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Abstract— Autonomous vehicles require an accurate and
adequate representation of their environment for decision
making and planning in real-world driving scenarios. While
deep learning methods have come a long way providing accurate
semantic segmentation of scenes, they are still limited to pixel-
wise outputs and do not naturally support high-level reasoning
and planning methods that are required for complex road
manoeuvres. In contrast, we introduce a hierarchical, graph-
based representation, called scene graph, which is reconstructed
from a partial, pixel-wise segmentation of an image, and
which can be linked to domain knowledge and AI reasoning
techniques.

In this work, we use an adapted version of the Earley
parser and a learnt probabilistic grammar to generate scene
graphs from a set of segmented entities. Scene graphs model the
structure of the road using an abstract, logical representation
which allows us to link them with background knowledge.
As a proof-of-concept we demonstrate how parts of a parsed
scene can be inferred and classified beyond labelled examples
by using domain knowledge specified in the Highway Code.
By generating an interpretable representation of road scenes
and linking it to background knowledge, we believe that
this approach provides a vital step towards explainable and
auditable models for planning and decision making in the
context of autonomous driving.

I. INTRODUCTION

Autonomous vehicles need to perceive their surroundings
accurately for safe decision making and navigation in com-
plex urban environments. These highly-structured environ-
ments can be described by hierarchical graphs containing se-
mantic and spatial constraints. Such graphical representations
can be employed for (cost-based) planning, inferring object
classes, or reasoning about missing or occluded parts. More
importantly, they provide a way to explain the behaviour
and decision making of the vehicle which is paramount
for real-world deployment and adoption. In this paper, we
introduce such a representation, which is generated from
partially segmented scenes and allows us to reason about
the environment.

Recently, deep semantic segmentation networks have
achieved impressive results for pixel-wise scene understand-
ing of images [1], [2]. However, these methods suffer from
interpretation and debugging difficulties and often fail to
include prior information or dependencies/constraints (in
the output space). More importantly, they do not naturally
support high-level reasoning which is required for planning
and navigation.
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Fig. 1. Hierarchical scene graph representation (top) that was reconstructed
from a partially segmented image (bottom). In this work we present a
probabilistic scene parser that reconstructs the layout of road scenes from
partial segmentations of road markings and curbs.

In contrast, all important (static or dynamic) objects in-
fluencing the decision making are detected separately in the
mediated approach [3], [4]. This produces a world represen-
tation which can be employed more directly for planning and
navigation. Interestingly, most approaches focus on detecting
a single type of object or perform detection of several types
of objects independently. Thereby they neglect that urban
traffic scenes are highly structured and that there exist spatial
and semantic constraints between objects, since these scenes
are built and function according to specified rules.

Therefore, we introduce scene graphs, a hierarchical,
graph-based representation, to model road layouts (i.e. lane
geometries). Fig. 1 shows an example scene graph for a
segmented road scene. We focus on the reconstruction of
scene graphs from partial, pixel-wise segmentation. In par-



ticular, we consider segmented entities of road markings and
curbs to reconstruct the semantic structure of road scenes.
The road layout is reconstructed from these entities using
both a learnt probabilistic context-free grammar and a learnt
spatial, relational model. A road layout is chosen from a
set of competing hypotheses by estimating the maximum a
posteriori probability (MAP) of each model. Furthermore, we
show that scene graphs can be refined by linking them with
domain knowledge about the road construction, e.g. from the
Highway Code.

In this paper, we make the following contributions:
• we introduce scene graph, a formal logic-based descrip-

tion of road scenes using a graph-based representation;
• we present an approach based on dynamic programming

for parsing road scenes and reconstructing scene graphs
from partial, segmentations and a learnt probabilistic
grammar; and

• we demonstrate how scene graphs can be further refined
and used for reasoning when linked to domain knowl-
edge.

The remainder of the paper is structured as follows. We
first discuss related work in Sec. II. In Sec. III, we provide
and overview of the approach and explain how scene graphs
are generated from both object segmentations and learnt prior
models. In Sec. IV, we explain how scenes are partially
segmented using deep networks for road markings and curbs.
In Sec. V we explain how we represent a scene, learn both
a probabilistic context-free grammar and a spatial relational
model to describe scenes, and how scenes are parsed and
interpreted using an adapted version of the probabilistic
Earley parser. In Sec. VI, we showcase and discuss several
examples of scene graphs and explain how they can be
further refined. Lastly, we discuss possible application in
Sec. VII before we conclude in Sec. VIII.

II. RELATED WORK

In this section, we review different approaches for scene
understanding in the context of autonomous vehicles. We
mainly focus on graph based methods, since these are closest
to the scene graph.

1) Graph-based Approaches: Representing the contents
of scenes using graph-based approaches is not novel. In the
context of urban traffic scenes, however, there exist only a
few papers that take the spatial and semantic constraints into
account by introducing graphs.

In [5], different sensor modalities and hierarchical graphs
containing relational knowledge are fused to model traffic
scenes. The output is still a pixel-wise segmented image not
directly employable for automated driving.

Several other papers implement more high-level reasoning
to infer the lane geometries. The authors of [6] introduce a
theoretical, hierarchical framework including uncertainties to
reason about multiple hypotheses for the lane geometry. Sim-
ilar methods that work on real-world data are introduced in
[7], [8]. From linear patches of lane markings a graph is built
including their spatial relationship represented by continuous
distributions and non-parametric belief propagation is used to

infer the different lanes in the scene. However, these methods
are not guaranteed to work in urban environments.

In [9], the lane separators are modelled as latent variables
without linear constraints so that the framework becomes
applicable to more complex scenes. By encoding geometric
relationships at different levels (i.e. lane markings, lane sep-
arators, lanes, and road), the authors show that they improve
inference of the lane geometries even in case of many false
detections at the root nodes. This work is similar to our
approach as we also represent the geometric relationships
of different entities according to the hierarchy.

The driving rules of a traffic scene are given by the type
of road markings that often appear in similar configurations.
Therefore, [10] connects them as a graph and optimises a
CRF with handcrafted spatial features of the road markings
to predict their class. Similarly, we learn a distribution of
geometric and relation features to predict and evaluate the
type and the role of an entity within the hierarchy.

Work by [11] is most similar to our approach. In their
work, they learn a probabilistic grammar based on a set
of features and use a dynamic programming approach to
generate a scene graphs which describe the furniture layout
of synthetic indoor scenes. Whereas their approach considers
full object knowledge from CAD models, our approach
reconstructs scenes from partial observations of real-world
environments.

2) Mediated Approaches: Proposed solutions differ
widely in terms of the objects that are taken into account,
used sensors, required computation time, usage of prior in-
formation, and abstraction level of the output. In general, our
approach is flexible to consider different kinds of information
from various resources. In this work, we consider segments
of road markings and curbs as input.

In [12] a coarse road geometry/scene analysis is estimated
from the acquired semantic segmentation. This framework is
significantly extended in [3] where the precise intersection
geometry is inferred from vanishing points, semantic labels,
and tracklets of traffic participants. However, these methods
cannot be used for navigation directly as they do not map
to precise lane geometries and do not include the road rules.
The former is solved in [13] by looking more closely into the
tracks of the surrounding vehicles. Our also approach models
the geometry of high-level concepts based on the low-level
image segmentations. Thereby, information about lanes and
boundaries can potentially be used for navigation planning.
Through advancements in deep learning we have now come
to a point where even reasoning of the space behind occluded
parts of the images is possible for inferring road geometries
[14]. In future work, we also plan to extent our work in this
direction.

3) Deep Networks: All of above mentioned methods
require handcrafted features/probabilities in some way to
optimise the graph. It has been shown by now that deep
networks with learned feature maps achieve much better
semantic (instance) segmentation [1], [2] and thus under-
standing of the scene. Besides, they are able to generalise
better when auxiliary output tasks are employed [15]. How-
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Fig. 2. Scene parsing approach based on road marking and curb detections. The approach has two main steps: (1) given an image, road marking and curb
segments are detected by deep networks, and (2) given a set of detected segments, the scene is parsed using an adapted version of the Earley algorithm
and a learnt probabilistic grammar. The resulting scene graph is integrated with domain knowledge and can used for planning and decision making.

ever, these networks suffer from interpretation and debug-
ging difficulties and often fail to include prior information,
high-level reasoning, or constraints (in the output space).
Recently, some works have tried to improve some of these
disadvantages by introducing spatial and semantic reasoning
frameworks that can be trained in an end-to-end way [16]–
[18]. In this work, we simply use deep networks as an
effective way for segmenting an input image. However, our
future goal is to extend this approach and to feed geometric,
spatial, and semantic constraints back to the deep networks
during learning.

III. APPROACH OVERVIEW

Our approach constructs a symbolic, graph-based descrip-
tion of the road layout given an image of a road scene (see
Fig. 1). When interpreting the image, our approach considers
two types of information: object detections and common road
configurations based on learnt prior models.

Fig. 2 depicts the overall pipeline of our approach. We first
segment the image by detecting curbs and road markings
using trained deep networks (Sec. IV). These pixel-wise
segmented images are clustered and the resulting entities are
considered as input for a parsing process which generates
a hierarchical scene representation (scene graph) (Sec. V).
The parser takes object detections (and their uncertainty)
and prior information of road scenes into account. Our
probabilistic approach is in particular suitable for integrating
incomplete and uncertain information from object detection
pipelines. Each valid parse tree is scored by a probability
which allows us to disambiguate between alternative repre-
sentations. Intuitively, the score captures three aspects: (1)
hierarchy (2) geometric features of detected entities, and (3)
spatial relations between entities in the hierarchy. As we
represent scene graphs using logical representations they can
be linked to background knowledge and used for auditable
planning and decision making.

IV. SCENE PERCEPTION

This section describes how road markings and curbs are
detected in a given image of a road scene. The resulting
pixel-based images are clustered and segmented entities
are obtained which are considered as input for the scene
interpretation process described in Sec. V.

A. Road Marking Detection

Road markings are a critical component for (autonomous)
driving especially in urban environments. The road rules
are captured by their underlying meaning and they guide
all traffic participants through potentially dangerous situa-
tions. Therefore, real-time detection and interpretation of
road markings is an important cue for high-level scene
understanding and aids planning and decision making.

Detecting all painted road markings (not just lane sepa-
rators) on the road surface, which dictate the traffic rules
for that particular urban setting, is a challenging problem
for several reasons. Firstly, there are visual challenges such
as occlusions, varying lighting, and changing weather condi-
tions. Secondly, road markings vary from country to country
and are often degraded. Lastly, there are no large datasets
available for training with accurate ground-truth labels for
road markings.

Road marking detection in images can be seen as a
semantic segmentation problem. State-of-the-art methods for
these tasks implement deep networks, which are able to learn
specific scene context and thereby cope with the challenges
stated above, as long as sufficient training data is available.
Manually generating training data is extremely labour expen-
sive, because of the required pixel-level detail in combination
with the aforementioned visual issues. Therefore, we create
road marking annotations in a weakly-supervised way, by
leveraging complementary sensor modalities (i.e. LiDAR).

For generating the annotations, we exploit the property that
road markings are highly reflective and must lie on the road
surface. Firstly, we utilise the LiDAR point cloud to coarsely
segment the road surface from the image. A dense CRF is
then optimised to identify the road marking image pixels by



Fig. 3. Road marking detection performed by a deep semantic segmentation
network in real-time. Before the detections are employed to generate the
scene graph, they are mapped to top-down view.

corresponding them with the high-reflectance LiDAR points,
which are not affected by varying lighting.

We employ these annotations to train a deep semantic
segmentation network (inspired by U-net [19]) for road
marking detection using only a monocular camera. The
results demonstrate that the network segments the road
markings from the image without any preprocessing steps,
as shown in Fig. 3.

We direct the reader to [20] for a more detailed description
of this method.

B. Curb Detection

Curbs (road boundaries) play an important role for au-
tonomous cars as they intentionally and legally delimit
driveable space. Curb detection using monocular images is
a challenging problem. Road boundaries have narrow and
long shapes which are not easily detectable. Deep networks
often require large amounts of training data to obtain high-
performance, well-generalised models. Due to colour, ap-
pearance, shape, perspective, illumination and background
clutter, the training data should incorporate great variability
changes. However, image by image hand labelling of the
ground truth data is a time-consuming process. To avoid this
problem and obtain a large amount of training samples, we
generated 3D points cloud from 2D laser data and annotated
points in the point cloud corresponding to road boundaries.
Note that the 2D laser is attached vertically to the rear of a
test car, which makes road boundaries easy to spot and anno-
tate in the point cloud. The annotated points are projected to
images of forward facing camera of the car. Lines are drawn
between consecutive points to annotate road boundaries in-
between the points. This way, hundreds of labelled images
are obtained within an hour (approximately 750 images). A
10 kilometres dataset from the Oxford RobotCar Dataset in-
troduced by [21] was annotated to generate several thousand
semi-annotated masks. A vision based localiser was used to
boost the number of training images by projecting labels
from the annotated dataset to other traversals. However,
some of the generated curbs masks contain annotations for
occluded areas of curbs, such as over parked cars. To remove

Fig. 4. Curbs are detected by a fully convolutional network. The network
can detect visible curbs without making any assumptions about their 3D
structure, shape or appearance.

those redundant annotations, we trained U-net [19] with the
raw masks and then run the inference with RGB images from
the training data to generated output of detected curbs. The
trained U-Net model can segment visible areas of curbs, but
produces blurry outputs over occluding obstacles. Applying
a threshold to the outputs gives us masks for detected visible
curbs. We obtain labels for visible curbs by applying an AND
operation between the thresholded outputs and raw labels.
Finally, we train the U-net with visible curbs only (Fig. 4).
A detailed description of our work on curb detection is given
in [22].

V. SCENE INTERPRETATION

In the previous section, we explained how an input image
is segmented into two classes: road markings and curbs.
Before we describe how we learn a probabilistic grammar
to parse these segmentations and construct a scene graph
from them, we first introduce scene graphs formally.

A. Representation

Our motivation with this work is to support autonomous
vehicles in their decision making, planning, and explanation
generation. In particular, we aim at a representation that is
interpretable (by machines and humans alike), extendable,
and suitable for different inference tasks. To this end, we
introduce scene graphs as a way to represent road scenes
semantically using well-defined concepts and relations which
are grounded in the vehicle’s perception system.

Formally, scene graphs are represented in Description
Logic; an overview is given in [23]. A scene is described by
a set of instances of meaningful classes and their relations.
For example, a scene is composed of a road which has
two curbs and several lanes which in turn are bounded by
several road markings. This hierarchical decomposition of a
scene is important as we will explain later in Sec. V-C. In
general, however, scene graphs can be linked flexibly to other
information resources due to its underlying logical represen-
tation as we have shown in previous work [24]. For example,
they can be linked to the outcome of detection and tracking
algorithms of traffic participants and/or domain knowledge



TABLE I
SCENE GRAPH TAXONOMY

Class Description

Scene Root node of a scene graph. A Scene has at least one road
(Road), but can have multiple.

Road A road is delimited by at most two curbs (Curb) and has
one or more lanes (Lane).

Curb A curb is composed of one or multiple curb segments
(CurbSeg).

Lane A lane is bounded by road markings along the carriage
way (RMAlong). Additionally, lanes can have road mark-
ings that are across the carriage way (RMAcross), and
other road markings such as symbols and text (RMOther).

RMAlong Road marking along the carriage way.
RMAcross Road marking across the carriage way.
RMOther Road marking of a symbol or text.
RMSeg A road marking segment is a set of clustered pixels

detected by the network described in Sec. IV-A. It can be
one of three types: RMALong, RMAcross, or RMOther.

CurbSeg A curb segment is a set of clustered pixels detected by
the network described in Sec. IV-B.

defined by the Highway Code. This kind of knowledge can
be encoded as logical rules within Description Logic.

A brief description of the most important concepts is
given in Tab. I. It is important to note that entities that
represent road marking segments (RMSeg) and curb segments
(CurbSeg) are both linked to the output of the segmen-
tation networks described in the previous section. Hence,
instances of these types are grounded in image space. This
is important as it allows us to reconstruct concepts higher-
up in the hierarchy (e.g. Lanes) based on those low-level
segmentations. In particular, we represent detected segments
using axis-aligned and minimal area bounding boxes. More
high-level concepts are represented as the bounding box of
their children. Note that all other concepts are assigned based
on the learnt grammar.

In the next section, we explain how we learn a probabilistic
grammar for road scenes based on the introduced concepts.

B. Probabilistic Grammar

We adopt the approach by [11] and learn a probabilistic
context-free grammar for road scenes from a set of annotated
examples. To this end, we consider a set of scene graphs
that have been manually annotated according to the concepts
introduced in the previous section and based on the detec-
tions of road markings and curbs (Sec. IV). We learn the
structure of the production rules and their probability from
the frequency observed in the annotated set. The production
rules are shown in Tab. II1

For each annotated scene graph we compute a set of
geometric properties and spatial relations between instances
that share the same parent node. We start the computation
at the leaf nodes and propagate the results up the hierar-
chy. In our implementation, we consider several geometric

1Note, that we have omitted the learnt probabilities as we have learn
different rules for different cardinalities.

TABLE II
LEARNT PROBABILISTIC CONTEXT-FREE GRAMMAR

Production rule

Scene → Road
Road → Curb Lane
Lane → RMAlong RMAcross RMOther
RMAlongCW → RMSeg
RMAcrossCW → RMSeg
RMOther → RMSeg
Curb → CurbSeg

properties including: length, width, and area for both axis-
aligned and minimal bounding boxes. Furthermore, we con-
sider the ratios between these properties to compute scores
for the axis-alignedness, alongness, and acrossness of an
instance. We also consider spatial relations between instances
that share the same parent node (e.g. two boundaries of
a lane). For these instances, we compute several relations
including: the connectivity of the bounding boxes based
on the Region Connection Calculus [25] and their relative
angle and distance based on the Ternary Point Calculus
[26]. In total we consider 18 geometric properties and 14
spatial relations. However, the details of how these properties
and relations are not described here for brevity. Overall,
the individual features are not critically important (and can
be replaced). However, they provide us with the ability to
assess the overall probability of the scene by considering all
instances of a tree t given its geometric description and its
relations. For each geometric property and relation we learn a
probability distribution, namely Pgeo(x) and Prel(x), based
on the annotated data using Kernel Density Estimation (based
on Gaussian kernels). By computing the probability of each
individual property and relation we can compute the overall
probability of a tree based on the grounded representation as
follows:

P (s|t, g) =
∏
x∈t

Pgeo(x)Prel(x) (1)

whereby s denotes a scene, t a tree, and g a grammar.

C. Scene Parsing

To reconstruct the layout of a road scene we use an
extended version of a probabilistic Earley parser [27]. In
general, the Earley algorithm is a dynamic programming
approach that is able to handle ambiguous grammars. It
combines top-down predictions and bottom-up recognitions
to effectively parse its input. The algorithm has three main
steps: predict, scan, and complete. In the predict step, rules
are expanded according to the grammar. This step guides the
overall search in a top-down way (initially the root node is
expanded). In the scan step, the next input symbol is read and
compared to the next one that was predicted. If a production
rule is completed, the complete step has found a valid parse
of a subtree and overall search is advanced. This type of



hybrid search using top-down down reasoning and bottom-
up perception for scene understanding can be very effective
in real-world scenarios as we have shown earlier [28].

Our adapted version of the parser takes the learnt proba-
bilistic grammar and a sequence of curb and road marking
segments as input. The segments form the lexicon of our
grammar and their probabilities are determined according to
Pgeo(X) as defined in the previous section.

After the parser has recognised the input, a forest of parse
trees can be retrieved. In our implementation we use a shared
packed parse forest (SPPF) to store the ambiguous parse trees
[29]. Parse trees are evaluated according their probabilities
computed as follows:

P (t|s, g) = P (t|g)P (s|t, g) (2)

whereby t denotes a parse tree, s the scene, and g the
grammar. P (t|g) is the product of all probabilities according
to the production rules and P (s|t, g) represents the data like-
lihood of seeing this scene given the tree and the grammar.
Eventually, the best parse tree t∗ can be chosen according to
the overall probability:.

t∗ = arg max
t∈T

P (t|s, g) (3)

whereby t denotes a parse tree in the parse forest T , s the
scene, and g the grammar.

VI. EXPERIMENTS

In this section we present the experimental setup and
discuss qualitative results of our approach.

A. Experimental Setup
In this work, we evaluated the overall pipeline as depicted

in Fig. 2. A given input image is processed by the road
marking and the curb detection networks. The output of
these networks is a probability distribution of segments in
the image space. Using Inverse Perspective Mapping (IPM),
we transform each of the segmented images into a birds eye
view (see Tab. III). For each class, we then find clusters
that represent these entities by their bounding boxes and
compute a set of geometric features. Based on their visual
and geometric probability these segmented entities are added
to the lexicon of the grammar.

The Earley algorithm predicts the structure of the scene
based on the learnt grammar and parses the segments from
left to right in image space. We evaluated the generated parse
trees according to their probability. However, given the high
ambiguity of rules in the learnt grammar, we have selected
a few examples manually (Tab. III). In the next section
we discuss several theses examples and point to interesting
and/or problematic aspects.

B. Qualitative Results
Tab. III depicts the qualitative results for several scenes.

The table shows the input image; the different segments
produced by the networks and the clustering step (road
markings in green; curbs in orange); and the generated scene
graphs (or parts of it).

Scene (a) In this scene (see Fig. 1), the segmentation
captures curbs on both sides of the road as well as road
markings along the carriage way. However, a stop line as
well as the bicycle symbol are not detected. By integrating
some domain knowledge from the Highway Code in form of
rules, we can refine the scene graph by inferring that there
is a bicycle lane on the left-hand side as the lane’s width is
too narrow for a standard car lane. These rules are encoded
within Description Logic and can infer classes which were
not labelled in any of the examples. However, we are not
able to infer the same on the right-hand side as we do not
have any meaningful segment that describes the boundary
of the bicycle lane on the right-hand side. The detection of
road markings and curbs in roads other than the main road is
typically more challenging as they are perceived at the edge
of the camera’s field of view.

Scene (b) In this scene the parser detects two road
markings on a lane. Given their size and spatial relation we
can infer that these entities are road markings that introduce
speed humps on the road.

Scene (c) This scene is interesting as there are curb
structures in the middle of the road. Furthermore, the left
lane has two stop-lines. However, it is important for an
autonomous vehicle to infer that is has to stop in front
of the first one. Note, that such an inference can only be
drawn when local context of the scene is considered, but not
from the single segment alone. These are situations in which
we believe that background knowledge and AI reasoning
techniques can have a great impact when interpreting scenes.

Scene (d) In this scene both curbs and road markings are
well detected (except for the degraded dotted line across the
road). However, this scene provides an interesting and rare
case as the road markings for the car (zig-zag line) and the
bicycle lane overlap. Momentarily this cannot be represented
by our grammar as we made the assumption that lanes are
next to each other.

In future work we will also perform a quantitative analysis
of our approach, in particular with respects to its real-time
capabilities. In general the Early algorithm is well-suited for
real-time applications as its worst time complexity is O(n3).
However, retrieving and processing a potential exponential
number of parse trees might be challenging.

VII. DISCUSSION

In this section we would like to provide a brief overview
of the application space of the scene graph.

1) Urban traffic scenes are highly structured since they
are built consistently according to specified road rules. By
incorporating these rules, certain nodes in the scene graph
can be classified. For instance, a bicycle lane is easily
distinguished from a car lane by comparing the width. In
this way, the scene graph allows for classification of road
objects/segments without requiring expensive manual labels.

2) The segmented scenes given by the scene graph can
be employed to bootstrap deep learning models. As stated
above classification labels which can be used for training



TABLE III
QUALITATIVE RESULTS

ID Original (RGB) Segments (IPM) Scene Graph (partial)

(a)

(b)

(c)

(d)

purposes can be acquired without expensive manual anno-
tation. Furthermore, the scene graph provides an informed
indication about the likely location of road objects (e.g.
curbs, road markings). This could be used when training
deep networks for instance to guide attention or to adjust the
loss and thereby improve performance. In this way, important
prior information about the environment is included in a deep
learning approach (which is non-trivial).

3) Scene graphs can be used for (cost-based) planning for
autonomous vehicles as they reason about the lane geometry
and can infer road marking classes based on contextual
spatial relations. For instance, a solid boundary of a bicycle
lane should only be crossed in case of emergency. Besides,
actions are now interpretable because we can review the

representation inferred from the segmentation.
4) The scene graph is able to predict/hallucinate miss-

ing objects because of the learned spatial and semantic
constraints. For example, two-way roads with missing lane
markings in the middle will not fit the learned representations
(nor the road rules). The scene graph can predict the most
likely lane geometry in that case.

We think that these examples are interesting uses cases
with exciting technological challenges for applications of
scene graphs.

VIII. CONCLUSION

In this paper we presented an approach for scene under-
standing of complex urban environments. To this end, we



proposed scene graph, a hierarchical, graph-based represen-
tation, and a parsing pipeline that generates and evaluates
scenes graphs based on partially segmented images, a learnt
probabilistic grammar, as well as geometric and relational
models. Furthermore, we have presented and discussed sev-
eral example scenarios in which scene graphs can provide
meaningful insights in the overall structure of the environ-
ment. The construction and interpretation of interpretable
and auditable scene graphs can play essential role in many
tasks of autonomous vehicles including planning, decision
making, and explanation generation. Hence we believe that
this functionality can have wide impact in the context of
autonomous driving and mobile robotics in general.
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