section
3. What we refer to as mistakes are the outcomes of the following two cases:
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Peter Ondrúška, Corina Gurău, Letizia Marchegiani, Chi Hay Tong and Ingmar Posner

I. INTRODUCTION

p(zt|x1:t) /
X

zt�1

p(xt|zt)p(zt|zt�1)p(zt�1|x1:t�1) (1)

p(zt|x1:t, x
c
t) /

X

zt�1

p(xt|zt)p(zt|zt�1)p(zt�1|x1:t�1)p(zt|xc
t)

(2)

L⌧ (action)
P (s1)
f⇥|X

P (successful detector)
Loci Loci+1

⌧ ✓
Loffer = Ldeny
Loffer = 3Ldeny

Authors are members of Mobile Robotics Group, University of Oxford,
United Kingdom {ondruska, corina, letizia, chi, ingmar}@robots.ox.ac.uk.

(a)

Scheduled Perception for Energy-Efficient Path Following
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(b)

Fig. 5: (a) Figure showing the percentage of total mistakes made by the robot with
varying hyperparameter τ . For almost all values of τ , APP has a lower total percentage
of mistakes than LOC. (b) Figure showing the percentage of the route that the robot
offers autonomy on. The shaded regions in both plots indicate one standard deviation
from the mean.

– Choosing to deny autonomy when there are no false positive and no false negative
detections in an image (detector performance is perfect but the robot asks for help).
These errors are of type I.

– Choosing to offer autonomy when there is at least one false detection in an image
(detector performance is not perfect but the robot decides to drive autonomously).
These errors are of type II.

Figure 5 shows the results obtained in an evaluation of all traversals in a leave-one-
out fashion and an equal cost (Loffer = Ldeny) for each type of mistake. We show APP
having a lower total number of mistakes than LOC (Figure 5(a)) and offering autonomy
in a lot more frames (Figure 5(b)), for high values of τ which are the most desirable to
use in operation. We attribute this to the fact that APP selects similar observations based
on both appearance and proximity, while LOC selects observations based on proximity
only. Note that at lower values of τ , both methods are more permissive of driving which
leads to more false negative mistakes (failing to recongnise that the perception system
is operating poorly), while at higher values of τ , they deny autonomy more often which
leads to more false positive mistakes (stopping the vehicle from driving despite it having
good performance). Figure 5(a) also shows the total percentage of mistakes produced
by always offering autonomy (Always-yes) and always denying autonomy (Always-no),
which are both considerably higher than the methods proposed. This encourages us to
believe that if we allow the robot to deny autonomy occasionally, rather than demanding
it at times, the overall performance on a task is improved.

Figure 5(b) shows that for an equal cost on type I and type II errors APP is less
conservative than LOC and prompts the robot to offer autonomy more often. This is an
important advantage as encouraging the robot to take either action can be achieved by
adjusting the Loffer/Ldeny ratio such that the action which incurs a lower cost will be
selected more often (as demonstrated by Figure 3).
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Loffer = Ldeny Loffer = 3×Ldeny

Type I (%) Type II (%) A(%) Type I (%) Type II (%) A(%)

LOC 39.01 2.27 11.70 42.75 0.78 6.47
APP 17.28 15.94 47.10 30.39 8.26 26.41

Table 1: Percentage of mistakes (Type I, Type II) and percentage of route driven au-
tonomously (A) shown for the two methods proposed when 2 different loss matrices
are used. The value of τ (hyperparameter at which the action is taken) is set to 0.5. In
bold we show that APP has a better outcome than LOC in all cases except for type II
errors, which we discuss in the text.

30% autonomy 50% autonomy 70% autonomy

Type I (%) Type II (%) Type I (%) Type II (%) Type I (%) Type II (%)

LOC 25.88 12.99 19.13 18.39 4.6 33.07
APP 21.73 12.57 17.28 15.94 4.2 29.37

Table 2: APP makes fewer type I and type II errors than LOC for an equal percentage
of the route driven autonomously (30%, 50% and 70%).

Table 1 shows that by increasing the cost of Loffer, type II errors for both methods are
reduced. Note that in this comparison it appears that LOC makes fewer type II errors.
This is because type II errors are computed strictly on the frames on which the decision
taken was to offer autonomy, which is to begin with lower for LOC. The percentage of
autonomy offered is shown in the table as A(%). When instead we compute the mistakes
made by the two methods for the same percentage of the route driven autonomously (set
to 30%, 50% and 70% respectively) APP makes both fewer type I and type II errors.
This result is shown in Table 2 for the case of Loffer = Ldeny.

5 Conclusions

This work proposes a framework for estimating the robot’s perception performance
at test time based on its performance at previous visits of the same place. Through
a classical decision making scenario, we demonstrate that it is possible to reduce the
number of mistakes the robot makes by denying autonomy when the performance is
predicted to be poor. Selecting past observations from similar environmental conditions
further improves our estimates. We believe that performance records can improve with
more experience in the same workspace and represent a step towards reliable vision
systems operating in the real world.
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