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Abstract— This paper presents a universally applicable
graph-based framework for the navigation of warehouse robots
equipped with only monocular cameras. We strongly advocate
the use of relative pose information stored in a topological
map, rather than a globally consistent metric representation of
the environment. We show how multiple traversals of adjacent
workspaces can be naturally “stitched” together in the course of
a typical warehouse picking and shelving schedule to create a
network of reusable paths in which the robot can efficiently
localise and plan new routes. This allows us to command
the robot to return to any of the previously visited locations
not necessarily through the same route that we taught it.
Unlike state-of-the-art teach and repeat systems using stereo
vision, our approach exploits the strongly planar nature of the
data obtained from a downward-facing camera, and creates
odometric constraints by tracking the perceived texture of the
floor and computing a simple homography. To demonstrate the
robustness of our system, we validate our approach on datasets
collected over a week-long period within a challenging and
representative environment in the form of a warehouse shelving
area.

I. INTRODUCTION

Robots operating in warehouse environments lack access
to a global position system (GPS). Retrofitting these environ-
ments with infrastructure to accurately locate and position
robots may be undesirable both in terms of cost and lack
of flexibility in the face of operational rearrangement of the
business unit. The manual creation and automatic reuse of
paths through the robot’s environment is known as teach and
repeat (T&R). T&R alleviates the requirement for outright
simultaneous localisation and mapping (SLAM), which may
suffer from the size of the environment, and provides a
natural framework for learning appropriate behaviour in
environments the robot may repeatedly traverse.

This paper describes a framework for warehouse naviga-
tion, using monocular cameras mounted on the robot and a
T&R operational strategy, which is suitable for a wide range
of sensor modalities. During a learning phase, the robot is pi-
loted along a route within a section of the warehouse, in this
way being educated by operators during their normal picking
and shelving tasks. The system encourages a comprehensive
and interconnected representation of the warehouse in the
form of a large network grown over the course several such
operator-led missions. During the repeat phase, the robot
localises within this network of submaps using a simple and
efficient search in the local graph neighbourhood. Planning
in the network using this same search algorithm allows the
robot to autonomously navigate from one point of interest
to another, not necessarily via a path that it was previously
taught.
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Fig. 1. A typical warehouse environment. We espouse a topological
framework which stores representations for places on map (red) and query
(blue) nodes. To enable robust navigation in warehouse environments, we
dictate some requirements for a characterisation of a place-to-place relation
stored on map (black), query (green) and loop closure (purple) edges.

The paper is organised as follows. Section II gives a brief
overview of the state-of-the-art in mapping and path fol-
lowing. Section III provides the operational and algorithmic
details of our approach. Section IV details and evaluates
some pertinent real-world examples which are concluded in
Section V to indicate the promise of the proposed system
in enabling large-scale, infrastructure-free warehouse navi-
gation.

II. RELATED WORK
Order-picking is responsible for more than 60% of oper-

ational costs in goods distribution [1], yet existing systems
for navigation in warehouses impair flexibility by embedding
infrastructure into the workspace, for example by following
a series of barcode stickers on the floor [2].

For mobile robots operating in large or dynamic envi-
ronments with only onboard sensors, an intuitively sound
behaviour would consist in memorising some key char-
acteristics of an already driven path, and to utilise these
references as checkpoints for a future navigation task along
a similar route. Scenarios in which this approach would
be useful are numerous and extend beyond warehousing,
including planetary sample return missions [3], charging
station homing for electric wheelchairs [4], and autonomous
underground tramming for mining [5].

In [5], laser range finder data and data from odometric
sensors were fused to build an atlas of metric maps. Laser-
based systems such as these are well suited to indoor or
underground structured environments in which it can be
guaranteed that any walls will be within the range of a laser
sensor. Additionally, recent work by [6], in which data from a
spinning three-dimensional laser scanner and a system based
on iterative closest point matching take into consideration
changes in ambient lighting, further enhanced the robustness
of laser-based systems. Cameras however, and particularly
monocular sensors, present a low-cost alternative to expen-
sive laser scanners, especially considering the density of



information they provide. Cameras capture the geometry and
appearance of a scene unique to a particular viewpoint and
thus offer robustness to small changes in the world.

An early maxim for vision-based map building was pro-
posed in [7], admitting to the inevitable global inconsistency
of maps in the face of sensing uncertainty, but calling for
the recognition that maps need only be locally consistent
to enable autonomy. Subscribing to this notion, early visual
teach and repeat (VT&R) work centred around the idea of
a view-sequenced route representation [8] that was purely
topological and required only matching between the current
view and the memorised sequence using template matching
by correlation techniques. In [3] the effectiveness of a hybrid
topological/metric representation was exemplified by repeat-
ing 32 km of routes taught with a stereo camera with 99.6%
autonomy, all without the use of a global positioning system
(GPS). The work of [9] built the visual memory for path
following in a purely metric fashion, estimating the poses of
a subset of the camera positions with respect to the reference
sequence and a set of landmarks in a global coordinate
system. In contrast, our system is purely topological, and
we show how the robot can effectively navigate around
its environment without access to a metrically accurate
representation of that environment, so long as it has access to
accurate frame-to-frame characterisation of its motion, which
we formalise and demand certain requirements of.

VT&R has the prerequisite of visual navigation, which
appearance-based techniques approach by comparing large
portions of the input image with prototype images captured
during the teach pass. An impressive demonstration of such
a system was shown in [10] in which a template from each
new image was correlated in the Fourier domain in order
to recover the difference in relative orientation, and thus the
desired steering angle. They reported more than 18 km of
tests using an omnidirectional imaging system.

In contrast, algorithms that use sparse image features but
rely on planarity of the camera’s motion can be successful
and can reduce the complexity of the problem, which is espe-
cially useful in systems such as ours to which a downward-
facing camera provides only floor imagery. The method
in [11] consists in tracking visual features in panoramic
views of the environment and uses only the bearing of the
measurements to develop a control law to drive the robot
between viewpoints instead of successively triangulating the
features. The visual servoing law used in [12] is aided
by an upward-facing camera and tracking of features to
solve three-degree-of-freedom homographies. Our method
operates entirely on a frame-to-frame basis, and we show
that reasonably textured surfaces provide sufficient features
to solve for a robust estimation of the incremental odometry.
We emphasise this point by successfully localising on several
significantly different textured surfaces.

VT&R systems are susceptible to both gradual and
ephemeral lighting variations. In an effort to deal with this,
[13] use a light detection and ranging device to generate
synthetic images and then apply vision techniques for motion
estimation. Warehouse shelving areas are mostly subject
to modest lighting changes during operating hours, and so

our approach delegates this required robustness to a simple
preprocessing of recorded or captured images.

In [14] a proposed network of reusable paths as an
extension to VT&R systems uses an arbitrary graph of nodes
rather than a simple linear chain of poses that would restrict
the robot to moving, often very inefficiently, along the exact
route taught to it. A byproduct of our localisation allows for
the “stitching” together of different experiences of adjacent
areas into a large network that comprehensively describes
areas the robot commonly travels to on its scheduled tasks.
Furthermore, using the same simple graph search algorithm
that is the mainstay for our localisation, we are able to
furnish the robot with the ability to plan efficient routes
through the workspace that do not necessarily correspond
to the trajectory it was taught.

III. SYSTEM OVERVIEW

The key processing components of our pipeline for ware-
house navigation are depicted in Figure 2. The teach phase
builds the topological map adhering to the universal frame-
work described in Section III-A and implemented as detailed
in Section III-B. The bidirectional information flow between
localiser and database storing this map allows the robot to
grow a network representation of the warehouse in its repeat
phase by the method expressed in Section III-C, enabling
autonomy which is briefly mentioned in Section III-D.

Fig. 2. An overview of the key processing steps in our system, with
some detail regarding our particular choice of implementation. However,
the framework is universal, with the central graph database granting read
and write access to both mapping and localisation processes, allowing for
large network representations of warehouse environments to be grown, over
which space the robot can robustly localise and traverse autonomously.

The coordinate frames used in our system are shown in
Figure 3. The robot frame F

→Rk

and camera frame F
→Ck

are related by a static rigid transformation TR,C which is
obtained by measuring the downward pitch, β, and position
of the sensor relative to the vehicle centre of mass.

Fig. 3. Clearpath Husky A200 and a Neobotix MP-70 robotic platforms
used in our research, sole Pointgrey Firefly sensor used for navigation, and
relevant coordinate frames (Red x, green y, and blue z constitute a North-
East-Down frame convention). Lasers are only used for obstacle avoidance.



A. Topological Framework

Cameras are far from driftless global exteroceptive sen-
sors, and can suffer inconsistency introduced by the attempt
to solve in a global metric frame [15]. We thus strongly
advocate the use of topological maps in the form of networks
of interconnected places, an example of which is shown
in Figure 4. Each element in the sets of map nodes, M ,
and query nodes, Q, must store appropriate representations
of distinct places in the environment, while directed edges
between nodes store an invertible relational operator, iφj =
jφ−1i , between places, which must facilitate composition
Γ(iPn) = iφj ⊕ jφk + . . . + ⊕mφn, along a path P =
{iφj , jφk, . . .mφn} of connected places. These compositions
are not required to be accurate for far-flung i and n as we
require only locally accurate place-to-place relations. We also
require also the existence of a norm |iφj | = |jφi| ≥ 0
to represent the “closeness” of two places. The graph is
bidirectional in practice, to facilitate ease in implementation
of a graph search, Ψ, over the space of this relational
operator.

Fig. 4. Our topological maps are implemented as graph structures stored
within a database. Nodes store a representation of distinct places, which
may be a visual image, laser scan, etc. Edges indicate the connectedness of
the environment on a local scale and store an appropriate relation between
places, which may be a fundamental or essential matrix, metric pose,
wheel odometry, etc. Localisation within the topological map is limited to
optimisation within local graph neighbourhoods. This restricted approach is
efficient, is facilitated by the success of recent localisations, and is made
possible by the ability of the localiser to amend the underlying graph
representation of the world.

This graph representation for maps lends itself well to
both linear chains and topologically connected maps that
have been amended with loop closures. The section to follow
describes our particular choice of place representation and
relational operator.

B. Mapping

We make visual sensors our modality of choice due to the
low cost of highly dense information available as well as
their suitability for place recognition. Despite the significant
success demonstrated in the robotics community with stereo-
scopic vision [3], we choose not to use a sensor which relies
on the appearance of the shelving areas, as they are subject
to weekly if not daily variation during the rotation of stock
in a warehouse. Stereo cameras can also be susceptible to
narrow canyon-like environments in which particular features
are not visible from many positions the robot finds itself
in and race out at the camera at the sides of the image
(which are subject to significant distortion). We thus choose
to track the texture on the floor in front of the robot using

a monocular camera and use the relational operator iφj =
{Hi,j ,Ti,j} consisting of a robustly estimated homography
and associated (up to scale) relative pose, as described in the
following sections. Naturally, compositions take the form of
matrix multiplications Γ(iPn) = iφj

jφk . . .
mφn.

1) Robust Homography Estimation: Figure 5 shows
the camera motion and projection model used in our sys-
tem. Adapting the notation of [16], consider two images
xk−1,xk ∈ R3 (at subsequent time intervals) of a 3-D point
Xπ . Xπ is situated on a plane π that is parametrised by its
normal nπ and the perpendicular distance to the centre of
the first camera view, d.

Fig. 5. Camera projection and motion model. Two views of the same
planar surface are related by a homography that is induced by the plane.

The image points are related by a planar-induced homog-
raphy Hk,k−1 such that xk = Hk,k−1xk−1 (a consequence
of the epipolar constraint). We choose to detect and match
points of interest across frames using SURF features [17],
due to their robustness to viewpoint changes (the robot does
not revisit locations with exactly the same attitude) and speed
of implementation, yet our framework is easily adaptable for
swapping this subsystem out. Nevertheless, given a set of
such correspondences xjk−1 ↔ xjk, j = 1, 2, . . . , n (n ≥
4) from frame-to-frame sparse feature point matching it is
possible to construct a system of equations

Ahk,k−1 = 0 ∈ R3n (1)

where A = [a1, . . . ,an] ∈ R3n×9 and each aj = xjk−1 ⊗
x̂jk ∈ R9×3. The row-major version of the homography,
hk,k−1 ∈ R9 can be found as the eigenvector of ATA cor-
responding to the minimum eigenvalue. To robustly estimate
the homography, this estimation is wrapped in a RANSAC
process [18] and the homography with the largest set of
inliers is retained. This robustly estimated homography alone
is sufficient to enable localisation within our topological
framework, as shown in Section III-C. Motion planning
and control, however, require a euclidean characterisation of
the relationship between places, which is described in the
following section.

2) Pose Decomposition: It can be shown that the relative
pose between the subsequent frames Tk−1,k, parametrised
by a rotation Rk−1,k and translation tk−1,k is related to the
homography as

Hk,k−1 = Rk−1,k +
1

d
tk−1,kn

πT (2)

The singular-value decomposition (SVD) of the calibrated
homography KTHk,k−1K = V ΣV T , where the cam-
era intrinsics are encoded in K ∈ R3, gives us access



to a set of four possible solutions for the motion (up
to scale) between the two frames and the plane normal
{Rk−1,k,

1
dtk−1,k,n

π}i, (i = 1, 2, 3, 4). The candidate so-
lutions are constructed using the singular values and vectors
encoded in Σ and V – the reader is referred to [16] for more
detail. Nevertheless, in our system, we disambiguate these
solutions by applying a host of constraints:
• 〈nπ, [0, 0, 1]T 〉 ≤ αR

• 〈Rk−1,kn
π, [0, 0, 1]T 〉 ≤ αR

• 〈nπ, tk−1,k〉 ≤ αt

which take into account the maximum angle that the normal
can make with the plane, αR, as well as the maximum
translation, αt, we expect frame-to-frame.

To avoid the degenerate case of a stationary robot, we
only add nodes and edges to the graph when the translation
between two keyframes, Tf2,f1 =

∏f2
k=f1+1 Tk−1,k exceeds

a threshold ξt such that |tf2,f1 | ≥ ξt. A similar threshold
ξR is applied to the rotation the robot undergoes. Spatially
ordering the map in this way allows the robot to repeat
trajectories at any speed.

3) Geometric Properties of the Homography: Consider
two consecutive images Ik−1 and Ik related by a homogra-
phy such that Ik(xk) = Ik(Hxk−1) ' Ik−1(xk−1)∀xk ⊆
Ik,xk−1 ⊆ Ik−1. Let the warped version of an image
be Ĩ = HI . Let us define geometric properties of this
warping, encoded by the homography. First consider the
overlap of two consecutive images after applying the robust
homography estimation

harea(Hk,k−1) = Ĩk−1 ∩ Ik (3)

Second, consider the discrepancy between image coordi-
nates xTkHk,k−1xk−1 and define a distance metric

hdistance(Hk,k−1) = 2η2(

√
1 +

xTkHk,k−1xk−1
η2

− 1) (4)

Where the scaling factor η is called the Huber regulari-
sation threshold [19]. These functions are candidates for the
norm of the relational operator |iφj | which will both be used
to represent “closeness” of places in a local neighbourhood
during localisation.

C. Localisation
We can localise within graphs adhering to the topological

framework by a simple local search and optimisation as
originally illustrated in Figure 4. Our localisation begins by
a brute-force style search over a very limited portion of the
graph. Let B = {bj | ρ − σ ≤ j ≤ ρ + σ} be the set of
all map nodes within the database in a chain of length σ
around a seed node, ρ, provided by the user. We locate the
first query, q0, at the map node closest to it in the space of
geometric distances

b∗ = argmin
bj∈B

hdistance(Hbj ,q0) (5)

The system proceeds by performing the incremental
odometry estimation of III-B. We illustrate our localisation

by choosing a simple breadth first search strategy Ψ =
ΨBFS , yet other methods are easy to integrate. If qk is
the latest query node added to the database, let N =
{nj | ΨBFS(qk, nj) ≤ dmax} be the set of all map nodes
reachable from it by the search to a maximum depth, dmax.
The chained homography from the query to each reachable
node is wrapped up in the search such that each node nt
discovered by expanding a parent ns is assigned a weak es-
timate Ĥqk,nt

= Ĥqk,ns
Ĥns,nt

. Similarly to the initialisation
above, a potential localisation result is found by minimising
in the space of distances on this search estimate

n∗ = argmin
nj∈N

hdistance(Ĥnj ,qk) (6)

However, we impose a strict requirement on bonafide
localisation results such that they must satisfy a further
geometric constraint, κ, on their consequent overlap area:
harea(Ĥn∗,qk) ≥ κ. If the localisation candidate passes these
initial constraints, robust pose estimation can follow.

At this point however, we guide the homography estima-
tion. If Ĩqk = Ĥn∗,qkIqk is the query image warped under
the action of the search estimate homography, matching finds
correspondences x̃qk ↔ xn∗ in the frame of the candidate,
before unwarping the detected features xqk = Ĥn∗,qkxn∗

and proceeding with estimation. Ensuring features have a
similar orientation in frames of comparison provides an addi-
tional level of protection against spurious matching between
frames that are captured some time apart, and not in an
incremental fashion.

We impose one last constraint on the candidate, and
require that the percentage of inliers in the RANSAC es-
timation of the homography exceeds some threshold ψ. The
localisation result is then used to amend the graph such that
an edge is created between it and the query node.

The algorithm is divorced from any probabilistic frame-
work, and thus lacks introspection. We thus consider it
critical to the success of the algorithm that each localisation
candidate passes a multitude of tests such as this, to prevent
erroneous amendments of the graph (which would have the
incremental effect of degrading all further searches over
the graph). In the face of so many checks for robustness,
localisation occasionally stalls. In order to avoid missing
too many opportunities to create meaningful edges in the
graph (problematic if the robot has failed to localise for
long enough such that the maximum depth of the graph
search prevents it from ever recovering), we perform another
very modest brute-force recovery by searching over the set
of map nodes F = {fj | % − σ ≤ j ≤ % + σ} around
an estimate % obtained from a constant velocity model. Our
results will show that this contingency need only be resorted
to in the case of extreme lens glare or unmodeled robot
kinematics. Upon recovery, localisation proceeds in a well-
behaved manner.

D. Planning and Control

If the user positions the robot close to a start node
qstart and requests that it travel to a destination qgoal, let
P = {pj | pj ∈ ΨBFS(qstart, qgoal)} be the set of nodes



Parameter Value Insight
d 0.6 Measurable static camera height [m]
β 0.735 Measurable downward pitch [rad]
αR 0.342 Approximately perpendicular plane normal, 70 [◦]
αt 0.100 Varies with frame rate and maximum speed
ξt 0.5 Varies with frame rate and maximum speed
ξR 0.1 Varies with frame rate and maximum angular speed
η 100 hdistance should vary smoothly
σ 20 Assume fairly reliable seed by operator
dmax 25 Must be larger than σ yet still modest
κ 0.6 Strict localisation requirement
ψ 8 At least eight points required for solution
θ 3 Drift within small segments is negligible [m]

TABLE I
TABLE OF PARAMETERS AND JUSTIFICATION FOR THEIR CHOICE.

along the shortest sequence of edges linking qstart and qgoal.
P = ∪ns

s=1Ps is segmented into ns groups Ps by chaining
relative poses and ensuring that the robot does not travel too
far within each segment, such that |tPs(1),Ps(nPs )

| ≤ θ. The
cubic hermite spline method of [20] is used to interpolate
between points along each segment and generate a smooth
trajectory for the robot to follow, as well as to ensure
that there are no spatial or velocity discontinuities at the
confluence of adjacent segments. Implementing the work of
[21], the robot is controlled to follow these planned trajec-
tories whereby angular corrections (limited to a maximum
magnitude) are made to the heading while the robot is
travelling at a speed scheduled by a simple proportional-
integral (PI) control strategy.

IV. EXPERIMENTS

The experiments presented here were conducted on two
mobile robotic platforms particularly suited to warehousing,
shown in Figure 3: A Clearpath Husky A200 and a Neobotix
MP-70. Offline results were generated on a machine with
2.3 GHz Intel Core i7 processing power, 8 GB RAM,
1600 MHz DDR3. Images were captured by a Pointgrey
Firefly at 60 fps and a resolution of 752×480. The camera
intrinsic calibration was obtained by the OCamCalib imple-
mentation of [22], which was used to undistort incoming
images. Furthermore, some robustness to lighting changes
was available by normalising each image with the histogram
equalisation method of [23]. A summary and explanation of
the choice of parameter values is shown in Table I.

A. Mapping

To test the local consistency of the maps generated by our
system, Figure 6(a) shows an evolving scale factor calculated
against state-of-the-art stereo visual odometry [24] as d =
|tstereo|
|tmono| , which is equivalent to the height of the camera as
originally shown in Figure 3. The scale factor is not prone to
drift, and shows graceful disturbance rejection in recovering
after taking corners and experiencing image blur.

Indeed, Figure 6(c) shows a map built over 250 m2 of a
warehouse shelving area. While prone to accumulate errors
over time, the scaled trajectory achieved with our system
is locally accurate, due to a fairly precise inferred vehicle
velocity shown in Figure 6(b). To obtain a notion of accuracy
at a local scale, we propose the measurement of the average
error in inferred velocity espeed = 1

N

∑
|vmono − vstereo|
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(a) Our system is not prone to scale
drift, and exhibits swift disturbance
rejection in the face of image blurring
due to vehicle cornering.
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(b) The average linear velocity
at 5-frame intervals gleaned from
our system behaves in a manner
comparable with motion infer-
ence from stereo vision.
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(c) Compared to stereo odometry,
ground plane trajectories yielded by
our system are appear warped on a
global scale, yet are locally accurate.

Fig. 6. In these mapping experiments, we illustrate the robustness and
accuracy of our motion inference and consequently our maps on a local
scale

which for this particular experiment amounts to espeed =
0.0353 m/s, or only 7.1326% of the actual speed, which we
will show is sufficient for localisation over long distances.

We can produce maps that are locally accurate even over
floor surfaces that are relatively textureless. To illustrate this,
we show in Figure 7(c) the modest degeneration of the map
quality in the face of significant frame rate reductions, which
starves the homography estimation of features to match on a
frame-to-frame basis as shown in Figure 7(a). We argue and
will show that these maps are sufficiently accurate for robust
localisation and refer the reader to Figure 7(b) in which the
motion recoverable from our pose estimation is shown in the
form of steady-state linear robot velocity to be immune to
harsh frame rate reductions.
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(a) The ebbing quantity of candidate
features for matching disappear when
consecutive floor images lose signifi-
cant overlap.
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(b) The linear velocity inferred
from our pose estimation remains
constant in the face of reasonable
reductions in floor imagery overlap.
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(c) We retain local accuracy in map-
ping as the homography estimation
is starved of candidate features for
matching.

Fig. 7. In these mapping experiments, we illustrate the robustness and accuracy of our motion inference and consequently our maps on a local scale.

B. Localisation

We campaign vehemently for the disregard of difficult to
obtain globally accurate maps, and argue that our locally
accurate odometry coupled with robust localisation is suf-
ficient to deploy autonomous mobile robots in real-world
environments. These localisation experiments are thus the
critical results of this paper. We begin our investigation with
a motivating example by showing in Figure 8(b) localisation
capability in a highly textured office environment. We are
capable of uninterrupted successful localisation around the
entirety of the office. In Figure 8(c) we exploit the topologi-
cal links between the query and map trajectories to compare
the inferred vehicle velocity from dead reckoning (frame-to-
frame odometry estimation along the query trajectory) with
the rate at which the robot must have been travelling to have
localised at waypoints along the map trajectory, and show
them to be complementary. We then explore localisation in
our warehouse domain of interest, showing similar consis-
tency in both localisation performance as evident in Figure
8(e) and Figure 8(h) and motion accuracy as illustrated
in Figure 8(f) and Figure 8(i). Our system is capable of
such performance even in the face of surfaces which are
dramatically illuminated or suffer from a dearth of features
for matching, Figure 8(d). We go even further to show
the extensibility of this work to dynamically lit, and busy
outdoor environments. We drove the robot around a city
block, Figure 8(j), and were able to successfully localise for
several hundred metres, Figure 8(k). Furthermore, the system
was consistent in its recovery of the velocity of the vehicle,
Figure 8(l), which tapered off towards the end of each outing
(the battery, replaced each outing, depleted).

Our chief concern with regards to localisation capability is
the anticipated period over which the robot can be expected
to travel without successful localisation, vulnerable to errors
in wheel odometry. To this end, Figure 9 shows the proba-
bility of the robot travelling further than a certain distance
P (X ≥ x) =

∑
p(x) before recovering localisation. Indoor,

highly textured, and smoothly surfaced environments such
as our office exemplar never require localisation recovery.
Yet even in sparsely textured warehouses and kinematically
unconstrained sidewalks, it is important to note that our
system never requires the robot to travel blind for more than
1.4 m, and will quite probably relocalise much sooner than

that.

C. A simple teach and repeat experiment

The suitability of our topological framework to enabling
autonomy is illustrated in Figure 10 in which a robot is
taught a trajectory by manual control, and is able to repeat
it automatically. As the driving inputs for the path following
control, it would not be appropriate to compare trajectories
obtained with our system via monocular imagery. Instead,
as effective ground truth, we compare manually piloted and
autonomously driven trajectories obtained from stereo visual
odometry [24]. The topological framework and localisation
therein is such that amendments are made to the underlying
graph structure, which allows the robot to grow a network
of paths which it can use for autonomous missions. Figure
10(c) shows an example of localisation before driving beyond
the extent of a taught map. The robot is then able to
automatically traverse the entire environment in an order that
it did not experience.
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Fig. 9. A cumulative distribution of the probability of travelling blind for
more than a certain distance before resuming normal localisation behaviour,
from which it is clear our topological framework and localisation within
local graph neighbourhoods is robust to localisation failures even in the
most challenging environments.

V. CONCLUSION

We have presented a framework for topological nav-
igation for robots operating in warehouse environments
equipped with only downward-facing monocular cameras.
Mapping and localisation are purely topological and require
no knowledge of the global properties of the environment.
We have experimentally validated our approach within three
significantly different environments against state-of-the-art
stereo odometry and shown it to be consistent in motion



(a) Exemplar highly textured
and well-lit office floor sur-
face.
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(b) Ground plane map (red) and query
(blue) trajectories in an office, with lo-
calisation (orange) successful at every
iteration.
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(c) The consistency of our
system is illustrated here,
as the robot was driven
at the same speed during
mapping and localisation.
espeed = 0.0757 (9.9265%).

(d) Representative warehouse floor
plan.
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(e) Ground plane map (red) and query
(blue) trajectories, with regular local-
isation (orange).
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(f) Consistent motion
recoverable between
mapping and localisation.
espeed = 0.0875 (7.6091%).

(g) Common warehouse floor tex-
tures.
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(h) Ground plane map (red) and query
(blue) trajectories, with regular local-
isation (orange) and some localisation
reset (black).
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(i) Consistent motion inference.
espeed = 0.0531 (7.2448%).

(j) Satellite view of the route
driven along the pavement around
a city block and representative
surface scenery, which is often
dramatically lit or rather feature-
less.

−60 −40 −20 0 20 40

−140

−120

−100

−80

−60

−40

−20

0

20

Planar motion, x [m]

P
la
n
a
r
m
o
ti
o
n
,
y
[m

]

Map
Query
Localisation
Recovery

(k) Every so often, localisation fails
in the face of changes in lighting or
unmodelled vehicle movement. Our
system is able to gracefully recover
(black) and can resume normal lo-
calisation. We successfully localised
(blue) for more than 200 metres.
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(l) On both outings, the de-
pleting power supply to the
robot caused it to taper off in
speed, which our system is capa-
ble of representing and tracking.
espeed = 0.1780 (22.5481%).

Fig. 8. Demonstration of indoor and outdoor localisation along surfaces of varying texture and driveability, for up to several hundred metres.
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(a) Using frame-to-frame odometry
estimated by our system, we are able
to control the robot to automatically
repeat (blue) a trajectory it is manually
piloted along (red). Both trajectories
are computed by stereo odometry, and
are as such decoupled from the control
inputs
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(b) While poorly tuned, it is clear
that the controller is making effec-
tive use of the heading error fed
to it by our system, leading to an
oscillatory yet stable heading error
profile over the course of the re-
peated trajectory.
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(c) Our system allows us to leverage
multiple experiences (red and green)
of overlapping regions of the same
workspace, and enables the robot to
automatically repeat (black) two seg-
ments taught at distinct times and
linked (orange) as a byproduct of our
localisation.

Fig. 10. The navigation system we advocate lends itself well to enabling autonomy, illustrated here by a very simple teach and repeat experiment in a
parking lot.

inference and robust to localisation failures. Pedagogically,
and experimentally, our method is illustrated by a specific set
of algorithmic and hardware choices, yet we assert that our
framework is agnostic to the choice of sensor modality. Fi-
nally, we provided a short demonstration of the suitability of
our method to enabling autonomy of warehouse robots, and
is particularly useful for growing large and comprehensive
network representations of those environments.
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[6] P. Krüsi, B. Bücheler, F. Pomerleau, U. Schwesinger, R. Siegwart, and
P. Furgale, “Lighting-invariant adaptive route following using iterative
closest point matching,” Journal of Field Robotics, 2014.

[7] R. A. Brooks, “Visual map making for a mobile robot,” in Robotics
and Automation. Proceedings. 1985 IEEE International Conference
on, vol. 2. IEEE, 1985, pp. 824–829.

[8] Y. Matsumoto, M. Inaba, and H. Inoue, “Visual navigation using view-
sequenced route representation,” in Robotics and Automation, 1996.
Proceedings., 1996 IEEE International Conference on, vol. 1. IEEE,
1996, pp. 83–88.

[9] E. Royer, M. Lhuillier, M. Dhome, and J.-M. Lavest, “Monocular
vision for mobile robot localization and autonomous navigation,”
International Journal of Computer Vision, vol. 74, no. 3, pp. 237–
260, 2007.

[10] A. M. Zhang and L. Kleeman, “Robust appearance based visual route
following for navigation in large-scale outdoor environments,” The
International Journal of Robotics Research, vol. 28, no. 3, pp. 331–
356, 2009.

[11] A. A. Argyros, K. E. Bekris, S. C. Orphanoudakis, and L. E. Kavraki,
“Robot homing by exploiting panoramic vision,” Autonomous Robots,
vol. 19, no. 1, pp. 7–25, 2005.

[12] G. Blanc, Y. Mezouar, and P. Martinet, “Indoor navigation of a
wheeled mobile robot along visual routes,” in Robotics and Automa-
tion, 2005. ICRA 2005. Proceedings of the 2005 IEEE International
Conference on. IEEE, 2005, pp. 3354–3359.

[13] C. McManus, P. Furgale, B. Stenning, and T. D. Barfoot, “Lighting-
invariant visual teach and repeat using appearance-based lidar,” Jour-
nal of Field Robotics, vol. 30, no. 2, pp. 254–287, 2013.

[14] B. E. Stenning, C. McManus, and T. D. Barfoot, “Planning using
a network of reusable paths: A physical embodiment of a rapidly
exploring random tree,” Journal of Field Robotics, vol. 30, no. 6, pp.
916–950, 2013.

[15] G. Sibley, C. Mei, I. Reid, and P. Newman, “Planes, trains and auto-
mobilesautonomy for the modern robot,” in Robotics and Automation
(ICRA), 2010 IEEE International Conference on. IEEE, 2010, pp.
285–292.

[16] Y. Ma, An invitation to 3-d vision: from images to geometric models.
springer, 2004, vol. 26.

[17] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in Computer Vision–ECCV 2006. Springer, 2006, pp. 404–
417.

[18] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[19] P. Heise, S. Klose, B. Jensen, and A. Knoll, “Pm-huber: Patchmatch
with huber regularization for stereo matching,” in Computer Vision
(ICCV), 2013 IEEE International Conference on. IEEE, 2013, pp.
2360–2367.

[20] H. Mettke, “Convex cubic hermite-spline interpolation,” Journal of
Computational and Applied Mathematics, vol. 9, no. 3, pp. 205–211,
1983.

[21] G. M. Hoffmann, C. J. Tomlin, D. Montemerlo, and S. Thrun,
“Autonomous automobile trajectory tracking for off-road driving:
Controller design, experimental validation and racing,” in American
Control Conference, 2007. ACC’07. IEEE, 2007, pp. 2296–2301.

[22] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A toolbox for
easily calibrating omnidirectional cameras,” in Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on. IEEE, 2006,
pp. 5695–5701.

[23] G. Finlayson, S. Hordley, G. Schaefer, and G. Yun Tian, “Illuminant
and device invariant colour using histogram equalisation,” Pattern
recognition, vol. 38, no. 2, pp. 179–190, 2005.

[24] F. Fraundorfer and D. Scaramuzza, “Visual odometry: Part ii: Match-
ing, robustness, optimization, and applications,” Robotics & Automa-
tion Magazine, IEEE, vol. 19, no. 2, pp. 78–90, 2012.


