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Abstract—This paper describes a novel method for deter-
mining the extrinsic calibration parameters between 2D and
3D LIDAR sensors with respect to a vehicle base frame. To
recover the calibration parameters we attempt to optimize
the quality of a 3D point cloud produced by the vehicle
as it traverses an unknown, unmodified environment. The
point cloud quality metric is derived from Rényi Quadratic
Entropy and quantifies the compactness of the point distribution
using only a single tuning parameter. We also present a fast
approximate method to reduce the computational requirements
of the entropy evaluation, allowing unsupervised calibration in
vast environments with millions of points. The algorithm is
analyzed using real world data gathered in many locations,
showing robust calibration performance and substantial speed
improvements from the approximations.

I. INTRODUCTION

Light Detection and Ranging (LIDAR) sensors have
emerged as a dominant sensor in mobile robotics over
the past decade. A LIDAR is often the primary source
of sensor data for robots performing SLAM [1], [2], 3D
reconstruction [3], [4], obstacle detection and avoidance [5],
feature detection and scene classification [6] as well as
many other applications in the field of mobile robotics. The
active nature of LIDARs make them an attractive sensor for
outdoor mobile robots; LIDARs can detect scene structure
and appearance regardless of background illumination.

The utility of a LIDAR as a sensor for outdoor mobile
robots was demonstrated in the recent DARPA Grand Chal-
lenge [7] and Urban Challenge [8], with the majority of
vehicles using a combination of 2D and 3D LIDARs [9]. For
data consistency, each of these sensors required an extrinsic
calibration to recover the offset between the sensor frame and
the vehicle base frame [10]. The majority of current LIDAR
calibration techniques involve one or more of the following:
a supervised calibration procedure, known calibration targets,
an artificial calibration environment, assumptions about the
structure of the environment, arbitrary tuning parameters or
lengthy computation time.

In this paper, we propose an unsupervised algorithm for
determining the extrinsic calibration between at least one 3D
laser and multiple 2D lasers and a vehicle base frame. Our
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Figure 1: 3D point cloud visualization of a section of Begbroke
Science Park before and after calibration. The 2D LIDAR is angled
downwards by 8°, and therefore covers a volume up to 2m above
the ground plane. In the lower image, good calibration is evident
between the two point clouds, particularly on sections of the
building, lamp posts and automobiles.

proposed method has a number of advantages over existing
methods; primarily, we make minimal assumptions about
the test environment and do not require any environment
modification (such as placement of calibration targets). We
use an entropy-based point cloud quality metric which is well
grounded in information theory, provides a wide basin of
convergence and requires only one tuning parameter. Finally,
we exploit properties of the entropy formulation to create an
efficient tree-based implementation; this allows calibration
in large test environments with millions of laser points.
This adds only a single tuning parameter, which gracefully
trades accuracy for speed. We evaluate the performance of
our algorithm by determining calibration parameters over 20
different test locations, demonstrating excellent repeatability.
We also show substantial computational savings over existing
entropy-based approaches.



II. RELATED WORK

A number of authors have addressed the problem of
determining the location of one or more LIDARs relative to a
vehicle base frame. It is typically not feasible to measure the
rigid transformation directly (and alignment errors of only 1°
can result in measurement errors of over 0.25m at a distance
of 15m), so the most common approach is to perform a
calibration routine with all sensors rigidly attached to the
vehicle as it moves through an environment.

One approach to recover the extrinsic calibration parame-
ters is to include them as additional states in a metric SLAM
system. The method presented in [11] constructs a hyper-
graph, which when solved using graph-based optimization
provides an estimate of the path taken by a robot through an
environment along with the local offsets of a 2D LIDAR
in the x-y plane and the diameter of the robot’s wheels.
A similar approach is presented in [12], where manifold-
based optimization is applied to solve a number of extrinsic
calibration scenarios. An observability analysis of required
vehicle motion for successful calibration is provided in [13],
which calibrates the extrinsics of multiple 2D LIDAR sensors
on a moving platform. However, these methods have so
far been restricted to 2D LIDARs experiencing only planar
motion.

Extrinsic calibration of 2D LIDAR sensors on a vehicle
platform experiencing 3D motion presents a greater chal-
lenge. The approach taken in [14] uses a pole with retro-
reflective tape applied in known locations as a calibration
target in an environment with a flat ground plane. After
driving the vehicle past the pole multiple times with a 2D
LIDAR fixed rigidly to the vehicle, an optimization procedure
determines the calibration parameters which provide the
most accurate 3D reconstruction of the pole. More recently,
[15] demonstrated a calibration technique using multiple
retro-reflective markers in an unknown environment and an
efficient second-order cone-based optimization. Both of these
methods rely on known calibration targets to aid in the
construction of a 3D point cloud from 2D scans.

A 2D LIDAR does not generally provide enough coverage
to construct a 3D point cloud for calibration purposes. Fixed
2D LIDARs are typically configured as either forward facing
or push-broom. Forward-facing 2D LIDARs observe a planar
‘slice’ of the environment from many different locations,
but typically struggle with vehicle pitch and roll and related
effects such as ground-strike in general 3D vehicle motion.
The availability of full-field 3D LIDAR systems such as
the Velodyne [16] permits extrinsic calibration with no prior
knowledge of the environment and no requirement for cal-
ibration targets; instead, extrinsic calibration parameters are
chosen to maximize a point cloud quality metric.

The approach presented in [17] finds both extrinsic and
intrinsic calibration parameters for a Velodyne HDL-64E on
a moving vehicle platform. The optimization function seeks
to minimize ICP-like point-to-plane distances using surface
normals generated from local neighborhoods. A grid search
strategy is used to derive the optimal calibration parameters.
While this method does not require any modification of the

environment, the normal computation step will perform best
in environments which are locally planar (generally valid in
urban areas).

An alternative metric for 3D point cloud quality based on
Rényi’s Quadratic Entropy (RQE) [18] is presented in [19],
where it is used to calibrate the intrinsic parameters of a
multi-beam rotating 3D LIDAR. The scanned workspace is
represented using a Gaussian Mixture Model (GMM). By
evaluating the entropy of this model, the quality of the point
cloud may be quantified. Similar methods have seen use
in deformable image and shape registration [20], [21], as
a probabilistic alternative to ICP for point registration and
scan matching [22], [23] and clustering and machine learning
[24] amongst others. Since there is no explicit data associ-
ation step required, entropy-based methods provide a large
basin of convergence. However, they require an exhaustive
pairwise correlation which is computationally expensive for
large datasets. Section VI introduces a method to reduce the
expense by exploiting the approximate sparsity of the cost
function.

III. PROBLEM FORMULATION

While our approach is not limited to a particular config-
uration of sensors, we are specifically interested in the case
of a mobile platform with at least one 3D LIDAR and any
number of 2D LIDARs, all of which are rigidly attached to
the vehicle. The platform must also provide a mechanism
for determining the vehicle trajectory, in order that LIDAR
measurements may be projected relative to it. Note that the
trajectory needs only to be locally metrically accurate; global
metric accuracy is not necessary. Thus it could come from a
GPS+Inertial system, relative visual odometry, or a LIDAR
SLAM system for example.

Our algorithm is able to make use of the relative covariance
between points, so a system providing that is preferable.
In this work, we use an accurate Inertial Navigation Sys-
tem (INS) which provides pose error estimates (the state
covariance matrix from a Kalman filter used to combine
inertial data with GPS). We assume the intrinsics of each
sensor have been correctly calibrated; the ranges reported
by each LIDAR relative to the sensor base frame must be
locally consistent. For single-beam 2D LIDARs the factory
calibration is generally sufficient; in the case of a Velodyne or
other multi-beam 3D LIDAR, additional intrinsic calibration
stages [19], [17] may be necessary to achieve the desired
accuracy.

A. Kinematic Chain

Here we derive the kinematic chain for the platform and
sensors based on a global trajectory estimate. We reiterate
that this is not a specific requirement of the method, and that
it would work equally well on relative trajectory segments
using a sliding-window approach to bring the trajectory into
a local metric frame. Consider a 3D laser range finder L
which takes measurements Z = {z1 . . . zN}, where each
measurement consists of a point zi = [xi, yi, zi]

T in the
sensor base frame and corresponds to an object in the world



X = {x1 . . . xN}. The history of vehicle poses is denoted
by Y = {y1 . . . yN}, where each pose consists of a global
location and orientation yi = [xGi, yGi, zGi, αGi, βGi, φGi]

T

and covariance matrix Qi. The sensor model h is defined
as zi = h (xi|yi,Θ), where Θ is the set of six extrinsic
calibration parameters which define the local offset between
the vehicle origin and the sensor base frame:

Θ = [xL, yL, zL, αL, βL, φL]
T (1)

To estimate the position of the measured points x̂i given
the measurements and global poses we apply the inverse
sensor model x̂i = h−1 (zi|yi,Θ), which corresponds to the
kinematic chain,

h−1 (zi|yi,Θ) = T (xGi, yGi, zGi) R (αGi, βGi, φGi)

T (xL, yL, zL) R (αL, βL, φL) zi (2)

Here T (x, y, z) represents a translation along each respective
axis and R (α, β, φ) represents a rotation of roll angle α,
pitch angle β and yaw angle φ. The covariance of each
estimated point due to global position error is calculated as
follows:

Σi = JiQiJ
T
i , where Ji =

δh−1 (zi|yi,Θ)

δyi

(3)

Combining the estimated position of objects over a series
of measurements produces an estimated point cloud X̂ =
{x̂1 . . . x̂N}, with point covariances Σ = {Σ1 . . .ΣN}.

B. Clock Synchronization

The quality of the measured point cloud X̂ is not only
dependent on the extrinsic calibration parameters Θ but
also the accuracy of the timestamps for each measurement.
As we are calibrating multiple heterogeneous sources of
measurements, each with its own internal clock, we require a
method of mapping timestamps from measurement devices to
a central clock. We use the TICSync library [25] to determine
the frequency and offset of each measurement device clock
relative to the central clock. This is performed on line using
a variant of the efficient convex hull algorithm outlined in
[26].

IV. POINT CLOUD QUALITY EVALUATION

Using only the history of measurements Z and vehicle
poses Y, we wish to maximize the value of a point cloud
quality function E (Θ|Z,Y) providing the most likely es-
timate for the extrinsic calibration parameters Θ. We wish
to define this quality function as a measure of point cloud
‘crispness’, without making assumptions about the underly-
ing structure of the calibration environment (such as requiring
the existence of large planar surfaces). Our cost function is
based on Rényi Quadratic Entropy (RQE) because, as we
will see, it offers excellent performance, a large convergence
basin, makes no explicit assumptions about the environment
and requires only a single tuning parameter.

We assume that our point cloud measurements X̂ =
{x̂1 . . . x̂N} are drawn from an underlying distribution p (x),
which represents the probability of drawing a measurement

from a location x. We apply Parzen Window density esti-
mation [27] to represent p(x) as a Gaussian Mixture Model
(GMM),

p(x) =
1

N

N∑
i=1

G
(
x− x̂i,Σi + σ2I

)
(4)

where G (x− µ,Σ) is a Gaussian with mean µ and covari-
ance Σ. We use an isotropic kernel with variance σ2 con-
volved with the vehicle localization uncertainty, Σi for each
measurement. The parameter σ is the only tuning parameter
of the system, being related to the expected measurement
noise of the sensor, and the sampling density of the dataset.
The ‘crispness’ of the point cloud can now be expressed in
terms of the entropy of p(x).

An entropy measure proposed by Rényi [18] offers an effi-
cient way to quantify the compactness of a GMM distribution
[28]. Specifically, the Rényi Quadratic Entropy of a stochastic
variable X with probability density p(x) is defined as

HRQE [X] = − log

ˆ
p(x)2dx. (5)

Substituting the Gaussian Mixture Model of Equation 4 into
equation 5 gives

HRQE [X̂] = − log

ˆ (
1

N

N∑
i=1

G
(
x− x̂i,Σi + σ2I

))2

dx

= − log

(
1

N2

N∑
i=1

N∑
j=1

ˆ
G
(
x− x̂i,Σi + σ2I

)
G
(
x− x̂j ,Σj + σ2I

)
dx

)
(6)

By noting the following Gaussian integral identity,ˆ
G (x− x̂1,Σ1)G (x− x̂2,Σ2) dx =

G (x̂1 − x̂2,Σ1 + Σ2) , (7)

simplification of Equation 6 yields a closed-form representa-
tion for the Rényi Quadratic Entropy of the GMM:

HRQE [X̂] = − log

(
1

N2

N∑
i=1

N∑
j=1

(8)

G
(
x̂i − x̂j ,Σi + Σj + 2σ2I

))
This expression can be interpreted as an information-theoretic
measure of the compactness of the points in X̂. For the
purposes of optimization we note that log is a monotonic
operator and that the scale factor is unnecessary, so these
terms are removed to produce our point cloud quality func-
tion:

E[X̂] =

N∑
i=1

N∑
j=1

G
(
x̂i − x̂j ,Σi + Σj + 2σ2I

)
(9)

For a given value of σ, the cost function depends only on
pairwise distances between points in X̂ and the associated
global position uncertainty Σ of each point. As it stands, this
has an O(N2) evaluation cost, but an efficient approximation
is presented in Section VI.



V. EXTRINSIC CALIBRATION

Given a vehicle trajectory and recordings of multiple
2D and 3D LIDARs L1 . . . Ln, we wish to estimate the
relative locations Θ1 . . .Θn of each LIDAR. This requires
movement of the platform as objects in the environment
must be observed from at least two locations. To effectively
constrain the calibration axes, the vehicle trajectory must
include periods of acceleration in all 6 degrees of freedom.
We assume that an initial guess Θ0 is available from manual
measurements of each sensor’s location, though these need
not be highly accurate. As in [17], we make no assumptions
about the environment other than that it is generally static.

A. 3D LIDAR to Vehicle Frame Calibration

As a 3D LIDAR provides good coverage of the local
environment, the calibration of offsets between a 3D LIDAR
and the vehicle INS system is straightforward since the vast
majority of measurements to objects X are made from at least
two locations. The point cloud quality function is formed by
substituting the inverse sensor model into the cost function
of Equation 9:

E (Θ|Z,Y) =

N∑
i=1

N∑
j=1

G
(
h−1 (zi|yi,Θ)− h−1 (zj |yj ,Θ) ,

JiQiJ
T
i + JjQjJ

T
j + 2σ2I

)
(10)

The optimal offset parameters Θ̂ are recovered by non-linear
maximization of the cost function, so that

Θ̂ = argmax
Θ

E (Θ|Z,Y) (11)

As the cost function makes use of convolved Gaussians which
have continuous analytical derivatives, the optimization can
be performed using Newton’s method or other gradient-based
optimization algorithms.

B. 2D LIDAR to INS and 3D LIDAR

Once the vehicle has a calibrated 3D LIDAR, we can
use the structure of the global 3D point cloud (or locally
metrically accurate sections rendered from a relative trajec-
tory) to calibrate the 2D LIDAR. To achieve this, we use the
Jensen-Rényi Divergence [20] between the two point clouds,
which boils down to finding the entropy contribution of
only the cross-terms between the proposed 2D LIDAR point
cloud and the calibrated 3D LIDAR point cloud. Intuitively,
the optimization should not be dominated by the intrinsic
crispness of either point cloud; it is their similarity that we
wish to maximize. Given a set Z of N observations from a 2D
LIDAR, a corresponding set of global poses Y and a set X̂ of
M calibrated points from a 3D LIDAR (with corresponding
covariances Σ), taking the Jensen-Rényi Divergence between
the two point clouds leads to a cross-term entropy function,

E(Θ|Z,Y, X̂) =

N∑
i=1

M∑
j=1

G
(
h−1(zi|yi,Θ)− x̂j , (12)

JiQiJ
T
i + Σj + 2σ2I

)

The offset between the 2D LIDAR and the vehicle frame is
recovered by maximization of this cost function, so that

Θ̂ = argmax
Θ

E
(

Θ|Z,Y, X̂
)

(13)

Once again we apply a Newton method to perform the
optimization, as for the 3D LIDAR in Section V-A.

VI. COMPUTATIONAL ENHANCEMENTS

The cost function of Equation 9 is O(N2) (where N is the
size of the point cloud) as it requires the computation of all
pairwise entropy contributions. For larger environments this
becomes prohibitively expensive, so we now present a series
of computational enhancements to keep the optimization
tractable. A trivial improvement can be found by seeing that
Equation 9 evaluates contributions for each pair of points
twice - once in each direction. Computation time can be
halved by evaluating in one direction only, so that

E[X̂] = 2
N∑
i=1

N∑
j=i

G
(
x̂i − x̂j ,Σi + Σj + 2σ2I

)
. (14)

Notice that the inner sum now only covers the range [i, n].
Given that the typical values chosen for σ are small relative
to the absolute size of the global point cloud, it is likely that
the vast majority of point pairs produce negligible entropy
contributions. As we have knowledge of the location and
covariances of each point pair we can set an upper bound on
the pairwise distance above which all entropy contributions
are negligible:

G (x− µ,Σ) ≈ 0, ∀x : ‖x− µ‖ ≥ kλ1(Σ) (15)

Here we adopt the spectrum notation for eigenvalues, where
the eigenvalues of an n × n Hermitian matrix A are rep-
resented as the ordered set {λ1(A) ≥ λ2(A) ≥ . . . λn(A)}.
The parameter k is used to adjust the threshold as a pro-
portion of the maximum eigenvalue λ1(Σ). Use of this
approximation greatly sparsifies the structure of the cost
function since it is not necessary to evaluate spatially distant
point pairs. Notice that using this approximation in the RQE
cost function requires that for every pair of points (x̂i, x̂j) we
evaluate a threshold, ‖x̂i − x̂j‖ ≥ kλ1

(
Σi + Σj + 2σ2I

)
.

Since this depends on the covariance of both points, it still
requires that we visit all possible pairs. Recall that covari-
ance matrices are symmetric positive-definite and therefore
Hermitian. For Hermitian matrices the following inequality
holds [29]: λ1(Σ1) + λ1(Σ2) ≥ λ1(Σ1 + Σ2), which leads
us to a more conservative threshold,

λ1(Σi + Σj + 2σ2I) ≤ λ1(Σi) + λ1(Σj) + 2σ2 (16)
≤ 2 max (λ1(Σi), λ1(Σj)) + 2σ2

This new form allows us to obtain an efficient algorithm
for approximate RQE evaluation. First we compute the
maximum eigenvalues for all point covariances, Σi ∈ Σ
in O(N) time. We then sort the points in descending order
by their maximum eigenvalue, and iterate through them. For
each point we perform a search for all other points within



Algorithm 1 Fixed-radius approximate RQE

1: procedure RQEAPPROX(X̂,Σ, σ, k)
2: E ← 0
3: λ1...N ← [MAXEIGENVAL(Σi) | i ∈ [1 . . . N ]]
4: . Rank λ1...N so that λri ≤ λri−1

∀i ∈ [2 . . . N ]
5: r1...N ← RANKORDERDESCENDING(λ1...N )
6: for i← 1, N do
7: R← 2k

(
λri + σ2

)
. Search radius

8: for all j ∈ NEIGHBORHOOD(x̂ri , X̂, R) do
9: if λri > λj then

10: E ← E+G
(
x̂ri − x̂j,Σri + Σj + 2σ2I

)
11: end if
12: end for
13: end for
14: return 2E . The RQE result
15: end procedure

a radius Ri = 2k
(
λ1 (Σi) + σ2

)
. Finally, we evaluate the

entropy contribution between x̂i and all neighbors that appear
later in the list (thus having smaller maximum eigenvalue).
Crucially, this ensures that entropy contributions are com-
puted in one direction only, and that the search neighborhood
is monotonically decreasing as evaluation of the cost function
progresses. Algorithm 1 shows the key steps.

Note that two components of this algorithm are particularly
suited for the application of tree-based data structures; the
eigenvalue ranking function r (i) can be efficiently generated
using an O(N logN) sort, and the point cloud X̂ can be
stored in a k-d tree which allows fixed radius neighborhood
searches in worst-case O(N2/3 + p) time, where p is the
number of neighbors retrieved. For large datasets, these tree-
based representations provide significant computational sav-
ings over exhaustive searching of the point cloud, delivering
a cost function that may be evaluated in O(N logN+N5/3+
Np̄) time, where p̄ is the mean neighborhood size retrieved
by the k-d tree.

VII. EXPERIMENTAL RESULTS

A. Experimental Setup

The mobile platform used for our experiments is the
Wildcat, pictured in Figure 2. Vehicle pose is provided
by an Oxford Technical Solutions (OxTS) RT-3042, which
combines inertial measurements with differential GPS up-
dates using a Kalman filter. 6-DoF pose estimates and pose
uncertainty estimates are provided at 100Hz with a stated
position accuracy of 0.4m CEP and orientation accuracy of
0.03º (1σv) in pitch and roll and 0.1º (1σv) in yaw. The Wildcat
is equipped with a roof-mounted 3D LIDAR comprising of
3 SICK LMS-151 sensors fixed to a rotating plate [19], and
a pair of front bumper mounted SICK LMS-151 sensors.
Each LMS-151 has a field of view of 270 degrees and a
measurement range of 50m with a stated accuracy of 12mm
(1σv).

The calibration experiments were conducted at the Beg-
broke Science Park near Oxford, UK. The Wildcat was driven

Figure 2: The Wildcat vehicle has a spinning 3D LIDAR on the
roof, and two 2D LIDARs on the front bumper at different elevation
angles (sensors circled in red). The INS system is mounted over the
rear axle.

multiple times around the 0.7km perimeter road, passing
natural features such as trees and hedges along with man-
made features such as buildings, car parks and road signs. No
reflective markers or other calibration aids were placed in the
environment, and the only environment-specific aspect to data
collection was the choice of collection time (to minimize the
number of pedestrians, cars and other dynamic objects in the
data). The trajectory was spliced into 20 distinct ‘locations’
and an independent calibration performed for each one, in
order to quantify the precision of our method.

Data from the INS, 3D LIDAR and 2D LIDARs was
recorded using the on-board PC and the calibration was
performed as an off-line process for convenience, though an
on-line implementation is quite possible. The core algorithm
to evaluate the cost function was implemented in C++, taking
advantage of the ‘eigen’1 library for matrix manipulation and
eigendecomposition and a k-d tree based approximate nearest
neighbor library2 for the fixed-radius search.

B. Calibration Results
Table 1 lists the extrinsic calibration values determined

for the 3D LIDAR and the downward-facing 2D LIDAR for
σ = 5mm aggregated over 20 different locations. The mean
3D LIDAR calibration was used to generate the global point
cloud for calibration of the 2D LIDAR.

Note the large difference between the manually measured
yaw angle and the calibrated yaw angle of the 3D LIDAR.
This is not due to a physical 9.6º mounting error of the base
plate; the intrinsic calibration of the 3D LIDAR performed in
[19] does not derive the angular offset between the base plate
and the encoder origin, so it manifests itself as a rotation of
the sensor frame.

Figure 3 illustrates the distribution of extrinsic parameters
across all 20 different calibration locations. To facilitate
comparison between axes, the mean value for each axis has
been subtracted.

1http://eigen.tuxfamily.org/
2http://www.cs.umd.edu/~mount/ANN/



3D LIDAR 2D LIDAR
Seed Mean Std Dev Seed Mean Std DevValue Value

xL(m) 1.13 1.153 0.004 3.3 3.269 0.020
yL(m) 0 0.000 0.001 0.67 0.761 0.013
zL(m) -1.13 -1.145 0.005 0.4 0.390 0.011
αL(º) 0 0.006 0.001 -8 -6.904 0.299
βL(º) 0 0.002 0.001 180 179.03 0.466
φL(º) 90 99.639 0.257 270 270.18 0.210

Table I: Extrinsic calibration parameters obtained by the optimiza-
tion procedure for σ = 5mm. Values are an ensemble average over
20 different locations.
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Figure 3: Calibration parameter box-plots about mean for 3D
LIDAR and 2D LIDAR for 20 different locations. The 3D LIDAR
problem is better conditioned, so the spread of calibration results is
tighter than for the 2D LIDAR.

Figure 1 presents qualitative results in the form of a
visualization of the point clouds produced by the 2D and
3D LIDAR before and after calibration. The calibrated point
cloud appears crisp and the correspondence between the 2D
and 3D LIDAR is apparent.

C. Performance

Figure 4 demonstrates how, for an 800,000 point section of
the dataset, the efficiency and accuracy of our approximate
RQE method vary with the k parameter. All experiments were
performed using a single core of a 2.2GHz Intel Core i5
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Figure 4: Accuracy of the approximate RQE algorithm relative
to the full exhaustive search, for a set of 800,000 points. The k
parameter allows us to make a smooth trade-off between efficiency
and accuracy. Evaluating the full O(N2) cost function takes over
15000 seconds, and is essentially intractable for our purposes.

processor. The exhaustive pairwise approach requires over
15,000 seconds to evaluate the RQE cost function. The
approximate method requires only 7 seconds to calculate a
cost value within 5% of the exhaustive method and only 20
seconds to evaluate a cost value within 0.1% of the exhaustive
method.

D. Discussion

In certain sections of the driven trajectory, the vehicle lost
GPS lock when it passed under trees or close to buildings
which explains some of the calibration outliers for certain
locations. Nonetheless, the results demonstrate good preci-
sion for the 3D LIDAR extrinsic calibration algorithm, with
lateral and vertical displacement tightly pinned down. The
greater variation in x (forwards/backwards) is likely down
to the manner in which the data was gathered; most of the
time the vehicle was driving straight on open road with free
space in front and behind and relatively featureless buildings
or bushes to the sides. Thus a calibration error in x simply
shifts the points in a way which does not significantly affect
the ‘crispness’ of the point cloud. Conversely an error in
lateral calibration is quickly identified by a pitching or rolling
motion, which would cause the observations of the walls
of the building to distort. The 2D LIDAR calibration is
unsurprisingly not as precise as the 3D calibration, yet it
certainly has greater precision than would be achieved by
hand. Deliberate attempts to exercise all 6 degrees of freedom
of the vehicle in a suitably complex environment may yield
greater precision.

Empirically we find that the basin of convergence for the
full RQE cost function with wide kernels is impressively
large, with successful convergence from initial guesses of
a meter away. As the σ value (and therefore the radius of
influence of each point) is reduced, the algorithm becomes



faster and the convergence basin shrinks gracefully. See [19]
for a discussion on the effect of the kernel parameter, σ.

We performed a second set of experiments where we made
no use of the measurement covariances from the INS. In
most cases precision was around 5 times lower, which clearly
shows the benefit of using non-isotropic kernels.

VIII. CONCLUSIONS

Though we obtain the vehicle trajectory using an INS,
there is no reason why it should not come from a different
source such as visual odometry or LIDAR SLAM, even if the
trajectory is only locally metrically accurate. In future work
we intend to investigate the use of other sources of trajectory
information for sensor calibration. There is also further work
to be done on intelligently choosing GMM kernel size in
the RQE cost function, to take into account the varying laser
sample density on different surfaces in the environment.

We have presented a method for fully automatic extrinsic
calibration between 2D and 3D LIDAR sensors and the
vehicle frame. Our algorithm has a principled information
theoretic basis and has only two tuning parameters. It pro-
vides significant computational savings over an exhaustive
RQE evaluation, in exchange for a graceful degradation of
accuracy and convergence basin. This rapid and repeatable
calibration in unstructured natural environments (without the
need for special calibration targets) results in a procedure
which can tractably be performed on-line. What we have
proposed and demonstrated here is in stark contrast to the
traditional approach of carrying out infrequent and expensive
manual calibrations whenever the sensors are adjusted. This
is no-hassle calibration.
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