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Abstract—This paper proposes an active learning framework
for semantic mapping in mobile robotics. In particular, our
work explores the benefits of an introspective classifier over
that of a more traditional non-introspective approach for active
data selection. We extend the notion of introspection to a
particular sparse Gaussian Process classifier, the Informative
Vector Machine (IVM), and show that the use of an IVM leads to
more informative questions being asked during active learning.
We further leverage the information-theoretic nature of the IVM
to formulate a principled mechanism for forgetting stale data.
The result is an efficient and highly effective end-to-end active
learning framework which outperforms both passive approaches
as well as active approaches based on the more commonly
used Support Vector Machine (SVM) in terms of classification
performance and learning rate on a publicly available dataset.

I. INTRODUCTION

The training of classifiers for application on large, con-
tinuous data streams is a challenging problem particularly
pertinent to mobile robotics. As we aspire to robust, long-term
autonomy, our systems have to contend with vast amounts
of data from which information needs to be assimilated. In
addition, the assumption of independent, identically distributed
(i.i.d.) data common in detection and classification tasks
is routinely violated as the dataset evolves. The ability to
efficiently and repeatedly select an informative subset of data
for further processing and, subsequently, learning therefore
becomes increasingly indispensable in mobile robotics.

For our work, the task of offline semantic mapping serves
as a concrete example. Significant progress in autonomous
driving in recent years has inspired a view that successful au-
tonomous operation in complex, dynamic environments criti-
cally depends on a-priori available semantic maps representing
ostensibly permanent aspects of the environment such as lane
markings, traffic light positions and road sign information (see,
for example, [2, 4]). Owing to their safety-critical nature, these
maps are commonly created manually specific to particular
routes [5]. This is, of course, an expensive process which
scales badly with the number of routes for which autonomous
operation is to be provided. Much, therefore, stands to be
gained by minimising human involvement in this process, thus
providing a robust and scalable solution.

A prominent approach to tackling these challenges is that
of active learning, where classification results are refined iter-
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atively by asking for ground-truth labels in ambiguous cases
and incorporating the added information into the classifier. To
the best of our knowledge this paper is the first in robotics
to present an efficient and scalable active learning framework
for the task of offline semantic mapping. Crucially, however,
our work is also set apart from the vast majority of the
related works in active learning by the unusual stance we take
with regards to uncertainty estimates in the system. Generally,
active learning relies on being able to select data for labelling
using confidence measures derived from a classifier’s output:
if the classification of a datum is insufficiently confident
it will be passed to an oracle (often a human labeller) to
obtain ground truth class information. This is then incorpo-
rated into the classifier by retraining. It has recently been
shown, however, that several of the classification frameworks
commonly used in robotics are unrealistically overconfident
in their assessment of class membership [7]. In this context,
Grimmett et al. [7] have motivated and introduced the notion
of an introspective capacity of a classification framework: the
ability to mitigate potentially overconfident classifications by
an appropriate assessment of how qualified the system is to
make a judgement on the current test datum. In this paper
we show that introspective classification harbours significant
benefits for active learning as compared to more traditional,
non-introspective approaches. In particular, the contributions
of this paper are

• the application of an active learning framework to seman-
tic mapping in robotics,

• the application of the notion of introspection to the
Informative Vector Machine (IVM) [10] as an efficient
extension to [7],

• the application of the IVM specifically to achieve in-
trospective active learning, which is demonstrated to
lead to more effective information extraction over more
traditional approaches, and

• the introduction of a principled mechanism for the IVM
to forget less important data to provide for scalable, life-
long active learning.

We apply our framework to the detection of traffic lights in
a real, third-party image dataset and demonstrate iteratively
improved semantic mapping, which makes efficient use of
available label information. A typical qualitative example of
our system output is shown in Fig. 1.
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Fig. 1: Active learning in a semantic mapping context. This figure shows semantic maps indicating the positions of traffic lights
along a street in Paris. Circles denote the locations of ground-truth traffic lights. The shading encodes the correctness of the
classification output as provided by a probabilistic classifier: red denotes the background component, green denotes the traffic
light component. False positives are shown as grey squares. From left to right, we first see a typical passive detector, followed
by our active-learning framework at epochs 0, 2, and 9 respectively. Note that in the active learning setting the shading of
the circles progresses from red to green as a greater proportion traffic lights are correctly detected with increasing confidence.
Similarly the number of false positives reduces dramatically. By epoch 2 the active learning framework already outperforms
the passive detector. In this paper we show that our formulation of an introspective active learning approach provides for more
efficient information extraction – and thus a higher learning rate – over conventional active learning approaches. (This figure
is best viewed in colour.)

II. RELATED WORKS

Active learning is an established and vibrant field of re-
search spanning a significant number of application domains.
Consequently, a variety of methods have been proposed for
selecting informative measurements for labelling and/or for
incrementally training a learning algorithm. For example,
Freund et al. [6] propose disagreement among a committee of
classifiers as a criterion for active data selection. McCullum
and Nigam [11] apply this to text classification using high label
inconsistency as a query criterion coupled with expectation
maximisation (EM) for online learning. More recently, Joshi
et al. [8] address multi-class image classification using SVMs
and propose criteria based on entropy and best-versus-second-
best (BvSB) measures based on the hyperplane-margin for
determining uncertain points. Tong and Koller [17] pick unla-
belled data for query based on minimising the version space
within a margin-based SVM formulation. Kapoor et al. [9]
propose an active learning system for object categorization
using a GP classifier where data points possessing large
uncertainty (using posterior mean and variance) are queried
for labels and used to improve classification.

Within the robotics community, active learning and directed
information acquisition has received attention in recognition,
planning and mapping tasks. For example, Dima et al. [3]
present unlabelled data filtering for outdoor terrain classifica-
tion tasks with the aim of reducing the amount of training data
to be human-labelled. The approach relies on kernel density
estimation over unlabelled data and estimating a “surprise”
score for image patches, hence only querying the least likely
samples given the density estimate for human labelling. In [13]
the authors present a learning approach for continually im-
proving place recognition perfomance by actively learning an

appearance model of a robot’s operating environment. The
method uses probabilistic topic models and a measure of
perplexity to identify least explained images which further
drives retrieval of thematically linked samples leading to an
improved workspace representation. Recent work by Tellex et
al. [16] explores active information gathering for human-robot
dialog. The authors formulate an information-theoretic strategy
for asking targeted clarifying questions to disambiguate the
robot’s belief over the mapping between phrases and aspects
of the workspace.

While, to the best of our knowledge, this is the first work in
robotics applying active learning to a semantic mapping task,
our work is also set apart significantly from prior art in active
learning in that we introduce and demonstrate the benefits of
efficient introspective active learning. In this respect, the work
most closely related to ours is that of [9] above, in which
an inherently introspective classifier is used but its use is not
motivated by its introspective qualities.

III. EFFICIENT INTROSPECTIVE CLASSIFICATION

The introspective capacity of a classifier characterises its
ability to realistically estimate the uncertainty in its predic-
tions. Grimmett et al. [7] define the introspective capacity as
a classifier’s ability to moderate its output by an appropriate
measure as to how ‘qualified’ it is to make a call given
its own prior experience, usually in the form of training
data. The intuition is that test data, which are in some form
‘similar’ to that seen in training, are classified with higher
certainty than data which are more dissimilar. This points
towards non-parametric approaches potentially being more
introspective than parametric ones, as all the training data
are available for inference in the former, whereas inference



in the latter is based on parametric models learned from
the data. Grimmett et al. [7] investigated several commonly
used classification frameworks providing probabilistic output
and found that a Gaussian Process classifier (GPC) [15]
indeed is significantly more introspective than, for example,
the more commonly used Support Vector Machine (see, for
example, [1]) with a probabilistic calibration (such as, for
example, provided by [14]).

The authors of [7] attribute this quality to a GPC’s Bayesian
treatment of predictive variance. Consider a set of training data
{X ,Y}, where X = {x1, . . . ,x|X |} denotes the set of feature
vectors and Y denotes the set of corresponding class labels.
Probabilistic predictions for a test point, x∗, are obtained
in two steps. First, the distribution over the latent variable
corresponding to the test input is obtained by

p(f∗ | X ,Y,x∗) =

∫
p(f∗ | X ,x∗, f)p(f | X ,Y)df, (1)

where p(f | X ,Y) is the posterior distribution over latent vari-
ables. This is followed by applying a sigmoid function σ(·),
which in our implementation is the cumulative Gaussian, and
marginalising over the latent f∗ to yield the class likelihood
p(y∗ | X ,Y,x∗) as

p(y∗ | X ,Y,x∗) =

∫
σ(f∗)p(f∗ | X ,Y,x∗)df∗. (2)

It is this marginalisation over all models induced by the
training set, as opposed to relying on a single minimisation-
based estimate, which accounts for an accurate estimate of the
inherent uncertainty in class distribution, and therefore endows
GP classification with a high introspective capacity.

A. Information-Theoretic Sparsification

A key drawback of a GPC is its significant computational
demand in terms of memory and run time. This is due to the
fact that the GP maintains a mean µ, as well as a covariance
matrix Σ, which is computed from a kernel function and of
size squared in the number of training samples. A number of
sparsification methods have been proposed in order to mitigate
this computational burden. For efficiency, in this work we
adopt one such sparsification method: the Informative Vector
Machine (IVM) [10]. The main idea of this algorithm is to
only use a sub-set of the training points denoted the active set,
I, from which an approximation of the posterior covariance
q(f | X ,Y) = N (f | µ,Σ) is computed. The IVM algorithm
computes µ and Σ incrementally and at every iteration, j,
selects the training point (xk, yk) for inclusion into the active
set, which maximizes the entropy difference ∆Hjk between
qj−1 and qj . As q is Gaussian, ∆Hjk can be computed by

∆Hjk = −1

2
log|Σjk|+

1

2
log|Σj−1|. (3)

The algorithm stops when the active set has reached a desired
size. In our implementation, we choose this value as a fixed
fraction of the training set.

To find the kernel hyper-parameters θ of an IVM, two steps
are processed in a loop for a given number of times: estimation
of I from θ and minimising the marginal likelihood q(y | X ),

thereby keeping I fixed. Although there are no convergence
guarantees, in practice already a small number of iterations
are sufficient to find good kernel hyper-parameters.

Importantly for our work, since inference with the IVM
is similar to that with a GPC, the IVM retains the model
averaging described in Eq. (2). We argue, therefore, that the
IVM provides a significant and well-established improvement
in processing speed over a GPC while maintaining its intro-
spective properties.

IV. SCALABLE ACTIVE LEARNING

The power of an active learning framework lies in its ability
to select a suitable training set in an application-oriented way.
It thus inherently allows the system to naturally adapt to
the non-stationarity of the data often encountered in long-
term robotics applications. The active learning framework
considered here provides for supervised learning where a
human operator furnishes class labels for selected test data
that are then fed back into classifier training to improve the
classification result of the next round. We therefore consider
progress in terms of consecutive epochs, which each consist of
(re-)training, classification and user-feedback. The implemen-
tation of a scalable active learning framework requires two
problems to be addressed: firstly, a sub-set of test data have to
be selected for re-training such that classification performance
increases in the next epoch. Secondly, measures have to be
taken that guarantee that the active set is bounded in size,
since otherwise the algorithm will sooner or later exhaust the
resources of a finite-memory, real robotic system. We now
provide details of both our data selection strategy and our
approach to forgetting (bounding the active set size), before
outlining the specific active learning algorithm employed in
this work.

A. Data Selection Strategy

The key element of an active learning algorithm is the
strategy by which a new test point x∗ is considered for re-
training. In this work we adopt a greedy strategy which simply
adds the r top-ranked data points to the classifier training set as
long as these data also exceed a threshold indicating suitability.

An intuitive and well-explored indicator of which data
might be suitable for inclusion is the classification uncertainty
associated with x∗. To characterise the uncertainty of the clas-
sification from the given class prediction z = p(y∗ | X ,y,x∗),
we adopt the measure of normalised entropy H(z), such that
for the binary case,

H(z) = −z · log2(z)− (1− z) · log2(1− z). (4)

The normalized entropy ranges between 0 and 1, with high
values representing high uncertainty.

This, indeed is central to our work. While, in principle,
any classification framework which provides a distribution
over class labels as output can be used in our active learning
framework, intuitively we expect those with more realistic
estimates of these probabilities to be more effective for active
learning. Thus, we expect more introspective classifiers to
perform better in the sense that they will ask more informative



questions, leading to a higher learning rate. In Sec. V, we
will show that this is indeed the case when comparing the
proposed framework based on an IVM with one based on a
more commonly used, probabilistically calibrated SVM.

B. Bounding the Active Set Size by Forgetting

The main problem with the active learning framework as we
presented it so far is that in theory the training set can grow
arbitrarily. The reason for this is that there are no guarantees
that the algorithm will stop asking new questions at some
point. This makes the algorithm less flexible, especially if
the input data can not be guaranteed to be within certain
locality bounds, for example in a life-long learning application.
Therefore, and for run time efficiency, we bound the size of the
training set by removing points from it when it exceeds a given
target size t. To decide which points to remove, we leverage
the information-theoretic instruments that the IVM already
provides. After each training round, we keep the entropy
differences given in Eq. (3) for all training points and sort them
in increasing order. Those training data which correspond to
the first ni − t values, where ni is the current training set
size, are then removed. Intuitively, this method discards the
data that were least informative during the last training round,
those which influence the classification performance the least.
One caveat with this method is that it assumes independence
between the training data, which is not generally given. For
example, two data may both have small individual ∆H-values,
but when removing both of them, the entropy could change
significantly. In this work we acknowledge but do not explore
this phenomenon. Instead, we note that in our experiments we
did not observe a deterioration in classification performance
when we applied our method for forgetting.

C. The Active Learning Algorithm

Algorithm 1 describes our active learning framework which,
for reasons given in Section III, uses an IVM as the underlying
classifier. It requires five different input parameters: the initial
hyper-parameters θ0 used for training the IVM, the fraction q
of active points that are used for sparsification, the batch size
b, the normalised entropy threshold ϑ that a test point needs
to exceed to be considered for retraining, and the maximum
number of questions r that the algorithm may ask. The latter
is intended to minimise nuisance to a human operator due
to being asked too many questions. The sub-routines in
the algorithm are explained as follows. TrainIVM uses the
current training set, the active set fraction q, and the initial
kernel parameters to find optimal kernel parameters θi+1 and
an active set Ii+1 as described in Sec. III-A. Throughout this
work we employ a squared exponential kernel with additive
white noise, such that

k(xi,xj) = σ2
fe
−

(xi−xj)
2

2l2 + σ2
nδij , (5)

where δij is the Kronecker delta, and θ = {σ2
f , l, σ

2
n} are

the signal variance, the length scale, and the noise variance.
IVMPrediction returns an estimate of the probability z
that the next test data point x∗ has a particular class label,
as given in Eq. (2). Based on this probability, the normalised

Algorithm 1: Active Learning with an IVM
Data: training data D = (X ,y), stream of test data X ∗
Input: initial kernel parameters θ0, batch size b, active

set size fraction q, minimal retraining score ϑ,
maximum number of questions r

Output: stream of output labels y∗

i← 0
while X ∗ 6= ∅ do

(θi+1, Ii+1)← TrainIVM(X ,y, q, θ0)
move next b test points from X ∗ into X ∗i
P ← ∅
forall the x∗ ∈ X ∗i do

z ← IVMPrediction(Ii+1,θi+1,x
∗)

s← ComputeRetrainingScore(z)
if s > ϑ then P ← P ∪ {(x∗, s)}

sort P by decreasing values of s
D+ ← ∅
for j ← 1 to MIN(r, |P|) do

(x+
j , sj)← element j of P

y+j ←AskLabelFromUser (x+
j )

D+ ← D+ ∪ (x+
j , y

+
j )

D ← D ∪D+, i← i+ 1

entropy measure is then computed. The top ranked r test data
exceeding the retraining threshold ϑ are labelled by the user
and added to the training set for the next epoch.

V. EXPERIMENTAL RESULTS

In this section we investigate the performance of our intro-
spective active learning approach in terms of learning rate, data
selection strategy, classification performance and tractability.
We compare and contrast our approach with one based on the
much more commonly used SVM classifier (calibrated to pro-
vide probabilistic output). The task we set both learners is to
detect traffic lights in a third-party image dataset. Specifically,
we use the publicly available Traffic Lights Recognition (TLR)
data set [12], which comprises 11,179 colour images taken at
25 Hz from a car driven through central Paris at speeds under
31 mph. It has ground-truth labels for traffic light positions and
subtype labels ‘green’, ‘orange’, ‘red’, ‘ambiguous’ (though
here we are only concerned with the detection of traffic lights,
irrespective of their state). As recommended by the authors
of the dataset, we disregard labels of type ‘ambiguous’ and
exclude sections where the vehicle was stationary for long
periods of time. We use data from the first 7,200 frames for
training and the remainder for testing. We compute a template-
based feature set inspired by Torralba et al. [18] which has a
successful track record in the detection of traffic lights [7].
From each of the training partition and the test partition we
extract 1,000 positive windows and 10,000 negative windows,
giving rise to 22,000 feature vectors of dimension 200.

As described in Sec. IV, our active learning algorithm is
retrained after having seen a fixed number of test points, as
opposed to running the training algorithm after every new



datum encountered. During our experiments, the classifiers
each go through 10 epochs. Every epoch consists of a training
phase, a classification phase, and a feedback phase. At the
very start of epoch 0, the classifiers are trained on a randomly
chosen 5% of the training set. During each classification phase,
the classifiers are then tested on a batch of 1,000 points
randomly drawn from the test set. Then the 10 points with
the highest normalised entropy (providing they are over a
threshold empirically set to be ϑ = 0.97) are greedily added
to the training set, ready for retraining at the start of the next
epoch. Note that each classifier (IVM and SVM) makes its own
choices regarding which points to add for the next epoch.

A. Active Learning and the Benefit of Introspection
One of the central claims of this paper is that the use

of an introspective classifier will lead to more informative
questions being asked when selecting data for human labelling
and inclusion into the training set. In order to test this claim
both an IVM and an SVM are initially trained on the same
data. Then, 1,000 new data are shown to both classifiers for
testing. Each chooses 10 data to add to the training set for the
next round, resulting in two new and different training sets:
the ‘IVM set’ and the ‘SVM set’. A new IVM and SVM are
now trained on each of the two new sets and evaluated on
a further 1,000 held out data points. This process thus gives
rise to four classifiers: two IVMs trained on data selected by
an IVM and a SVM respectively, and two equivalent SVMs.
We compute precision and recall for all four classifiers. The
results after 100 repetitions of this experiment are shown in
Fig. 2. As expected, both the IVM and the SVM perform better
when trained on the dataset chosen, introspectively, by the
initial IVM, suggesting that the questions asked by the IVM
tend to be significantly more informative. An unpaired t-test
shows this result to be significant to a level of over 99.9%. The
overall effect of introspection in an active learning setting is
therefore an increased learning rate, as shown in Fig. 3, where
the IVM learner based on a normalised entropy selection
policy outperforms the equivalent SVM based method both
in absolute terms per epoch as well as in terms of relative
increase (information gained) per epoch.

Fig. 3 further serves to justify empirically our choice of
normalised entropy as a valid criterion for data selection by
comparing it to randomly selecting new training data. Intu-
itively, both methods should improve classification by virtue
of the fact that they increase the training set size. However,
the results indicate that for both the IVM and the SVM,
using normalised entropy leads to more rapidly improving
classification performance.

B. Tractability
Our work aims to contribute an introspective active learning

algorithm that is efficient in terms of computational effort
and scalable with respect to its memory requirements. In
this section we investigate the efficacy of the mechanism we
have put in place to provide this tractability: forgetting. In
experiments thus far new training data were added in each
epoch. The IVM active set size is a fixed proportion of the
training set size, q = 0.2. This has the benefit of increasing
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Fig. 2: The benefit of introspection. Data selected by an
introspective classifier lead to an improved learning rate in
terms of precision and recall for both and IVM and and SVM
over that selected by a non-introspective classifier. Results are
shown for 100 experimental runs. See text for more details.
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a normalised entropy-based data selection strategy (IVM+NE)
consistently outperforms all other active learning variants in
terms of overall performance and learning rate.

classification performance, but to the detriment of processing
time. In the context of a life-long-learner, this is not a scalable
solution.

We therefore elect to cap the size of the training set at 550
data, which in turn makes the computational effort constant at
every epoch. This IVM+forgetting learner can add new data,
but only by simultaneously discarding a similar number. Fig. 4
(left) shows the level of sparsity for three different active
learners: IVM, SVM, and IVM+forgetting. The SVM sparsity
is unbounded, and so grows rapidly with training set size.
The IVM active set size also grows at 20% of the training
set, but the IVM+forgetting is constant past epoch 2. Fig. 4
(right) shows the corresponding classification performance as
characterised by the f1 measure. It indicates that, in this case,
the IVM+forgetting mechanism performs no worse than the
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performance with and without forgetting. For corresponding SVM results, see Fig. 3.

original IVM.

VI. CONCLUSION

This paper investigates the benefits of an introspective active
learning framework in the context of a semantic mapping
task in mobile robotics. In contrast to related works on active
learning our approach leverages an introspective classifier for
data selection, which moderates its uncertainty estimates by
accounting for the predictive variance associated with the
datum. This results in increased learning rates compared to
more commonly used, non-introspective approaches, since a
more accurate estimate of predictive variance leads to more
effective use of class information contained in the data. This
is a key contribution of our work.

Efficiency and tractability are achieved by several mecha-
nisms: firstly, we extend the argument for the introspective
qualities of a GPC to a sparse GPC variant, the IVM. To
the best of our knowledge this is the first work to consider
introspective - and more specifically, IVM-based - active
learning. This, therefore, constitutes another key contribution
of our work. Secondly, we introduce an information theoretic
mechanism for forgetting, which bounds the size of the IVM
active set and thus leads to constant time inference. This was
found to perform well on the data used in this work and,
overall, results in an efficient and effective active learning
scheme, which outperforms more traditional approaches in
terms of learning rate and absolute classification performance
per epoch.
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