
FARLAP: Fast Robust Localisation using Appearance Priors

Geoffrey Pascoe, Will Maddern, Alexander D. Stewart and Paul Newman

Abstract— This paper is concerned with large-scale locali-
sation at city scales with monocular cameras. Our primary
motivation lies with the development of autonomous road
vehicles — an application domain in which low-cost sensing is
particularly important. Here we present a method for localising
against a textured 3-dimensional prior mesh using a monocular
camera. We first present a system for generating and texturing
the prior using a LIDAR scanner and camera. We then describe
how we can localise against that prior with a single camera,
using an information-theoretic measure of image similarity.
This process requires dealing with the distortions induced by
a wide-angle camera. We present and justify an interesting
approach to this issue in which we distort the prior map
into the image rather than vice-versa. Finally we explain how
the general purpose computation functionality of a modern
GPU is particularly apt for our task, allowing us to run the
system in real time. We present results showing centimetre-level
localisation accuracy through a city over six kilometres.

I. INTRODUCTION

This work leverages commodity GPU hardware to build a
large-scale metric localisation system which exploits dense
textured scene models of our own making. Using only mono-
cameras, the system operates in real-time across marked ap-
pearance changes. While such a system can find application
in a host of robotics domains, in this paper we focus on its
use in on-road autonomy.

State-of-the-art localisation systems [1], [2] for au-
tonomous vehicles rely on high-cost laser-based sensors such
as the Velodyne [3]. Whilst these sensors provide high-
fidelity information about the vehicle’s environment, their
cost makes them a challenging proposition for mainstream
adoption of autonomous vehicles. We are motivated to ex-
plore what can be done with cameras alone at run time, in
conjunction with a prior model of the environment.

The approach we advocate is having a small number of
survey vehicles equipped with laser sensors, which infre-
quently visit all roadways, building high-quality maps. By
exploiting the information thus made available as a prior,
the vast majority of cars on the road would then localise
into a map using only monocular cameras. This approach
shifts the expensive sensing equipment onto just the few
specialist survey vehicles, dramatically reducing the costs
for commodity car ownership.

In this paper, we describe a system which uses laser
and camera data from the survey vehicle to build fully-
textured 3-dimensional meshes of the environment. Along
with knowledge of the projective properties of our cameras,
this allows us to generate a synthetic image showing what a

Authors are from the Mobile Robotics Group,
Dept. Engineering Science, University of Oxford, UK.
{gmp,wm,alexs,pnewman}@robots.ox.ac.uk

(a) (b)

(c)
Fig. 1. Our localisation system relies on generating virtual images from
a map consisting of a textured mesh, and comparing those images with the
live camera feed. We use a simple look-up-table based distortion model
to create virtual images with the same distortion as the live camera lens.
(a) Live camera image, (b) projection of the prior using a highly distorted
model, (c) a birds-eye view of the prior at the same location.

camera located at any point in the map would see. Equipped
with such a camera, we localise by finding the location in
the map at which the expected image from the prior most
closely matches the live image.

We make use of normalised information distance (NID)
to evaluate the similarity between live camera image and the
images generated from our prior. This differs from previous
dense localisation approaches such as DTAM [4], in that
it does not rely on the actual colours in the camera image
matching those in the prior.

We apply non-linear distortion using a look-up table, to
distort the mesh before colouring it. This allows us to make
use of cameras with very wide fields of view, significantly
increasing the size of the region in which the system can
converge on the true pose.

The computational power required to generate and eval-
uate synthetic images is typically very high. Our method,
however, is highly data parallel, operating independently on
each pixel. We thus make use of the rendering and parallel
computation abilities of modern graphics processing units
(GPUs) to enable real-time operation.



II. RELATED WORK

The visual localisation system described in [5], [6] relies
on the comparison of a sparse coloured pointcloud prior and
a live camera image. This system carries out a quasi-Newton
optimisation to find the pose that results in the lowest NID
between the projection of the pointcloud into the frame of
the camera and the live image.

Other systems have been developed that use dense meshes
rather than a sparse pointcloud as a prior. It was shown by
[4] that a dense approach provides richer information about
the scene, and leads to more accurate localisation.

One such system is described by [7]. In this case, the mesh
is a commercially available product — this system does not
include the creation of the prior. For this implementation,
standard mutual information is used as the objective function.
Rather than using a quasi-Newton method to approximate
the Hessian, the Hessian is calculated directly, although it
is only calculated once, and assumed to vary little. Whilst
projections of the prior are rendered via OpenGL [8], the rest
of the pipeline is carried out on the CPU, and localisations
can be performed at a rate of approximately 0.25Hz [7]. Our
system, in contrast, exploits the general purpose computation
abilities of modern GPUs, in addition to their rendering
abilities, to be able to localise at approximately 2 Hz.

An alternative to localisation is known as visual servoing
[9], wherein images are used to directly build a control law
for following a path previously traversed by a robot. The
prior or map in this case simply consists of a series of
key images from the original path traversal. In [10], this
approach is demonstrated with the use of mutual information
to determine the similarity between images. This approach is
extremely dependent on the viewpoint of the robot, and limits
the robot to tracking the exact same path as was recorded
previously. In contrast, using a pointcloud or mesh as a prior
allows synthetic images to be generated from any viewpoint,
leading to more flexibility in the paths a robot can follow
and the configuration of the sensors.

Dense tracking and mapping (DTAM) [4] is another
method that uses a dense texture as a prior, which is built in
real-time in parallel with motion tracking. In this approach,
average photometric error is used as a cost function — every
pixel in the live image and the projection of the prior is com-
pared individually, and the average of the difference taken.
Computation of this cost function is highly data parallel, and
real-time performance on a GPU is achieved. Because the
method depends on the actual pixel values, however, DTAM
is not robust under appearance changes such as variation
in illumination or use of a different camera. For outdoor
scenes, where significant short-term changes in appearance
occur throughout the day, in addition to gradual longer-term
changes, this approach is not suitable. We address this by
using a whole-image information theoretic measure of image
similarity, which depends only on the distribution of pixel
values, not the absolute values.

A different approach is demonstrated by Seq-SLAM [11],
wherein sequences of images are employed. The use of

downscaling, patch normalisation, and cross-correlation are
shown to produce robustness to extreme changes in appear-
ance. This method, however, is not capable of precise metric
localisation, being limited to topological place recognition.
Furthermore, it has been shown by [12] to be highly depen-
dent on viewpoint.

Finally, a mesh coloured by laser reflectance rather than
visual appearance is used as a prior for camera-based local-
isation by [13]. The authors note that this produces a prior
unaffected by lighting conditions at the time at which it was
captured. Furthermore, only the ground plane is included in
the prior, as inclusion of the rest of the scene doubled the
evaluation time. No gradient-based optimisation is carried
out — instead, a grid search over a small 3-degree-of-
freedom (DoF) region (2 translational dimensions, 1 rota-
tional) is run to find the pose which minimises Normalised
Mutual Information1. Root-mean-square (RMS) errors of 14
to 45 cm are reported, and localisation can be performed at
a rate of approximately 10 Hz [13]. We wish to pursue full
6-DoF localisation, however, making the use of a grid search
as in this paper intractable.

III. MAPPING AND MESH SYNTHESIS

Our approach to image-based localisation relies on having
available a high-quality prior representation of the scene. For
this system, we have chosen to use a 3-dimensional textured
mesh as our prior. This provides richer information about the
scene than simply using a pointcloud, as shown by [4].

Our mapping approach consists of two stages: first we
generate the geometry of the mesh using LIDAR data, then
we texture it using camera images.

A. Meshing

In order to build our mesh, we use a vehicle equipped
with a 2-D push-broom LIDAR scanner and a number of
cameras. We use visual odometry from a forward-facing
stereo camera to estimate the motion of the vehicle between
subsequent scans, giving us the 3-dimensional location of
each scan. We then create our mesh by simply stitching
together adjacent points from neighbouring scans, discarding
anomalous triangles. Whilst the visual odometry does not
provide us with globally accurate maps, it is good enough
to create locally coherent metric maps over short distances.
Figure 2(a) shows the untextured mesh.

We store the map as a series of ‘slices,’ each consisting
of the triangles between two adjacent scans. This allows us
to easily dynamically load any subsection of the map that
we wish with minimal overhead. Most of the triangles in the
mesh are on the order of a few centimetres in side length
— we discard triangles with sides greater than 1 metre in
length to avoid creating anomalous surfaces.

B. Texturing

To generate textures for our map, we project the mesh
into each image from the survey vehicle’s camera in turn.

1Normalised Mutual Information is a simple transform of Normalised
Information Distance



(a) (b) (c)

Fig. 2. Generation of the prior: (a) First we build a mesh by stitching together subsequent scans from the push-broom LIDAR; (b) we then project the
mesh in turn into each camera image, and generate a texture for each triangle — here we show all the textures for a single ‘slice,’ from many different
input images; and (c) we combine all the slices with their textures for the final prior.

This camera does not need to be the same one used for
localisation. For each triangle, we choose the image in which
its projection is largest — this gives us the highest resolution
textures. Whilst this does have a tendency to choose triangles
at the edges of distorted images, introducing a preference
for images in which a triangle projected to the centre of the
image did not give a noticeable improvement in the quality
of the resulting textures. Figure 2(b) shows all the textures
for the triangles in a single slice, whilst Figure 2(c) shows
the final result.

IV. FARLAP

In this section we describe our proposed localisation
system. Our system is based on finding the pose at which
a synthetic image produced from the prior best matches the
live camera image. We first describe the metric we use to
determine how well two images match, then describe how
we carry out the optimisation.

A. Normalised Information Distance

In order to choose the pose which best matches the prior to
live camera images, we require a function for evaluating im-
age similarity. We cannot simply take the differences between
respective pixels as in [4], as due to the reliance on pixel
values this method is not robust to changes in appearance.
Given that road vehicles need to be able to localise under
many different lighting conditions and long term changes
in appearance, this is not acceptable. Furthermore, different
cameras will produce different colours, and we do not want
to be limited to only being able to localise with the same
camera as was used to build the map.

Mutual information is a common statistic used for image
registration, as it provides a robust way to compare entire
images [14]. The fact that mutual information depends only
on the distribution of pixel values, not the actual values,
means that it is usable with images captured by different
sensors, and is robust to changes in appearance. Mutual
information, however, has the problem of being dependent
on how much overlap there is between two images [13]

— this causes problems for us, as our synthetic priors
will have large gaps (e.g. sky). We instead choose to use
Normalised Information Distance (NID) [15], a metric with
similar properties to mutual information, but which is not
dependent on the number of pixels of overlap.

Given two images, A and B, the NID is given by (1).

NID(A,B) =
H(A,B)−MI(A,B)

H(A,B)
(1)

Here, H and MI represent entropy and mutual information
respectively, given by (3) and (4).

H(A) = −
∑
a∈A

pa log(pa) (2)

H(A,B) = −
∑
a∈A

∑
b∈B

pab log(pab) (3)

MI(A,B) = H(A) +H(B)−H(A,B) (4)

where pa and pab are probabilities of binned intensity values
from an image histogram and joint histogram respectively.
We use histograms with 32 bins.

B. Image Distortion

The cameras we use for localisation have very wide-angle
lenses. Attempting to undistort these images results in large
regions of the image being interpolated from a small number
of pixels. Rather than undistorting live images, we thus chose
to distort the synthetic image generated from the prior. As
we can distort the mesh before texturing it, we are able to
get sharp textures in the distorted image. The distortion can
be done on the GPU in the same vertex shader that carries
out the original projection — we never actually need to
generate the undistorted projection of the mesh. As a result,
applying distortion adds almost no time to the rendering
pipeline. Furthermore, building these images only requires a
discrete lookup table obtainable by intrinsic calibration — no
knowledge of the actual camera distortion function is needed.
We obtain these models using the OCamCalib toolbox [16].



Fig. 3. Building a differentiable histogram. Rather than incrementing only
the bin into which a pixel value falls, we add the coefficients from a cubic
B-spline using supports at the centre of each bin. Because the histogram
values now depend not only on which bin a pixel falls into, but where in
that bin the pixel falls, the histogram becomes a continuous function of the
pixel values. This diagram shows the effect of adding a single pixel to the
histogram.

C. Optimisation

Given a 6-DOF vehicle pose relative to our prior map,
GV P , we can generate a virtual image I∗(GV P ) showing
what a camera should be seeing at that point. We wish to
find the pose ĜV P at which the NID between this synthetic
image and the live camera image I is minimised.

ĜV P = min
GV P

NID(I, I∗(GV P )) (5)

We use a grayscale intensity for each pixel as our signal.
We use the quasi-Newton Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm [17] implemented in Ceres Solver
[18] which simultaneously estimates the Hessian and carries
out the minimisation. Usage of BFGS requires us to calculate
the analytical Jacobian of the NID (cost function) with
respect to the the 6-DOF pose (the function inputs). The
derivative of NID with respect to the vehicle pose is as
follows:

dNID

dGV P
=

dH(I,I∗)
dGV P

MI(I, I∗)−H(I, I∗)dMI(I,I∗)
dGV P

H(I, I∗)2
(6)

The entropy derivatives are given by (7) and (8), where n
is the number of histogram bins.

dH(I)

dGV P
= −

n∑
b=1

dpb
dGV P

(1 + log pb) (7)

dH(I, I∗)

dGV P
= −

n∑
a=1

n∑
b=1

dpab
dGV P

(1 + log pab) (8)

In a standard formulation of a histogram, the values
in the bins are discrete, and thus not differentiable. We
therefore have to alter our histogram construction to get a
continuous function for the histogram distribution. Rather
than incrementing the bin into which the intensity of each
pixel falls, we instead use cubic B-Spline interpolation, as in

[5], to update four bins for each pixel. This is demonstrated
in Figure 3. As we are using a cubic B-spline, these coeffi-
cients are all twice differentiable, thus we can now compute
analytic derivatives of the histogram values with respect to
changes in pixel appearance.

To find the Jacobian of pixel intensities with respect to
screen coordinates, we once again make use of a cubic B-
spline interpolation to get a continuous, differentiable inten-
sity surface. We run a B-spline pre-filter over the synthetic
image generated from the prior, as described in [19]. This
gives us a differentiable image with pixel values, which when
used as the control points for a B-spline, yield the original
values at the pixel centres. We can then recover the required
Jacobian by differentiating the B-spline surface.

The synthetic image we generate from the map has large
gaps in it. This is due to the fact that some areas (e.g.
the sky) are not meshed. We ignore these regions in our
NID calculations, but if we simply built our B-spline surface
over this raw image, our derivatives would be dominated by
the sharp changes at the edges of the non-textured regions.
Instead, we render our synthetic image at several resolutions
— OpenGL can do this in hardware, with negligible overhead
— and use lower resolution images to fill the gaps in the
higher resolution images. An example of this is shown in
Figure 4. This, in effect, blurs the edges of the non-textured
regions, thus preventing large derivatives at those boundaries.
Note that the gaps in the original (full resolution) image
are still ignored in the NID calculation — the smoothing is
simply used to prevent sharp derivatives at the boundaries.

(a) (b)

Fig. 4. We render our synthetic images at two resolutions, and use the
lower resolution version to fill in gaps in the higher resolution image. This
prevents sharp changes at the edges of the mesh from dominating image
derivatives. (a) A segment of the higher resolution image. (b) The same
image filled in with a slightly lower resolution image, producing blurring
around edges and filled-in holes in the windows.

Similarly, our camera distortions are specified in the form
of a discrete lookup table which maps undistorted image
coordinates to distorted image coordinates. As we require a
differentiable function, we once again use B-spline interpo-



lation.
The final Jacobian we require is that which maps deriva-

tives in the vehicle frame to those in image space. Here
we make use of the depth buffer available in the OpenGL
rendering pipeline. The Jacobian is given by (9) [7].

J =

[
−1/z 0 u/z uv −(1 + u2) v
0 −1/z v/z 1 + v2 −uv −u

]
(9)

where u and v are the horizontal and vertical image coordi-
nates respectively, and z is the depth value. As this Jacobian
operates on each pixel independently, requiring only the pixel
coordinates, it can be computed during rendering in the
OpenGL shader pipeline. In addition to the actual textured
image, we render four derivative images. Each of the twelve
derivatives (two image coordinates with respect to each of
six degrees of freedom) is rendered to a channel of one of
these images. Figure 5 shows an example of derivatives in
image form.

At each step of the BFGS optimisation, we render a
new scene at the current pose, and calculate the NID and
Jacobians based on that scene. This results in every evalua-
tion being based on the prior being sampled at exactly the
resolution of the live camera image — the prior is sampled
at the center of every pixel. As a result, our method is not
provably convergent, as we are effectively changing the data
used for each evaluation — a new synthetic image is used
each time. We demonstrate, however, that in practice the
function has a large convergence basin.

The entire cost function pipeline is evaluated on the GPU.
Synthetic camera images from the prior are generated by
OpenGL, and shared with OpenCL [20] kernels which carry
out the histogram and NID calculations. As a result, not only
do we exploit the data-parallel nature of our computations,
but we also avoid the time-consuming reading of entire
images back from the GPU. This allows us to localise at
a rate of approximately 2 Hz.

V. EXPERIMENTAL SETUP

In this section we describe the approach we use to evaluate
and demonstrate the efficacy of our localisation system.

The platform we use to build our priors and localise is
a Bowler Wildcat. We use a vertical SICK LMS-151 laser
scanner mounted at the front of the vehicle to generate our
maps, with a Point Grey Bumblebee2 mounted at the front
of the vehicle used to obtain visual odometry. Our meshes
are coloured using a Point Grey Ladybug2 spherical camera.

We have four Point Grey Grasshopper2 monocular cam-
eras, fitted with wide-angle fisheye lenses, for use in local-
isation. These cameras are mounted pointing slightly down,
approximately 45°left and right of the forwards and rear
direction of the vehicle respectively.

We carry out our evaluations on a computer with a
2.4 GHz Intel Xeon processer, 6 GB of RAM and an
NVIDIA GeForce GTX Titan GPU, running Ubuntu 12.04.

VI. RESULTS

To assess the ability of our system to localise in a real-
world environment, we drove eight laps around a loop of
public roads in north Oxford (see Fig. 6), totalling approx-
imately 5.6 km. We built a mesh prior from the laser and
Ladybug2 data. We then localised using the same dataset, but
with Grasshopper2 cameras. This allows us to have a very
accurate ground truth for comparison, as we are using the
same odometry feed as was used to build the map. Although
the structure of the scene is thus the same during localisation
as during the map-building phase, given that we are using
different images from those used to texture the map, there
are large differences in appearance.

A. Localisation Performance

TABLE I
RMS ERROR IN EACH DEGREE OF FREEDOM.

RMS error
x (m) 0.0742
y (m) 0.0373
z (m) 0.0490
rx (°) 0.9183
ry (°) 0.3159
rz (°) 0.3571

Figure 7 shows the errors between the localised solution
and the ground truth in each degree of freedom. Approxi-
mately 7% of locations failed to converge on a solution —
these are not shown in the histograms. The vast majority of
locations show an error of less than 5 cm in the translational
dimensions, and less than 1° in the rotational dimensions.
Table I shows the RMS errors for each of the axes.

In Figure 8, we show how the NID varies with movement
in each axis from the ground truth position. The functions
all have a minimum indistinguishable from the ground truth
position, with the exception of pitch, whose minimum is less
than a degree from zero. Note that the curve from z has a
local minimum at approximately +1.5 m — this is due the
virtual camera being below the road, and the projection of
the road looking very similar from this position as it does
from above.

B. Time Performance

In Figure 9(a), we show a histogram of the time taken
to evaluate the NID between the live camera image and our
prior. The mean time taken to evaluate the cost function is
approximately 35 ms, but the majority of evaluations take
less than 25 ms. The vast majority of the time taken in
the NID evaluation is used in building the joint histogram
between the two images — this requires essentially random
memory access for writing to the histogram, resulting in less
of a speed advantage on the GPU compared to other parts
of the pipeline.

A single localisation generally requires approximately 20
cost function evaluations, as can be seen in Figure 9(b). Over
the course of our 6km of data, localisation can be performed
at approximately 2 Hz.



(a) du
dx

(b) du
dy

(c) du
dz

(d) du
drx

(e) du
dry

(f) du
drz

(g) dv
dx

(h) dv
dy

(i) dv
dz

(j) dv
drx

(k) dv
dry

(l) dv
drz

Fig. 5. Derivative images generated during rendering. These show how the image coordinates of a point change with changes in camera pose. u and v are
horizontal and vertical image coordinates respectively. Green indicates a positive derivative, red indicates negative. We use a frame with x into the screen,
y to the right of screen, and z pointing down, and rx, ry and rz represent rotations about the x, y and z axes respectively. Note that for visualisation
purposes, the derivatives use two channels to display positive and negative values respectively — in the localisation pipeline only a ssingle channel is
required.

Fig. 6. Experimental test site in north Oxford.

C. Effect of Field of View

Here we evaluate the effect on localisation performance
of using a camera with a wide-angle fisheye lense. The
OCamCalib [16] toolbox we use for generating camera
models allows us to build models for different fields of
view, with wider fields of view yielding more distorted
images. Figure 10 shows NID curves averaged across the
three translational and rotational axes respectively.

Up to around a 120° field of view, increasing the field
of view increases the smoothness of the cost function, both
making the convergence basin deeper and the minimum more
accurate. This allows us to localise accurately with an initial
estimate as much as 1.3 m away from the true position in
horizontal directions, and 10° in rotation.

When the field of view is increased beyond 120°, the
minimum of the cost functions start to become less clear. At
148°, localisation is still possible — although the rotational
minima are not precise, they are still within 5° of the

true value. The loss in precision, however, brings a wider
convergence basin. Beyond 150°, the cost functions become
virtually unusable.

With extremely large fields of view, small changes in the
pose of the camera do not change the image much, resulting
in much flatter cost functions. At extremely narrow fields
of view, only a small part of the camera image is being
used, and as a result not much information is available
for localisation. The 120°field of view result gives the
best combination of a wide convergence basin and accurate
minimum.

VII. CONCLUSIONS

We have presented a new system that can successfully
localise a vehicle within a textured prior using only a monoc-
ular camera. We demonstrated the performance of our system
on 6 km data captured on real-world roadways, showing it
to be both robust and precise, with RMS errors of less than
8 cm and 1 degree and a wide convergence basin of over
1.3 metres in each direction. Due to the data-parallel nature
of the problem, we are able to exploit GPU computation to
carry out localisation at approximately 2 Hz. The ability to
robustly localise with centimetre-level precision using only
monocular cameras is a strong step towards enabling low-
cost autonomy for road vehicles.

VIII. ACKNOWLEDGEMENTS

The authors wish to acknowledge the following funding
sources. Geoffrey Pascoe is supported by funding from the
Rhodes Trust. Will Maddern and Alex Stewart are supported
by EPSRC grants, and Paul Newman is supported by EPSRC
Leadership Fellowship EP/J012017/1.



(a) (b) (c)

(d) (e) (f)

Fig. 7. Histograms showing displacement between the localised solution and ground truth in each degree of freedom. The coordinate system places x in
the direction of the vehicle’s travel, y to the vehicle’s right, and z downwards into the road.

(a) (b)

Fig. 8. NID values at varying offsets from the ground truth pose. These plots are averaged across 20 different locations. (a) Translational axes with x, y
and z shown as red, green and blue respectively. (b) Rotational axes with roll, pitch and yaw shown as red, green and blue respectively. The second local
minimum in the z axis is due to the road looking very similar when rendered from below as it does from above.

REFERENCES

[1] J. Levinson, M. Montemerlo, and S. Thrun, “Map-Based Precision Ve-
hicle Localization in Urban Environments,” Proc.˜of Robotics: Science
and Systems (RSS), 2007.

[2] J. Levinson and S. Thrun, “Robust vehicle localization in urban
environments using probabilistic maps,” 2010 IEEE International
Conference on Robotics and Automation, pp. 4372–4378, May 2010.

[3] Velodyne, “A High Definition Lidar Sensor for 3-D Applications,”
2007. [Online]. Available: http://velodynelidar.com/lidar/products/
white paper/HDL%20white%20paper OCT2007 web.pdf

[4] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM: Dense

tracking and mapping in real-time,” Computer Vision (ICCV), 2011
IEEE International Conference on, pp. 2320–2327, Nov. 2011.

[5] A. D. Stewart and P. Newman, LAPS - localisation using appearance
of prior structure: 6-DoF monocular camera localisation using prior
pointclouds. IEEE, 2012, pp. 2625–2632.

[6] W. Maddern, A. D. Stewart, and P. Newman, “LAPS-II: 6-DoF Day
and Night Visual Localisation with Prior 3D Structure for Autonomous
Road Vehicles,” in Intelligent Vehicles Symposium, 2014 IEEE, 2014.

[7] G. Caron, A. Dame, and E. Marchand, “Direct model based visual
tracking and pose estimation using mutual information,” Image and
Vision Computing, vol. 32, no. 1, pp. 54–63, Jan. 2014.

[8] Khronos, “OpenGL - The Industry’s Foundation for High Performance

http://velodynelidar.com/lidar/products/white_paper/HDL%20white%20paper_OCT2007_web.pdf
http://velodynelidar.com/lidar/products/white_paper/HDL%20white%20paper_OCT2007_web.pdf


(a) (b)

Fig. 9. Runtime behaviour of optimiser. (a) Time taken to evaluate the NID function, including rendering the synthetic image. The majority of cost function
evaluations take less than 25 ms. (b) Number of cost function evaluations carried out in each optimisation. Most optimisations require approximately 20
evaluations.

(a) (b)

Fig. 10. NID curves with varying fields of view. Each curve is the mean of the three translational or rotational axes, averaged across 20 locations.

Graphics,” accessed 9/8/2014. [Online]. Available: http://www.
khronos.org/opengl/

[9] S. Hutchinson, G. Hager, and P. I. Corke, “A tutorial on visual servo
control,” IEEE International Conference on Robotics and Automation,
vol. 12, pp. 651–670, 1996.

[10] A. Dame and E. Marchand, “Using mutual information for appearance-
based visual path following,” Robotics and Autonomous Systems, pp.
1–32, 2012.

[11] M. J. Milford and G. F. Wyeth, “SeqSLAM: Visual route-based naviga-
tion for sunny summer days and stormy winter nights,” in Proceedings
- IEEE International Conference on Robotics and Automation, 2012,
pp. 1643–1649.

[12] N. Sünderhauf, P. Neubert, and P. Protzel, “Are we there yet? Chal-
lenging SEQslam on a 3000 km journey across all four seasons,”
in Proc. of Workshop on Long-Term Autonomy, IEEE International
Conference on Robotics and Automation (ICRA), 2013, p. 2013.

[13] R. W. Wolcott and R. M. Eustice, “Visual Localization within LI-
DAR Maps for Automated Urban Driving,” in Intelligent Robots and
Systems (IROS), IEEE/RSJ International Conference on, 2014.

[14] J. P. W. Pluim, J. B. A. Maintz, and M. a. Viergever, “Mutual-
information-based registration of medical images: a survey.” IEEE
transactions on medical imaging, vol. 22, no. 8, pp. 986–1004, Aug.
2003.

[15] M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitanyi, “The similarity
metric,” Information Theory, IEEE Transactions on, vol. 50, no. 12,
pp. 3250–3264, 2004.

[16] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A toolbox for
easily calibrating omnidirectional cameras,” in IEEE International
Conference on Intelligent Robots and Systems, 2006, pp. 5695–5701.

[17] J. Nocedal and S. J. Wright, Numerical Optimization, 1999, vol. 43.
[18] S. Agarwal, K. Mierle, and Others, “Ceres Solver.” [Online].

Available: http://ceres-solver.org
[19] D. Ruijters and P. Thévenaz, “GPU prefilter for accurate cubic B-spline

interpolation,” The Computer Journal, vol. 55, pp. 15–20, 2012.
[20] Khronos, “OpenCL - The open standard for parallel programming

of heterogeneous systems,” accessed 9/8/2014. [Online]. Available:
http://www.khronos.org/opencl/

http://www.khronos.org/opengl/
http://www.khronos.org/opengl/
http://ceres-solver.org
http://www.khronos.org/opencl/

	Introduction
	Related Work
	Mapping And Mesh Synthesis
	Meshing
	Texturing

	FARLAP
	Normalised Information Distance
	Image Distortion
	Optimisation

	Experimental Setup
	Results
	Localisation Performance
	Time Performance
	Effect of Field of View

	Conclusions
	Acknowledgements
	References

