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Abstract— We consider the task of processing 3D laser
data for use in the Simultaneous Localization and Mapping
Problem. The motivation for using 3D data comes in part
from the impracticality of relying on 2D laser scanners
when the vehicle operates on undulating terrain and in part
from a desire to produce 3D maps of arbitrary, a priori
unknown environments. We use an information-theoretic
derived measure of local saliency to partition the raw 3D data
stream into spatially distinct point-clusters. These clusters
are natural features in measurement space that capture
the geometry of intrinsically interesting surface patches. In
common with “scan-matching” methods in SE2, the SE3

relationship between consecutive vehicle poses is calculated
using an iterative point-wise registration scheme operating on
the reduced data set. The saliency driven decimation process
not only substantially reduces the computational burden
of registration but also provides the registration process
with data that is geometrically diverse. This characteristic
improves registration performance. We present initial results
showing our methods working on both outdoor and indoor
data.

Index Terms— SLAM, Outdoor, 3D, Features, Scan Match-
ing, Geometric Saliency, Registration, Entropy

I. INTRODUCTION AND MOTIVATION

The mobile robotics community has a good idea how
to perform SLAM indoors on flat floors, especially when
using the ubiquitous laser scanner. Fine progress has been
made on the scaling problem and we now have several
approaches that could enable large scale SLAM ([2], [3],
[13], [14], [20]).

In this article we shall discuss our work towards de-
ploying SLAM in the altogether more challenging outdoor
domain. Here, in-plane motion relied upon by many large-
scale contemporary SLAM implementations, is the excep-
tion rather than the norm. Odometry measurements are now
reduced to excursions on an unknown manifold in R

3.
Furthermore outdoor environments have a very different
character to those indoor. Outdoors the crisp geometric
interiors of rooms and corridors are rare and we are more
likely to see whole buildings, shrubbery, trees and rocks.
Trying to use 2D laser scans when the robot is rolling
and pitching relative to complex objects is a hopeless task.

∗This work is supported by EPSRC Grant #GR/S62215/01 and Guid-
ance Control Systems Ltd.

We need to sense in 3D if we are to recover SE3 pose
information.

Our primary sensor is a 3D-scanning laser shown in
Figure 1. This instrument allows us us to actively sample
the surface geometry of the environment at high speed, over
large distances, with little computational effort.

SLAM techniques using matches between patches of raw
laser data are well suited to complex environments [6],
[13], [15] and [2]. They offer two important advantages
over popular feature based representations, such as those
used in [11] and [19] for example. Firstly, they do not try
to fit generative models that are prone to fitting bias, and
secondly, all data can be used in the navigation process -
not just the data that fits one member of an a priori set
of geometric models. On the other hand the feature based
representation has some very appealing properties. Data is
stored compactly, and it can be easily applied (with good
success) to navigation sensors other than the commonplace
and somewhat beguiling range-bearing scanning laser - for
example wide-beam sonar, radar or cameras.

At this point it is worth pointing out that geometric
feature based approaches are not synonymous with the
EKF. For example in [2] and [16] SLAM was achieved
using an EKF with raw laser data scan-matching (both ICP
and Correlation based) and a state vector of past vehicle
poses while in some implementations of FastSLAM [20]
geometric features were used in a particle filter formulation.
We do not seek to resolve this debate over representation
here nor can we reference all the literature that considers
these issues. We simply make the point that there are
advantages and disadvantages to both schools and this
tension motivates our current research.

At first glance we might be tempted to proceed to the
3D case in the same manner as [7] or [8], and represent
the world using sub-sampled raw data, combined with a 6
D.O.F. scan matcher. However this is an inefficient policy.
Much of the data is either redundant or coming from a
geometrically bland region that is non-informative vis-a-
vis the navigation task, adding unnecessarily to the already
heavy computational burden.

Simon [18] suggests that “Judicious selection and careful
collection of a limited amount of data can result in better
registration accuracy than random use of larger amounts



of data.” Hence, careful sampling of data for registration
could prove to be faster and more accurate. A more directed
form of sub-sampling was introduced by Rusinkiewicz and
Levoy [17]. They tried to ensure the overall distribution
of point cloud normals was uniform after sub-sampling,
in an attempt to maintain enough information in the two
scans to give a well-conditioned registration. This was
particularly important for their application as they were
matching largely planar geometric objects with strong
priors on shape. Unfortunately, we have less justification
for such a method, as we have less prior knowledge about
which data will provide sufficient registration constraints.

In this paper we propose a middle ground between
raw data and geometric modelling, in which the raw
measurement stream naturally produces its own features.
Each ‘feature’ consists of an unaltered subset of the raw
measurement set. The measurement stream is thus seg-
mented into clumps of spatially localized measurements
which can be passed simultaneously to a scan matcher to
enable the navigation task.

The criteria for segmentation is local interest. Some
measurements are more interesting than others because they
come from more unusual or surprising parts of the scene1.
We also note that raw data representations using scan
matching techniques tend to excel when presented with data
from complex scenes simply because complexity reduces
the probability of ambiguity between two scans. In our
experience, the opposite is frequently true for traditional
feature-based techniques.

We segment the data by considering how the statistics of
the geometry of the surfaces sampled by the laser change
locally. In particular we look at how the entropy and raw
distributions of normal directions change over scale around
a particular data point. If for some scale around a given
point, the distribution of normals changes rapidly then
something locally ‘interesting’ is happening at that scale. If
at this scale the patch is also locally complex i.e has high
entropy, then we say the region is ‘salient’. Thus salient
regions are complex and have similar statistical properties,
as noted by Kadir and Brady [12].

The rest of this paper is concerned with the detection
of salient regions in 3D geometric data and their use in
scan matching, which will ultimately enable robust SLAM
in 3D settings.

One immediate problem is that our 3D point clouds are
of non-uniform density, due to sensor geometry. This can
be detrimental to future processing, in this case surface
normal generation and saliency detection. Therefore, re-
sampling is essential. It is this task which, after a brief
description of our measurement system in Section II, we
turn to first in Section III. We proceed to cover our surface
normal estimation technique and describe how we segment
on saliency in Section IV. Section V then describes how the
salient regions, which are point samples of an underlying
salient patch, are passed through a non-linear optimizer

1This of course is not a new insight; indeed it underlies the whole
concept of a ‘landmark’ with which we are familiar.

Fig. 1. Our 3D scanning laser range finder mounted on research vehicle
‘Marge’.

(scan matcher) to find the transformation between vehicle
poses in an outdoor setting.

II. DATA ACQUISITION

Data has been taken using a standard 2D SICK laser
range finder, combined with custom built ‘nodding’ appa-
ratus and interfacing circuitry.

The scanner is mounted in a reciprocating cradle, driven
by a constant velocity motor, via a four bar chain quick-
return mechanism. This combination is robust to jolts in
locomotion encountered outdoors, as there is negligible
backlash on the driving gear box. It can also sample scene
geometry particularly fast compared to some servo-driven
methods.

Scanner orientation is measured using a potentiometer
mounted on the cradle’s axis of rotation. The elevation
readings need to be accurately synchronized with the laser
data stream - even a small delay can result in incorrect
elevation labelling. This task is made awkward since the
scanner’s elevation varies non-linearly with time, and the
laser data packets currently arrive with a time lag, due
to an RS422-USB conversion. Synchronization and angle-
stamping is performed on the main PC, which estimates
the data lag using a correlation technique based on the
central laser beam’s range-elevation profile. More accurate
hardware based methods are currently in development.

The entire 3D scanner has been mounted on our multi-
terrain research vehicle, ‘Marge’, as pictured in Figure 1.
Figure 2 shows typical point clouds from our sensor.

III. SURFACE NORMAL ESTIMATION

A. Tangent plane estimation

1) Initial plane fit: We adopt the approach suggested
by Hoppe, DeRose, Duchamp, McDonald and Stuetzle [9],
which we now summarize.

Given a cloud of 3D data points, ΩN , containing N
individual points,{ω1, . . . ωN}, sampled from a collection



Fig. 2. Two consecutive 3D scan patches typical of those obtained by our 3D laser system. The gantry like object is part of an overhead building near
an entrance to a building with glass doors —hence the rendering of the inside of an entrance hall on the left hand side.

of surfaces, we wish to obtain an estimate of the true
surface normal, ni for each point. This is achieved by
performing a least-squares plane fit to ωi and its k nearest
neighbours. The extracted plane is assumed to be a local
approximation of the true surface at ωi and its normal n̂i

approximates ni.
The k nearest neighbour searches can be quickly per-

formed through the use of an efficient spatial partitioning
data structure. Our implementation uses a kd-tree ΛΩN

containing all points in ΩN .
2) Improved plane fitting: In areas of the point cloud af-

fected by significant noise, the default neighbourhood size
k may be insufficiently large to ensure a well conditioned
plane fit. In such cases it is desirable to adaptively increase
the size of the k-neighbourhood to reduce the influence of
noise. If the condition number of the plane fit is poor, then
k is increased and the plane fit recalculated. This process is
repeated until the condition number falls below a threshold
or k exceeds a predefined maximum. If at any step the
condition number increases then the poor conditioning is
assumed to be caused by local surface curvature, rather
than noise.

B. Consistent tangent plane orientation

For illustrative purposes, Figure 3(a) shows a simple
point cloud, sampled from three faces of a cube. Figure
3(b) shows the normals generated by the least-squares plane
fit algorithm. Notice that they are all perpendicular to the
surface, but are not consistently oriented. If we define the
front of the surface to be the side closest to the point from
which it was viewed, we require that the estimated normals
are oriented consistently outwards from the front of the
sampled surfaces.

Consider a pair of geometrically close points ω1, ω2 ∈
ΩN on a densely sampled surface, with estimated nor-
mals n̂i, n̂j ∈ R

3. Assuming that ni is correctly oriented,
ni · nj > 0 implies that nj is also correctly oriented. If
ni · nj < 0, then nj must be flipped. Now that nj is
correctly oriented, neighbours of ωj can be corrected, and

so on. We may continue propagating normal consistency
in this manner until all points in ΩN have been correctly
oriented.

In practice, the order of propagation is important. Prop-
agation of normal orientations over sharp edges is prone
to error and may result in gross local inconsistency in
orientation.

To improve the order of propagation, we construct a
graph G, which contains an edge 〈ωi, ωj〉 if ωj is in
the k-neighbourhood of ωi. Each edge is assigned a
cost, c = 1 − |n̂i · n̂j |. The neighbourhood (or Rieman-
nian) graph for the point cloud from figure 3(a) is shown
in figure 3(c), where darker edges denote a higher cost.
Normal consistency is propagated by traversing a minimal
spanning tree of G. This method has the effect of propa-
gating preferentially across areas of low curvature. Sharp
edges are avoided unless there is no other path available
to reach a particular point.

Since we have viewpoint information in the form of
the robot pose, we may use this to improve the results
of the previous step2. Given a set of viewpoints V =
{v1, . . .vm}, we add each viewpoint as a pseudo-node in
G. We add edges from each viewpoint node to every point
‘seen’ from that viewpoint. The edge cost is assigned as
c = 1 − |

(vj−ωi)
|vj−ωi|

· n̂j |. Figure 3(d) shows the correctly
oriented normals.

C. Point Density Normalization

Real 3D range data from the robot’s laser range finder
exhibits large variations in sample density due to the
divergence of consecutively sampled beams. Surfaces close
to the scanner are particularly densely sampled.

2If we have viewpoint information, it might appear that the correct
orientation of n̂i could be set trivially. Given a viewpoint vj , we might

flip n̂i if (n̂i ·

(vj−ωi)

|vj−ωi|
) < 0. For points located near sharp edges, the

plane fit is ill conditioned, resulting in an incorrect surface estimate. In
these cases the viewpoint may lie behind the estimated plane, causing this
algorithm to choose the wrong orientation.



(a) Initial point cloud sampled
from three faces of a cube

(b) Incorrectly oriented nor-
mals output from the plane fit-
ting stage

(c) Neighbourhood graph
edges for defining order of
consistency propagation

(d) Corrected normals after
consistency checks

Fig. 3. An illustrative problem: finding consistent normals from a point
cloud

An appropriately large neighbourhood to ensure a well
conditioned least-squares plane fit on a densely sampled
surface may contain thousands of points. When using the
plane-fitting algorithm on real range data, we find that it is
usually beneficial to apply a pre-processing step, to reduce
the point density in these areas.

We obtain an estimate of the surface sample density at
each point ρi = k/r2

i , where ri is the distance to the kth
nearest neighbour of ωi.

If ρi is greater than a desired threshold then ωi is
removed from ΩN . Whilst suboptimal, this simple heuristic
performs well in practice and can be implemented effi-
ciently within the kd-tree framework.

Fig. 4. The result of applying the normal estimation process to the scene
shown in Figure 2. The coloring indicates the traversal order of the MST
from red to blue.

IV. SALIENCY DETECTION

Given a 3D point cloud, ΩN , containing N individual
points, our aim is to select a subset Ωn, containing n �
N individual points. Our motivation is to facilitate fast
6 D.O.F. registration with another 3D scan of the local
area. The subset Ωn will be formed from the union of I
geometrically salient regions.

Initially, a selection B of points in ΩN is chosen, to be
used as base points for saliency detection. In this initial
work, they were chosen by random sampling, but more
sophisticated approaches are preferable.

For each base point, a series of concentric spheres, Sp,
are grown, where p = [1 : P ], and sphere radius = p× δr.
This is illustrated in the top half of Figure 5, again, for the
simple illustrative case of points on the surface of a cube.

The points lying in each sphere, Sp are efficiently
computed incrementally from the previous sphere, Sp−1.

For convenience, we will now define Si
p to be the set

of points lying in the pth sphere around base point ωi.
It is now possible to use each point’s attached estimated
surface normal (as calculated in Section III), to construct a
histogram (or PDF) of surface normals in Si

p. As p = [1 :
P ], and i varies according to the B base points chosen,
this generates P × B histograms.

Each 2D histogram quantizes the surface normals in Si
p

into a discrete set of (φ, θ) spherical polar co-ordinate bins
centred on ωi (where θ is divided into θ+ bins, and φ into
φ+ bins). This is illustrated in the bottom half of Figure 5.

We calculate the entropy of each sphere’s 2D histogram
as follows, where p(φ, θ) represents the histogram height
of each spherical polar bin:

H(Sp) = −

θ+

∑

θ=1

φ+

∑

φ=1

p(φ, θ) log2 p(φ, θ) (1)

Having calculated the variation of surface normal en-
tropy, H(Sp), over scale, or sphere radius, r, for each base
point, we can derive the corresponding variation of saliency
over scale. We adopt the definition of saliency as suggested
by Kadir and Brady [12], which can be written as follows:

Y (Sp) = H(Sp) × W (Sp) (2)

Where

W (Sp) = r ×

θ+

∑

θ=1

φ+

∑

φ=1

∣

∣

∣

∂p(φ, θ)

∂r

∣

∣

∣
(3)

Selecting salient regions in this manner can be thought
of as a ‘weighting’ of three separate factors, each of which
contribute to the overall interest of the region. The H(Sp)
term infers that the region must have a sufficient degree of
complexity or entropy to be salient. The | ∂p(φ,θ)

∂r
| suggests

interesting regions have to exhibit a change in statistics



over the scale of interest. Finally, the r term biases the
results to favour larger regions, and not to accept overly
small regions which can be dominated by noise.

We can now define a geometrically salient region as the
set of points lying within a sphere centred at a base point
and with radius corresponding to a saliency maximum.

In practice this gives a large number of geometrically
salient regions, and it is therefore important to only con-
sider those regions with the largest I saliency peaks.
Furthermore, one should only consider peaks over scales of
interest. This prevents finding geometrically salient regions
that, for example, cover the entire data space. It is also
necessary to provide a geometric constraint, such that the
base points of salient regions are not too close to each
other. Otherwise, effectively the same salient region will
be found many times, with slightly differing base points.
This is a straightforward clustering problem. The algorithm
is summarized in Figure IV.

V. 3D REGISTRATION

All techniques for scan matching or registration directly
or implicitly perform minimization of an error metric
defined over two scans. Without loss of generality, we shall
refer to one set as the model, and consider it fixed, and
the other set as the data, the points that need aligning.
We shall define mi as the ith model point, where M is
the number of model points and di as the ith data point,
where D is the number of data points. Our task is to find
a, the transformation vector to align the data points to the
model points. In this case, it will contain x, y, z, θ1, θ2, θ3

parameters for the full 6 D.O.F. Euclidean transformation.
We will also define T (a, mi) as the transformation operator
taking the ith model point and transforming it by a.

The general error metric takes the following form:

E(a) =
D

∑

i=1

‖ mφ(i) − T (a, di) ‖
2 (4)
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Fig. 5. An example using the points on the surface of a cube. For the
base point chosen, spheres of increasing radius are grown. Corresponding
(φ, θ) histograms of the surface normals for the 3 example spheres are
also shown.

input : Point Cloud ΩN ,with corresponding normals
output: Point Cloud Ωn

ΛΩN
=BuildTree(ΩN );

ndx=SelectBasePts(ΩN ,B);

for BasePt = 1 : B do

i=ndx[BasePt];

for p = 1 : P do

r = pδr;

Si
p=QueryTree(ΛΩN

,i,r);

Hi
p=BuildHist(Si

p);

Y (Si
p)=FindSaliency(Hi

p);

end

Y (Si
pmax

)=MaxOverScale(Y (Si
1:P ));

end

[Si1st
pmax

: SiIth
pmax

]=MaxOverBasePts(Y (S
ndx[1:B]
pmax ),I);

Ωn =
⋃

[Si1st
pmax

, ...., SiIth
pmax

] ;

Algorithm 1: Extracting Points belonging to Geometri-
cally Salient Regions

Correlation based scan matching methods, such as those
used in [13], effectively look for cost function minima
using brute force searches by varying the parameters of
a. The combination of parameters that gives the low-
est cost is accepted as the optimal match. Whilst only
searching around the initial transformation estimate makes
these methods acceptable in low dimensions (as in 2D
scan matching), they scale poorly into higher dimensional
spaces. Here, directed searches such as ICP [1] are a good
choice.

The Iterative Closest Point (ICP) algorithm introduced
by Besl and McKay [1] takes the form described above
in equation 4, but with a particular function φ(i) (which
encapsulates the correspondence between points). As the
name suggests, Iterative Closest Point uses the nearest
model point to the data point as its correspondence.

Consequently, the error metric to minimize becomes:

E(a) =

M
∑

i=1

(min
j

‖ mj − T (a, di) ‖)
2 (5)

Two stages per iteration are required: correspondence cal-
culation, and then a minimization step. This latter stage
is often performed using a closed form singular value
decomposition or a least squares quaternion based method
as described by Horn [10].

One particularly useful variant of ICP, applicable to the
mobile robotics domain, first suggested in [1], uses a kd-
tree data structure to make correspondence searches as fast



Fig. 6. The same data as shown in Figure 2 but with the top five salient regions highlighted in each case. Note how the shape of the car is categorized
as salient along with the multifaceted corners of the overhead concrete gantry. The ellipsoids are for illustrative purposes only and are scaled covariance
ellipsoids of the raw data points which constitute each of the salient regions. They serve to illustrate their crude shape and location.

as possible. This has since been accelerated by Greenspan
and Yurick [5], who use approximate kd-trees for further
saving. This is the basic method behind several successful
implementations of 3D ICP in the mobile robotics com-
munity, such as those by Surmann, Nüchter and Hertzberg
[7] and Surmann, Nuchter, Lingemann and Hertzberg [8].
However, it is difficult to apply robust statistical techniques
to ICP in this form, leading to relatively narrow conver-
gence basins.

Fitzgibbon [4] minimizes a similar metric as ICP,
but uses a standard non-linear optimizer (Levenberg-
Marquardt) to perform the minimization. This means that a
robust kernel can be applied, so that correspondences very
far apart do not overly bias the transformation, resulting
in a widened convergence basin. In [4], the Chamfer
Distance Transform is used to implicitly precompute cor-
respondences and allow fast look up of distances, although
a kd-tree approach scales better with higher dimensions.
The non-linear optimizer is accelerated by allowing cor-
respondences to vary during calculation of local error
surface characteristics (the Jacobian), in particular contrast
to standard ICP. Similar work has been carried out by
Zhang, Hall-Holt and Kaufman [21].

In this paper we use a cauchy robust kernel within
a Levenberg-Marquardt non-linear optimizer. Correspon-
dences are found efficiently using approximate kd-tree
searches. This technique proves as efficient as ICP in [8],
combined with the advantage of wider convergence basins.

VI. RESULTS

Data was taken using the apparatus in Section II,
mounted on Marge, our all terrain research vehicle. The
environment chosen for data collection had two important
characteristics; a non-flat surface, and complex geometry.
Figure 2 shows two consecutive raw point clouds. Each
of these point clouds was subsequently passed through the
normal vector field algorithm summarized in Section III.
A typical normal field is shown in Figure 4.

For each 3D scan patch considered, both the raw point
cloud and its corresponding normal vector field was in-
serted into the saliency detection pipeline described in Sec-
tion IV. Figure 6 shows the geometrically salient regions
returned for a typical patch. The set of salient regions
generated by any two patches are finally passed into the
registration or scan-matching scheme described in Section
V. The output of this final step is a 6 D.O.F. transformation



(a) Before Registration (b) After Registration

Fig. 7. Registration using salient regions. The salient regions of Figure 6 are registered using the method described in Section V. To illustrate the
problem, the left hand Figure shows two data sets with an artificially elevated relative orientation and translational error. The right hand figure shows
the same two data sets after registration. Note how the use of a robust kernel (e.g Huber or Cauchy) means that we do not require the same number
of data points or clusters in each patch.

Fig. 8. A short dose of SLAM using sequential registration of 6 D.O.F. pose states. The above figure is generated by sequentially registering the
salient regions from twelve 3D scan patches captured at 1m intervals. The entirety of each scan patch is rendered from the corrected vehicle position.

between consecutive poses. Where applicable, these esti-
mated transformations can be used to correct dead reckoned
versions. Figure 7 shows two scan patches before and
after alignment. Finally, Figure 8 shows the outcome of
repeating this procedure over a sequence of twelve 3D
patches.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have shown how geometric saliency can
be used to segment raw 3D-laser data. The result of this
process is a collection of informative “data-features” that
can be used in a robust, 3D, inter-pose registration scheme.
We have shown this process working on data gathered from
an outdoor urban scene. We do not limit the relevance of
this work to registration based techniques alone — the role
of saliency in natural feature generation is interesting in its
own right.

There are several areas which we wish to investigate

further. Firstly, there is the issue of deciding which of the
laser samples we should use as base points for saliency
detection i.e. around which points to examine how the
saliency changes over scale. Considering every point over
every scale is computationally expensive and highly redun-
dant, especially in dense point clouds. At the moment we
adopt a naive approach and simply randomly choose and
examine a small fraction of the total number of data points.
It seems sensible to use a more informed selection process
— how to do this is an area of current research.

Secondly, there is the issue of reflecting the needs of
the registration technique in the segmentation process. Our
initial results indicate that the segmentation described in
this paper does indeed sub-sample the measurement stream
in a way that allows accurate 3D registration. In many
respects we are not surprised, after all, the segments are
created precisely because they possess an intrinsically rich
geometry. Nevertheless we would like to be able to bias



the segmenter to yield segments that are, in concert with
each other, more likely to cause stable, well conditioned
inter-pose registrations.

Finally there is the compelling need to add visual ap-
pearance to the mix. We envision using “colored data”
with hue derived from smoothed visual images. This higher
dimensional data will not only offer additional saliency
criteria but also aid in the registration process itself.

In conclusion, pre-selection of geometrically interesting
regions for use in SLAM using 3D laser data is a benefi-
cial, promising and viable technique and deserves further
research.
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